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Scattering of an X-ray by a charge distribution at the origin. . . . . .
Geometry of a rotating crystal method for X-ray diffraction in the
analysis coordinate system. (a) Coordinates used to solve for w where
G satisfies the Bragg condition. (b) Rotating crystal method setup,

with ¢ as the reciprocal lattice vector, and w is rotated about the 2z axis. 10

Schematic of the HEDM setup at Sector 1-ID:B of the Advanced Pho-
ton Source. Only the most relevant parts are shown. SampX, SampY,
and SampZ are the sample translation motors. PreciH is the air-
bearing rotation stage with < 0.1um eccentricity. The entire sample
column is placed on top of StageZ and StageX, two linear motors with
1pm precision. The detector column is mounted on the motors DetX,
DetY, and DetZ, which are used to adjust image plane location with
respect to the sample (top of the sample column). The scattered X-
rays from the sample are imaged with a detector system: a scintillator
converts X-ray radiation to visible light, which is reflected by a 45°
mirror (blue) and magnified by the focusing optics (red) onto a CCD
detector. The direct beam is stopped after the sample at the beam
block (green). IDB6 and IDB5 are ion chambers used to monitor the
flux of the incoming beam. The horizontal and vertical X-ray absorb-
ing slits (JJs) can be used to reduce the beam size for cases like the
raster scan described below. . . . . ... .00
An example of a raster scan for a tilted detector. The blue dots indicate
the locations of the direct beam as the detector is translated to four
different locations. The objective of detector calibration is to align so
that the grid lines are parallel to the plane of the X-ray beam (into the
page). When the optical focus is set on the center of the detector, the
aberration will be most noticeable near the edges of the detector. This
is problematic as the high |C§ | peaks contribute most to the spatial and
orientation resolution of the reconstructed orientation map. An ad hoc
solution to this problem is to optimize focus on the annulus around the
center (shown in green) so that the center is still within the depth of

focus (~ 2um). In this configuration, almost no aberration is observed.
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3.1

3.2

Coordinate system for a rotating crystal experiment. This is the con-
vention used at the APS beamline. The line-focused incident beam
propagates with k; || Z and, if not blocked, would intersect the de-
tector along the blue line. The red rectangle at the coordinate origin
represents the sample region being measured. The blue element, v(¥),
is a particular volume element in the sample space which, at rotation
position w, produces a diffracted wavevector /ZO intersecting pixel (j, k)
of the CCD detector (with nX x nY pixels). The polycrystalline na-
ture of the sample suggests that intensity, 1(j, k), can be a result of
not only v(Z), but also its neighboring volume elements. This is known
as “accidental overlap.” The diffraction peak due to /ZO is considered a
qualified peak as it satisfies the geometrical constraints of the system
(it strikes the detector at both L; and Ly). Notice that the diffracted
intensity originating from v(Z) due to this Gy could lie on any point
along the dotted arc (20-ring) if the crystal lattice were rotated about
the incident beam; this is true even for volume elements that are off
the rotation axis. On the other hand, rotations about this C_jhkl leave
this peak position unaltered. All other rotations about axes with a
component along y or z, will cause the Bragg condition to be satisfied
at a different w; those not parallel to y will change both w and 7. For
off-axis volume elements, changes in w change the location of the origin
of the scattering, and hence move the peak to a shifted 20-ring. The
coupled, complex motion of the many diffraction spots observed from
each volume element (as a function of lattice orientation) is the key to
resolving both crystal orientations and corresponding positions.

Discretization of a microstructure. A microstructure can be repre-
sented by an orientation field, O(Z), where # is a point in the sample
space. A discretized sample space (right) is used in the Forward Mod-
eling method. . . . . . . .. ..o
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3.3 Representative landscape of the cost function for a single voxel. (a),
(b), and (c) are successively expanded scale representations of the same
cost function C for the reconstruction of a single simulated voxel in ab-
sence of any other diffraction spots, i.e., a single crystal experiment.
The misorientation angle (x-axis) indicates the distance away from the
known orientation solution, which goes up to ~ 62° because of the
fundamental zone restriction. The sampling rate of the cost function
is lowered in (a) to show the local minima structure typical to C. The
plot in (d) shows the features of a single-voxel cost function in a poly-
crystalline sample (Quq: = 10). Features seen here are indicative of
well ordered crystals (500 randomly oriented grains). Multiple local
minima occur across the fundamental zone plotted, with a significant
number showing up around 60°, which is attributed to rotations about
high symmetry axes. General broadening of the cost function can also
be observed when @), is reduced. This restriction amounts to lower-
ing the total number of peaks used for orientation reconstruction. This
feature is exploited in the adaptive search method (Algo. 3). . ... 36

3.4 Pictorial representation of the refinement process. The intersections
of the black lines represent the uniform grid used to sample globally.
The blue circles indicate regions of shallow, broad minima of the cost
function. Green circles indicate sharp false minima, while the solid red
circle is the true global minimum for the specific )., used for this
reconstruction. At each iteration going from (a) to (c), the angular
resolution of the cost function is increased by increasing Qnae. - - - - 42

3.5 Reconstruction test using a synthetic microstructure (a) designed to be
difficult for the reconstruction code due to the successively neighbor-
ing twin structures that lead to significant peak overlaps. The recon-
structed map (b) with its confidence plot (d) indicates that while most
“orains” are reconstructed, about ten distinct points appear to have be-
low expected confidence. The blue ring around the reconstructed con-
fidence map indicates that the analysis code is unable to find suitable
orientations for these points, which is in agreement with the synthetic
structure. (c) is a plot of the distribution of the confidence. . . . . . . 46
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3.6

3.7

3.8

3.9

3.10

Orientation reconstruction test for plastically deformed Ti. (a) Plas-
tic deformation, manifested as orientation gradients across each grain
(shown as variations of the false color) on titanium was simulated us-
ing finite element methods [18]. (b) Diffraction signals of the deformed
Ti generated using the forward modeling method. It is shown that
the diffraction patterns are smeared across many images and pixels
(both 7 and w directions). (c¢) Reconstructed orientation map from
the deformed Ti diffraction patterns. This test shows the viability of
reconstructing materials with orientation gradients. (d) Point-to-point
misorientation comparison between the original and reconstructed ori-
entation map. We see that the errors in the orientation reconstruction
are relatively low and that the grain boundary geometries across the
two maps are very similar. It should be emphasized that the recon-
struction grid and forward simulation grids are deliberately incommen-
surate so that reconstruction noise is not artificially suppressed.

Orientation noise variation with @),,., and reconstructed resolution.
Noise is measured by a locally, or kernel, averaged misorientation calcu-
lation (the strained copper wire data and kernel averaging are discussed
in detail in Chapter 6). (a-d) A comparison of the effects of different
spatial and reciprocal space resolutions on reconstructed orientation
maps. A progression of degradation of features can be seen as spatial
resolution is decreased. Reduced number of peaks used for orientation
reconstruction leads to significant increase of orientation noise, as seen
in (a). Finally, while overall features of kernal averaged misorientation
remain relatively stable as spatial resolutions were varied, changes in
Qmae significantly alter the global result. . . . . ... ... ... ..

A histogram comparing the variation of the distribution of local average
misorientation (Fig. 3.7 as a function of (.., sample spatial resolu-
tion, and L-distance. All fits were performed at (),,.. = 12 except for
the case indicated otherwise. Broadening of the local misorientation
distribution can be seen in the @,,,. = 10 case. Along with the spa-
tially resolved KAM map, this indicates that the use of lower 4z
results in a generally noisier reconstructed orientation map. . . . . . .

Orientation maps reconstructed using different intensity thresholds of
the diffracted peaks. Each map is thresholded at 0.6 confidence. Dif-
ferent intensity ranges of the diffraction peaks correspond to different
regions of the reconstructed grains. . . . . . . . .. ...

Confidence plots for reconstructed maps with different intensity thresh-
olds. Only regions around grain boundaries are reconstructed in cases
where the high intensity portion of the diffraction peaks, i.e., central
regions, are removed. . . . ... ... Lo
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4.1

4.2

4.3

4.4

4.5

A graph G provides an abstract representation of the two-dimensional
microstructure shown. Each grain is represented by a vertex v (num-
bered.) Each connection between a pair of grains are represented by
an edge e(v,v’). Two grains are limited to neighbor at most once with
each other (i.e., the graph G is undirected, and there exists at most
one edge for each pair of vertices.). Edges of G therefore provide an
abstract representation of boundaries between each pair of grains.

A schematic showing a common way to use linear interpolation func-
tions to help define boundaries in a multi-domained material. In this
two-dimensional example, the three different colors indicated corre-
spond to three different domains with grain indices 1, 2, and 3. The
interpolation scheme shifts the entire image by (%, %), which does
not affect the outcome of the defined boundaries. Bilinear interpolation
is applied to the indicator functions y; to define y;(p) everywhere in
the domain. The interpolation parameters, o and 3 are defined by the
location of p’ with respect to the reference point (Zy in this diagram)

in the interpolating domain D,,. . . . . . .. . .. ... ...

Interface between two regions with red being regions of f(p; ;) < 0 and
white being f(p; jx) > 0. The voxels (shown only as a two-dimensional
projection) approximate the plane indicated by the blue line. As we
decrease the voxel size in the sample grid, the distance between the
approximate isocontour (grid steps) and the actual isocontour will con-
verge to zero. However, since each facet of the grid point is fixed, the
local normal estimate will never converge. . . . . . .. ... ... ..

The two-dimensional version of Marching Cubes for illustrative pur-
poses. In the pixelized region, red and blue indicate regions of two
different gray levels. New vertices (white) are placed on the edges
of the cube based on the configuration of signs in each cube (green
square). Because the vertex placement is determined locally, some

configurations (center and right) do not produce unique isocontouring.

An octree is used to decompose the domain of f(p; ;x). A two-dimensional

schematic is shown here. Meshes produced from a spatially adaptive
octree will exhibit the same hierarchical features. This means large tri-
angles will be used to represent regions with large features, and small
triangles will be used in sharp regions to ensure that the meshed surface
conforms to the true isosurface. . . . . . ... ...
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4.6

4.7

4.8

A two-dimensional schematic of Dual Contouring. Red and blue pixels
represent two regions separated by an isocontour. The green box rep-
resents the octree (quadtree in 2D). The cell with the dotted line is
expanded to demonstrate the calculation of the minimizer point (green
dot). The normals n; and 7 are estimated using the trilinear inter-
polation of f(p; ;). The minimizer point, the intersection of the two
tangent lines of the estimated isocontour at the points p; and po, is
obtained by minimizing the quadratic error function (Eq. (4.12)). The
levels of the quadtree are chosen for illustrative purposes only.

A 2D schematic of surface reconstruction using Delaunay refinement.
The diagram on the left shows the point set P (black dots) sampling the
domain. The Delaunay triangulation is shown by the black and green
edges. The green edge (triangle in 2D) corresponds to the facet that
represents the isocontour B, indicated by the red curve. The purple
lines are the Voronoi edges. Note that the dual Voronoi edge of the
boundary facet intersects the isocontour (green dot). A Delaunay ball
(black circle), a ball circumscribing the vertices of the initial facet (two
points in 2D, three points in 3D), is centered on the intersection point
between the surface Voronoi edge and the isocontour. To refine the
triangulation, a vertex is inserted at the center of the surface Delaunay
ball. The original triangle (tetrahedron in 3D) is removed, and the
Delaunay triangulation is updated (right). As a consequence, the new
facets (green and brown edges) better approximate the isocontour, i.e.,
the distance § will decrease for some number of the new facets [3]. The
algorithm will continue to refine any triangles containing facets with o
larger than some predetermined threshold value (green dot contrasted
withred dotin (b) ). . . . . . ... o

An illustration of the sampling of a sharp feature. The black lines
indicate the isocontour, and the red line segments represent the re-
constructed surface. Blue dots are used to show the locations of the
vertices of these 1-facets. The dashed circle indicates the problem-
atic region. The refinement scheme shown in Fig. 4.7 will not be
able to reproduce the isocontour unless a vertex is placed at the sharp
corner. The result is a reconstructed surface with a large number of
facets, many of which intersect the isocontour. This is undesirable
for microstructures, as it produces significant error in the mean width
calculation (discussed below). . . . ... ... L
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4.9 A pixelized boundary (left) is interpolated on the right, as indicated
by pixels with cut corners. The black line indicates the true boundary.
Since the true boundary is not faithfully represented by the pixelized,
interpolated data, resolution of the reconstructed boundary is limited
by pixel size. Surface reconstruction methods can at best capture this
interpolated boundary from the discrete data (edges shared by both
red and blue regions). While reducing the parameter 6 below the pixel
side length to something arbitrarily small will lead to the convergence
of the reconstructed surface to the interpolated surface, it may not
necessarily converge to the true boundary. The resulting surface may
also contain artifacts, such as noisy surface normals (white), where a
relaxed 0 could lead to a smoother surface (green). . . . . ... ... 76

4.10 Resolution parameters’ effect on unconstrained reconstructed meshes
is shown here for a rotated cube in a rectilinear grid. The facet-to-
boundary parameter decreases from ¢ = 2 to § = 0.5 going from left
to right. Moving down the columns, we can see the effect of maximum
edge length going from e. = 0.1 to e, = 1 in normalized units. Corners
and sharp edges tend to become noisy with lower d, while larger o
results in meshes that poorly approximate the original shape. . . . . 80

4.11 A schematic describing the approximation parameter ¢, which specifies
the maximum distance between the facet (red) and the grain boundary
(black curve). Facets in two-dimensions (edge) and three-dimensions
(triangle) are shown on the left side and right side respectively. . . . . 82

4.12 Relative mean width error of a free sphere. (a) Relative error is plotted
against %D)Q, where s is the voxel side length. Near linear scaling is
attributed to a good convergence of the mean width as a function of
resolution. A line indicating y = x is supplied as a reference. Note
that error bars shown are smaller than symbol size, indicating mini-
mal orientation variation in the relative reconstruction error, which is
expected for a sphere. (b) A plot of the relative error as a function of
L(D) better shows the convergent behavior. . . . .. ... ... ... 85

4.13 Relative mean width error of a free cube. (a) Significant variation is
found in the errors estimated, indicating directional dependence of the
discretization, which is expected. (b) A plot of the relative error as
a function of L(D) to show an exception in the convergent behavior
(6 = 0.5). In both plots, § = 0.5 produces an error that does not
follow any scaling. This is an indication that the mean width error is
dominated by the noise in the reconstructed surface mesh. The scale
of the error seen here is not dramatically worse than the sphere case. 86
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Relative mean width error of a constrained cube. (a) Marked difference
in the error scaling behavior can be seen here. Notice here that the
error from the case of § = 0.5 is significantly higher. This is mostly
attributed to noise in the triple line reconstruction. Variation as a
function of orientation is also dramatically larger than observed for
the free sphere or the free cube. (b) All cases except for 6 = 0.5
converged rapidly with increasing resolution. . . . . . . . .. .. ..
Relative volume error of a free sphere. (a) Relative volume error scaling

with V(;)l , where s is the voxel side length for a sphere. Note again
3

that the error bars are below symbol size. (b) Relative error plotted
against volume to demonstrate convergence criteria. . . . . . . . . ..
Relative volume error of a free cube. (a) Variation of volume approxi-
mation error is significantly lower than that of the mean width calcula-
tion. (b) It can be seen that the volume converges much more sharply
than the mean width approximation. However, noting the scale indi-
cates here that the relative errors can become significantly higher (up
to 0.25 in the volume approximation in contrast to 0.15 in the mean
width test). . . . . . .
Relative volume error of a constrained cube. (a) It is seen that all
four values of ¢ result in very similar volume approximations. The
non-convergent behavior seen in the § = 0.5 case of mean width is not
present here. Error variation across different orientations is also signif-
icantly lower. (b) Compared to the free sphere and the free cube, we
see that the volume approximation here converges much more slowly.
Note again that ¢ seems to have no effect on the reconstruction.

A schematic of how a maximum intersection grain tracking scheme may
lead to misleading results. Grains of the same color in the diagram are
considered to have the same orientation. As grain boundaries move,
even with perfect registrations between two states, it is possible that
the same grain across two states cannot simply be identified by having
maximum intersection and minimum misorientation. . . . . .. . ..

(a) A representative orientation map from the nickel sample. The color
is a mapping of the orientation space to red, green, and blue (RGB).
The confidence map (b) shows the fit quality of the orientation map.

Mean and median grain volume for each of the anneal states. . . . . .
(a) An example of a grain with non-trivial geometry found in the initial
and the first anneal state. The region that is “wrapped around” by
the grain is identified as an in-growing twin. (b) Evolution of a grain
across four states going from initial to final (left to right). Dramatic
changes can be seen at the narrowest part of this grain throughout the
annealing process. . . . . . ...
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Grain size distribution, plotted as normalized radius, %, where R, =

1
(%)3 is the spherical equivalent radius. Annealing progresses from

(a) to (d). . . .

Single parameter misorientation distribution for four (initial to third
anneal state in the order of (a) - (d)) out of six anneal states measured.
The discrepancy in the second anneal state is at this time believed to
be an artifact due to errors in the experimental parameters, pending
results from the final error analysis. . . . . . . . ... ... ... ..

Sub-spaces of the five parameter grain boundary character distribu-
tion selected by the misorientation. Annealing proceeds from left to
right. Each figure is a plot of the boundary normal distribution, rep-
resented in the stereographic projection form and plotted as multiples
of random. (a)-(c) X3, (60°,[111]) Note the strengthening of the [111]
peak by a factor of 100 across the annealing process, which indicates
the alignment of boundary normals with the rotation axis. (d)-(f) 5,
(36.87°,[100]) and (g)-(i) ¥11, (50.49°, [110]) Signals from both X5 and
311 are much weaker that those seen in ¥3. One reason is the signif-
icantly lower statistics (count of 28007 boundary patches for ¥3 in
contrast to 1185 and 804 for ¥5 and >11). Secondly, the energy of the
3.3 coherent twin corresponds to a much deeper minimum than 5 and
D

Distribution of apparent grain boundary motion between initial and
first anneal state. The horizontal axis is the number of microns shifted,
and the vertical axis is the faction of boundary patches. The total
number of boundary patches is also displayed to exhibit the difference
in the population sizes. A Gaussian (red) is fitted to the distributions
in an attempt to isolate random components of the shifts from potential
signal. The raw data is shown in blue, and the Gaussian subtracted
signal is shown in black. . . . . .. ... ..o

An example of the global plot of the grain boundary motion distribu-
tion seen in Fig. 5.7 for ¥3 (a) and ¥25a (b). A small number (less
than 10) of boundary patches is found to have noticeably large mo-
tion (upwards of 20 um). However, these patches are more prone to
misidentification across the two anneal states. . . . . . . . ... ...

Apparent grain boundary movement, classified by misorientation type,
plotted as projections of the boundary normal weighted by multiples of
the mean boundary shifted. For each plot, the mean boundary shift is
classified by the boundary normals and binned according to the two an-
gles, (¢,1), which represent the normal in the upper hemisphere. The
average shift in each bin is compared with the shift of all boundaries.
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6.4

A test of the MacPherson-Srolovitz relationship dV = =27 M~(L(D)—
%Ze) for the 16 grains tracked across four volumes. Aside from
globally not following MacPherson-Srolovitz’s relationship, deviation
for each of the grain is markedly different from what is expected for
isotropic grain growth. . . . . . .. ... 0oL

Evolution of topological class and volume for 16 grains tracked across
four of the six anneal states. It is shown that the change of grain
volume is correlated with the change in topological classes. . . . . .

(a) Side view schematic of the experiment, with the blue arrow indi-
cating the diffracted X-ray beam. The diffracted peaks are measured
at distances L; and Ls. The dotted green line indicates the location
of the copper wire in tension, and the red region indicates the gauge
section being imaged. (b) An expanded side view of the sample holder
in (a). The Imm wire can be seen here to be fixed by set screws (red
section at the top and bottom). The sample housing around the wire
is made out of Macor, an X-ray transparent ceramic. (c¢) A photograph
of the actual sample after electropolishing (the image was cleaned up
to remove some of the residual lacquer). The narrowest section of the
necked wire is roughly 250um in diameter. (d) The load cell reading
plotted as a function of displacement. Green dots indicate states where
HEDM imaging was performed. . . . . . .. ... ... ... .....

Images corresponding to the same 1° integration interval in states SO,
S1, 52, and S3. These are background subtracted images for a layer at a
sample location equivalent to 216, the 16th layer of state S1. Since the
sample is moved and deformed noticeably during strain steps, layers
measured do not have a direct correspondence between different states.
Best match layers are shown here instead. Significant deformation of
the sample can be observed as peak broadening in the 7 direction. Note
that we do not expect any observation of elastic strain since it is on
the order of 10~* for copper, which is below our resolution limit.

Tomographic reconstruction of the four deformed states. . . . . . ..

(a) - (i) Observed evolution of a diffraction peak as the sample ro-
tates about the z-axis. Experimental diffracted intensity is shown in
grayscale, while simulated pixels are plotted as green dots. The simu-
lation overlap is typically concentrated in the higher intensity area of
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Abstract

Near-field High Energy X-ray Diffraction Microscopy (HEDM) is a
synchrotron based imaging technique capable of resolving crystallographic
orientation in a bulk, polycrystalline material non-destructively. Recent
advances in data acquisition and analysis methods have led to micron-
scale spatial resolution and < 0.1° angular resolution of the measured
volumetric orientation maps across millimeter sized samples. This is a
significant improvement over the previous generation of three-dimensional
X-ray techniques, which provides us with the access of statistically signif-
icant microstructure volumes. Combined with the use of state-of-the-art
surface mesh generation algorithms, this markedly improved resolution
results in the capability to directly measure geometrical evolution, such
as grain boundary motion, and material deformation in the form of lattice
rotations.

In this thesis, the algorithms and analysis methods recently developed
for HEDM are discussed. This includes the descriptions of the robust
geometrical extraction methods used for microstructure feature charac-
terization. A set of validation tests for the Forward Modeling Method
and the newly developed orientation reconstruction algorithm, the Strat-
ified Monte Carlo Pruning method, is also detailed. By using HEDM
to measure the annealing of high purity nickel, grain boundary motion
for different boundary types are measured and presented. Moreover, the
use of HEDM enabled us to observe the first ever spatially resolved lat-
tice rotation in a high purity copper wire under uni-axial tension, thus
demonstrating HEDM’s applicability to defected materials.

XXV



XXV1



Chapter 1

Introduction

1.1 Motivation

The interest to observe microstructure of materials with multiple internal interfaces
is widespread in solid states physics, and the demand from both the scientific and
engineering communities are increasing. Because material properties are generally
anisotropic with respect to crystallographic orientations, orientation preferences, or
texture in a polycrystalline material typically dictates its bulk properties. Moreover,
interfaces created inside a material significantly affect the material both microscop-
ically and macroscopically. As an example, the critical current density in a high T,
superconductor sample (YBaCuO) depends on both the location and the types of its
grain boundaries [124]. A superconductor’s technological application hence depends
on the control of its microstructure [10, 12, 11].

As a more common example, three-dimensional measurements of deformation and
annealing processes in metals have been largely limited to statistical studies and
two-dimensional inferences up until recent years. Advances in synchrotron based
X-ray techniques such as 3D X-ray Diffraction Microscopy [38], High Energy X-
ray Diffraction Microscopy (HEDM) [116, 62, 83], and Differential Aperture X-ray
Microscopy (DAXM) [55] have demonstrated the possibility of using X-rays for non-
destructive orientation imaging in three-dimensions. The first set of results showed in
situ observation of the growth of a single grain [104], measurement of growth mode of
superconducting thin-film [10], and observation of subgrain structure formation [17],
just to name a few.

More generally, the capability to characterize three-dimensional polycrystalline
systems is of both scientific and technological importance. However, this often re-
quires not only the ability to non-destructively measure volumetric orientation maps
for arbitrary materials, but also the numerical and computational tools necessary to
take advantage of these data sets. For example, in the case of grain growth, robust
and reliable grain boundary extraction from the measured orientation map is a pre-
condition to a successful analysis. The ability to track thousands of features across
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a sample is required if microstructure evolution is of any interest. While historically,
geometrical features are extracted manually, the same can not be done for three-
dimensional data sets with anywhere between 100 to 10000 grains. Without the use
of automation, the ability to analyze measurements from these synchrotron based
experiments is greatly diminished. In fact, significant development and progress was
made in automated geometric extraction [59, 26, 27].

On the other hand, the increasing use of computation and automation leads to the
logistical problem of error magnification, commonly known as “garbage-in-garbage-
out.” The fact that roughly 2 TB (Terabytes) worth of data (typical of a HEDM
experiment) gets turned into around 1 GB (Gigabyte) of orientation maps semi-
automatically means that any small errors in the initial input gets propagated rapidly
and thoroughly into the final result. The origin of such error is difficult to find and
is often random. Consequently, any effort to produce reliable, usable data sets would
require a significant amount of validation, stability testing, and sensitivity a study
of the analysis pipeline and algorithm. The ability to characterize analysis failure is
sometimes as important as the analysis itself.

The simple goal of non-destructively characterizing polycrystalline material then
only requires synchrotron X-ray experimental techniques, algorithmic development,
and error analysis. Numerous types of progress in these areas have been made in the
context of HEDM and these form the basis for this thesis.

1.2 Overview

The scope of this dissertation is focused mainly in three areas: 1) Implementation
and analysis methods of HEDM, 2) statistical, geometrical, and topological analysis
of volumetric orientation maps, and 3) applications of HEDM. Understanding of the
HEDM implementation is crucial to its analysis, as the reconstruction methods re-
quires numerous experimental inputs. While an effective analysis method was already
in existence for HEDM [116], dramatic improvement in data acquisition speed (factor
of 10-20) leads to demands for faster and more robust reconstruction software. Tak-
ing advantage of a recently maturing computational geometry library (CGAL) [1],
various aspects of geometrical and topological extraction of volumetric orientation
maps were developed. These results are crucial for the analysis of grain growth in a
high purity nickel sample — an application of HEDM to well-ordered polycrystalline
material. The culmination of all of the reconstruction and data analysis is applied to
the study of plastically deformed copper.

1.3 Outline

The physical implementation and data acquisition methods in HEDM are presented
in Chapter 2. A brief survey of simple X-ray diffraction is provided, which forms the
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basis of our experiment, and the rotation method is described in some detail. The
experimental procedure, including sample alignment, data acquisition, and detector
calibration is included. Some discussion of methods used to improve system reliability
of HEDM is also presented.

Chapter 3 provides the basis for orientation reconstruction from HEDM diffraction
data. In this chapter, a review of existing algorithms used for analysis of 2D and 3D
diffraction data is presented. The Forward Modeling Method [116] is discussed at
length to provide a foundation for the analysis of orientation reconstruction in a
polycrystalline sample. Because the Forward Modeling Method reconstructs orienta-
tions based on an auxiliary cost function, a great deal of time is devoted to discuss its
properties. While theoretical understanding of the orientation reconstruction prob-
lem at large is inadequate, Chapter 3 argues that the Forward Modeling Method
is in fact stable based on a number of numerical results. With this result in hand
an augmentation of the Forward Modeling Method is presented. Finally, real world
validation results are presented.

Chapter 4 focuses on the geometrical analysis of reconstructed orientation maps.
Since many materials problems such as grain growth and grain boundary percola-
tion requires the measurement of grain boundaries and their evolution, surface and
volumetric meshes are sometimes required as part of the analysis. Consequently, a
significant amount of Chapter 4 is devoted to understanding boundary reconstruction,
also know as isocontouring. Theoretical development of surface reconstruction using
Delaunay triangulation is be presented as a summary to motivate and support the
application and implementation of a feature preserving boundary surface reconstruc-
tion method [3, 9]. Error analysis is performed and presented at the end of Chapter
4.

Application of HEDM to an annealing study of a high purity nickel sample is
discussed in Chapter 5, and the result of the initial analysis is presented. By applying
the tools developed in Chapters 3 and 4, we are able to measure the evolution of
microstructure statistics as the sample anneals. Grain boundary motion is measured
from the surface mesh generated from the orientation maps, and the relationship
between boundary type and its motion is examined. Finally, taking advantage of the
grain tracking capabilities developed in Chapter 4, we are able to demonstrate the
anisotropic nature of nickel annealing through the measurement of the parameters in
the Macpherson-Srolovitz relations.

Pushing the limits of HEDM, a deformed polycrystalline copper sample was im-
aged before and after multiple in situ uni-axial tension tests; the results are discussed
in Chapter 6. Plastic deformation, manifested as lattice rotations and local misorien-
tations are observed in the measured orientation maps. Unlike results from previous
experiments [389, 17], measurements of lattice rotations are spatially resolved; thus
for the first time, grain neighbor information is measured and tracked in an in situ
deformation experiment. Because the use of the Forward Modeling method to analyze
diffraction patterns from a deformed material is largely a new endeavor, detailed val-
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idation tests are performed and shown. The ability of the Forward Modeling method
to track peak splitting and broadening is also demonstrated.



Chapter 2

High Energy X-ray Diffraction
Microscopy

2.1 Overview

High Energy X-ray Diffraction Microscopy (HEDM) is primarily enabled by the avail-
ability of third generation synchrotron sources, such as the Advanced Photon Source.
A typical HEDM experiment requires the use of a micro-focused beam, high energy
(upwards of 50-100 keV), and high brilliance to ensure reasonable measurement time
and signal-to-noise ratio. This makes HEDM particularly difficult to implement in a
bench-top setting. As a reference, brilliance at the Argonne National Lab’s Advanced
Photon Source is around 12 orders of magnitude larger than the brightest X-ray tube.
This is due in part to the naturally small opening angle of synchrotron X-ray beams
and the small source size due to the small electron beam cross-section. The high
brilliance reduces the loss of efficiency due to focusing optics; this is something un-
available in any of the bench top setups.

In this chapter, the implementation of HEDM at the Advanced Photon Source
will be described in detail. We will start with a brief review of synchrotron and
scattering physics and move to diffraction peak imaging using the rotating single
crystal method. Because of the diverse references already available for synchrotron
physics, only parts relevant to our experiment will be reviewed. Some time will
be spent on X-ray diffraction, with specific focus to kinematic scattering. This is
important for understanding of features such as peak broadening due to deformation
in some of our experiments. Because of the imperfect nature of the detection system,
attention must be paid to background subtraction. A discussion will be provided on
the simplistic noise model used in our analysis. Similarly, because of measurement
uncertainty and the requirements of a high precision description of the experimental
geometry, methods were developed to improve reliability of the overall measurement
process. These methods, including rotation axis alignment and focus optimization
provide a basis for calibrations, and will be discussed in this document.



2.2. REVIEW OF SCATTERING PHYSICS

By applying HEDM to bulk samples, we are able to produce volumetric orientation
maps (=~ lmm diameter, and = 0.3mm height) at microns spatial resolution and 0.1°
angular resolution. The origins of the resolution limits will be discussed in the context
of a discretized 2D detector and focusing optics. By examining the optical component
of HEDM, we will also see where and how spatial distortion in the detector affects
the resulting orientation images. Finally, we will conclude by examining the data
reduction process.

2.2 Review of Scattering Physics

Knowledge of scattering physics required for the application of HEDM is embarrass-
ingly rudimentary. In this section, we will develop the machinery required for Bragg
scattering. For the purpose of understanding intensity variation and peak shapes
due to crystals with defects, discussion of atomic and structure form factors will be
included. Similarly, a limited overview of perfect crystal scattering theory will be
included for the purpose of understanding the monochromator used in the HEDM
setup. It should be noted that as the development of analysis techniques of HEDM
matures (Chapter 3), the analysis of higher order effects become possible. For exam-
ple, the most up-to-date HEDM analysis code uses binarized intensity data. Even so,
effects of deformation are observable through the broadening of peaks in the detector
space. Further analysis, for example with intensity fitting, would require an explicit
intensity model.

2.2.1 Kinematic Scattering

While X-ray scattering contains contributions from both elastic (Thomson) and in-
elastic (Compton) components, only results from classical kinematic X-ray scattering
are discussed for the purpose of our application. This is because inelastic scattering
is incoherent, and hence no diffraction “peaks” in the usual sense are produced. It
should be noted however that inelastic scattering can sometimes be a major contrib-
utor to background noise in some of the HEDM experiments.

Given an electron at the origin and an incident plane wave, represented by the
electric field, E = Eye™'2, where 7 is the polarization direction, the magnitude of the
scattered electric field at location R due to scattering from the origin is given by

2 o E )
B, = <7qe sin ¢ 0) et (2.1)

mec?|R|

where ¢ = cos_l(fZ- ), me and ¢, are mass and charge of the electron, respectively. In
the approximation of |R| > ¢, where ¢ is the diffraction sample size, the distribution

6
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Figure 2.1: Scattering of an X-ray by a charge distribution at the origin.
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of electrons p(7) will produce an electric field with magnitude of

B ey [ ()5 0y o)
me?|R|

where /%, k, are the directions of the incoming and outgoing wave vectors (REF War-
ren.) We identify the summation here as a sum of phase factors associated with
scattering from position 7. For an atomic electron density distribution of p(7), the
atomic form factor is given by

F= [ e@pan. (2.3)

Here, we have switched to the usual convention of Cj = 27”(125 — l;:o) Applying the
same ideas to a set of atoms at positions {7}, a structure factor for a crystal can be

calculated, namely

F= Z £(Q)e@7s, (2.4)

where 7 identifies the location of the j-th atom. f is the Fourier transform of the
atomic electron density.

Two properties become apparent from this short summary. First, the electronic
form factor depends on @ and this dependence modulations the scattering associated
with the crystal structure. Moreover, f falls off rapidly (with a width of order the
inverse atomic radius) as a function of @ , which contributes to the decrease of observed
intensity in higher |C§ | peaks. Because of the sharp drop off of intensities at high |C§ |
and the limited dynamic range of detectors, effective integration times for an X-ray
measurement are bounded in both directions. With too low an integration time, most
of the intensity from high |C§ | peaks will not be detectable. Saturation and “bleeding”
(smearing of high intensity peak across a wide detector region) of the low |Q| peaks
occurs when the integration time is set too high.

By summing the structure factor over the crystal lattice, we get

Lattice sum

—
Frot = Z F(@)edT N @R, (2:5)

n

where the first sum is over the basis atoms associated with a single unit cell and
ﬁn = mya; + meas + mzas runs over the entire crystal lattice, specifying unit cell
locations. This is the usual way to arrive at the Bragg condition from the Laue
Equation of Cj = éhkz, where éhkl is the reciprocal lattice vector representing the
scattering plane. An extension of equation 2.5 that allows deviations in either the
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atomic positions, 7; or the unit cell positions ﬁn, leads to results such as the Debye-
Waller factor and peak broadening from stacking faults in a crystal. For example, R,
might be replaced by

—

Rn = mldl + m2d2 + mgdg + 5n7 (26)

where 4, represents deviation of the n-th unit cell from its lattice location. The exact
form of 5 depends on the underlying physics. For example, in the case of lattice
vibrations, 0, has the property that <5 ) = 0. The resulting modified structure factor
is given by

F=3" f(Q)e@ o), (2.7)

n

The integrated intensity from this form factor reads,

I = <FF*> _ <<Z f(Q)elé(Fn-i-gn)) (Z f*(Q)e_ZQ‘(F77L+g’!7L>>> (28)

_ Z Z (@) (Q)e =) (@ n=5). (2.9)

In this way, the “perturbation” to the ideal Bragg scattering is captured by the time

averaged term, <eié'(gm_g”)>, which becomes e@l9m=9ul* — ¢M in the case of lattice

vibrations.!. More detailed exposition can be found in references. [4, 120]

The relevance in mentioning the Debye-Waller term can be seen in the design
of in situ phase transition measurements using HEDM. In the standard notation,
M = By|Q|?, where, for the isotropic case ((u2) = (u2 + uy + uZ) = 3(ug)),

5 _ _ 114927 (0 +2874
T = 7 Ae2 T AQ
1 /M~ o
- ' 2.1
o(x) le/0 6x,_1d1’ (2.10)

where By is given by A2, A is the atomic mass number, and © is the Debye tem-
perature. [1] All temperatures are given in Kelvins. Measured intensity falls off as
e~Br1Q”  which implies that the signal to noise drops off rapidly for high Q peaks,
and this problem is exacerbated in high temperature experiments. This is particularly
problematic, as higher order peaks contribute significantly to the spatial and orien-
tation resolution of our measurements. Simply increasing integration time is possible
since the diffracted intensities for different () span multiple decades, which exhausts
the dynamic range of the detector system. The use of attenuators may also produce
undesirable results, as we will describe in the later sections.

! This result is reached by assuming that thg displacement is Gaussian, and by the application of
Baker-Housdorff theorem, we have (e/*) = ¢2®
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2.2.2 Rotation Method

HEDM is, in principle, a simple extension of the rotation X-ray diffraction method
to a polycrystalline sample. The geometry of the standard rotation method is shown
in the figure 2.2. A single crystal sample is located at the origin of the coordinate
system, represented by a box in figure 2.2b. The plane wave incoming X-ray beam,
represented by the wave vector EZ-, is monochromatic and has an energy bandwidth
that is negligible. The diffracted beam is represented by k,. The sample rotated by
wz. By using the Bragg condition of Eo — EZ = é, we can solve for the rotations about

G(h,kl
K Detector

Figure 2.2: Geometry of a rotating crystal method for X-ray diffraction in the analysis
coordinate system. (a) Coordinates used to solve for w where éhkl satisfies the Bragg
condition. (b) Rotating crystal method setup, with § as the reciprocal lattice vector, and
w Is rotated about the Z axis.

Z, wz, that bring G into comphance with Bragg condition [1 15, 116]. By considering
G to point along the direction of ks initially, and parameterizing the rotation from
this position by the angle ¢, we can arrive at

G=a (sinxcos $i + sin x sin @] + cos X/%) : (2.11)

where x is the inclination angle of G from the z-axis [116], as shown in Fig. 2.2a. By
rewriting the Bragg condition as k; - G = ——|G 2, we get the equation,

el

B (2.12)
2| k;| sin x

cos ¢ =
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In the case of any arbitrary G not in the z — z plane, we will define

¢o =
siny = (2.13)
Then, Bragg condition is satisfied for G at two points,
w = ¢+ ¢
w = T—¢+ . (2.14)

This can be directly translated into the integration interval where G satisfies the
Bragg condition, and the detector coordinate where the diffraction spot is measured
can be computed by simple projection along k,. The integrated intensity measured
at this detector location is presented in the next Section.

2.3 HEDM Measurements

2.3.1 Overview

High Energy X-ray Diffraction Microscopy (HEDM) is implemented at the 1-ID beam
line of the Advanced Photon Source, Argonne National Lab. At its most basic level,
HEDM is an orientation and strain imaging technique using high energy X-rays.
Roughly speaking, there are two variants of HEDM, namely the near- versus far- field.
Based on the rotating crystal method mentioned in section 2.2.2, near-field HEDM is
usually limited to crystallographic orientation imaging for polycrystalline materials,
although recent advances intend on including limited strain mapping capabilities.
Taking advantage of the large detector-to-sample distance, the far-field method is used
mostly for strain mapping without high spatial resolution. Both HEDM techniques
leverage heavily on the high brilliance and high energy nature of the synchrotron
radiation, unique to 1-ID and a handful of other beam lines in the world. With
the combination of precision monochromator and X-ray focusing optics, 1-ID can
produce planar, a microfocused wide beam (FW HM = 6um vertically, 1mm width)
with better than 1% energy resolution. In this section, a summary of the near-
field HEDM experimental setup will be provided. Limited discussion concerning
monochromator, X-ray focusing, scintillators, and optics will be provided to form
a working understanding needed for HEDM. Experimental calibration procedures
developed to improve overall reliability and precision will also be discussed in this
section, while software, “bootstrap” methods are described in Chapter 3.

11
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2.3.2 Experimental Setup

The near-field HEDM setup is described in figure 2.3, with various parts labeled.
The planar X-ray beam is produced by a combination of monochromator and X-ray
focusing optics. The resulting microfocused beam illuminates a planar cross section of
the sample, which is mounted on a precision rotation stage (< 1y shift in the rotation
axis.) As with the rotating crystal method mentioned in section 2.2.2, the sample
is rotated about the axis perpendicular to the X-ray beam (in APS coordinates, 7).
Integrated intensities are recorded while the sample is rotating at constant angular
velocity with a CCD camera system, which digitizes images from the scintillator.
While a small fraction of the incoming X-ray beam is scattered, most of it ends up
penetrating the entire sample. With the direct beam being around 10® more intense
than most diffracted peaks, the presence of the direct beam in the recorded image
leads significant saturation of the detector system. The result is an unreasonably high
background in the recorded images. Consequently, a single crystal beam attenuator
is placed along the beam after the sample.

2.3.3 Experimental Procedure

The goal of HEDM is to measure the crystallographic orientation field for some sub-
volume of a polycrystalline sample. In most cases, such as aluminum and nickel,
this crystallographic field represents a set of grains, where grains are defined to be
collections of spatial points with orientations that are very close to each other. The
set of grain boundaries associated to these grains are also recovered in this process,
and the local variations of orientations within each grain (local misorientation) are
also measured.

Orientation maps measured in HEDM are two-dimensional slices, as they are
produced by the planar, micro-focused X-ray beam. The diffraction images for the
predetermined integration (w-rotation) intervals at different detector-to-rotation axis
distances (L-distances) are used to reconstruct the spatially resolved orientation maps.
This is done with the reconstruction software, which associates each of the diffrac-
tion peaks in the recorded image with a point in the sample space. In general, the
crystallographic orientation of a point in the sample space can be determined by
indexing at least three diffraction spots corresponding three non-collinear reciprocal
lattice vectors. Because peak shapes on the detector are projections of a grain, the
microstructure geometry is recovered by performing HEDM over large numbers of
integration intervals so as to yield many different projection geometries.

The ability to reconstruct orientation maps from a set of 2D detector images de-
pends on the precise knowledge of the experimental geometry. Namely, the location
and perpendicularity of the rotation axis relative to the x-ray beam plane completely
specifies the coordinate system origin, which determines the spatial location of the
reconstructed orientations. The detector tilt (to within 0.5° from the nominal orien-
tation) and focus determine the exact projection geometry, and therefore contribute
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Figure 2.3: Schematic of the HEDM setup at Sector 1-ID:B of the Advanced Photon Source.
Only the most relevant parts are shown. SampX, SampY, and SampZ are the sample
translation motors. PreciH is the air-bearing rotation stage with < 0.1um eccentricity. The
entire sample column is placed on top of StageZ and StageX, two linear motors with 1um
precision. The detector column is mounted on the motors DetX, DetY, and DetZ, which are
used to adjust image plane location with respect to the sample (top of the sample column).
The scattered X-rays from the sample are imaged with a detector system: a scintillator
converts X-ray radiation to visible light, which is reflected by a 45° mirror (blue) and
magnified by the focusing optics (red) onto a CCD detector. The direct beam is stopped
after the sample at the beam block (green). IDB6 and IDB5 are ion chambers used to
monitor the flux of the incoming beam. The horizontal and vertical X-ray absorbing slits
(JJs) can be used to reduce the beam size for cases like the raster scan described below.
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to the resolution of grain boundary locations.

Rotation Axis

The distance between the rotation axis and the detector (L-distance) has a large effect
on the HEDM measurement. Unfortunately, the location of the rotation axis cannot
be directly measured with the current set-up because the sample holder column is
independent from the detector housing (Fig. 2.3); i.e., the two sets of apparatus are
not coupled in a precise, known way. Instead of direct measurements, L-distances are
recovered by ray-tracing a set of indexed peaks to their diffraction origin. Unfortu-
nately, this is particularly difficult for polycrystalline samples because the diffraction
peaks can come from any of the numerous grains in the sample. Finite grain size (of
around 20um to 100um also adds to the uncertainty in the extrapolated scattering
origin. To obtain initial estimates of the L-distances, a small diameter ( 30um) gold
wire is used as a calibration sample. By placing this wire on the rotation axis, we can
assume that the diffraction center is effectively at the origin for each of the diffraction
spots recorded, which makes the initial guess of the L-distances much simpler (accu-
rate to around 50um). The wire is centered on the rotation axis before the L-distance
calibration so that the position of the sample does not depend on the integration in-
terval; moreover, centering on the rotation axis keeps the sample within the limits of
the incoming X-ray beam.

Because it is generally difficult to determine the perpendicularity of the rotation
axis with respect to the X-ray beam by diffraction images, a calibration procedure
was developed and used for each HEDM measurement. We start by inserting the top
of a gold wire into the direct beam such that no more than 1um of the tip is above
the X-ray beam. The wire is put into an “off-axis” position so that when the sample
stage rotates, and the tip of the sample traces a circle of radius R ~ 300um around
the rotation axis. The location and attenuation of the tip is observed by the intensity
profile on the detector. Because the sample is no more than 1um above the beam,
any deviation from perpendicular of more than 1um over 600um can be observed.
This corresponds to 0.1° accuracy in the perpendicularity of the rotation axis.

Direct Beam Block

Because the fraction of scattered X-rays is minuscule (&~ 1073) compared to those
transmitted through the sample, a direct beam block must be used to prevent detector
saturation. The beam block is necessarily made out of a high Z material to obtain
the necessary attenuation of the high energy X-rays. In present case, a single crystal
(moasicity < (1072)°) of Tungsten is used. The use of a single crystal allows us to
position the beam block such that none of its diffraction peaks are incident on the
detector. This is particularly important as the diffracted intensity from the single
crystal beam block tends to be several factors larger than sample signals. In the
HEDM geometry, suboptimal positioning can also result in sample diffraction signals
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striking the beam block and being attenuated or removed. To minimize these effects,
the location of the beam block is typically only a few tens to a hundred microns
above the direct beam. An unintended side effect is the contribution of grazing angle
reflection on the rough surface of the beam block. This effect could be minimized by
applying the appropriate polishing procedures to the beam block.

Monochromator

A monochromator is needed to produce a monochromatic X-ray beam from the poly-
chromatic synchrotron source. Although a detailed discussion of Darwin widths and
dynamical diffraction theory is not included in this chapter, some relevant key results
are relevant. Roughly speaking, a monochromator selects out a single energy from a
white beam by the means of Bragg diffraction,

nA = 2dsin 6, (2.15)

where d is the lattice spacing and A is the X-ray wavelength. With well defined d and

he

e = 12_41«;&. In fact, Bragg scattering is

AA

never a true o-function, so a finite range of Waveleng’[clrls are included. This implies that
variations in energy, AE = % are obtained. The monocrhomator system [03] uses
diffraction off of two separate Si crystals (for one thing to obtain a horizontal output
beam). With the bent crystal Si (111) reflections used at 1-ID, we obtain ££ ~ 1072,
Because a significant amount of energy is deposited onto the first monochromator
crystal, temperature variation is inevitable. To maintain small AF and maintain
a precise output energy, the monochromator crystal must having minimal thermal
expansion with temperature variations. As it turns out, single crystal silicon is perfect
for this task, because of the near zero coefficient of expansion around the boiling point

of liquid nitrogen.

0, the output energy is fixed by A\: F =

From Eq. (2.15), it can be seen that for a given d and 6, not only will photons with
wavelength A be selected, but so will any nA where n is an integer. This problem is
generally mitigated by using a multiple bounce (diffractions) monochromators tuned
so that Il > 1 for any n > 2, where [, is the intensity of the n-th harmonic. Also, at
high energles the spectrum of radiation from the undulator source falls with energy
reducing the intensity of the higher harmonics. However, as mentioned before, it is
sometimes convenient to perform measurements using a lower flux (e.g., when using
two different detectors of different sensitivity), and therefore an attenuator is placed
upstream of the sample. Because attenuation is energy dependent, it is possible to
result to have an attenuated beam where higher harmonics are not negligible. The
resulting diffraction patterns are not analyzable with the current methods.
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Figure 2.4: An example of a raster scan for a tilted detector. The blue dots indicate the
locations of the direct beam as the detector is translated to four different locations. The
objective of detector calibration is to align so that the grid lines are parallel to the plane
of the X-ray beam (into the page). When the optical focus is set on the center of the
detector, the aberration will be most noticeable near the edges of the detector. This is
problematic as the high |C}| peaks contribute most to the spatial and orientation resolution
of the reconstructed orientation map. An ad hoc solution to this problem is to optimize
focus on the annulus around the center (shown in green) so that the center is still within
the depth of focus (=~ 2um). In this configuration, almost no aberration is observed.
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Detector Calibration

As in the case of the rotation axis, the detector parameters are not known a priori in
the HEDM setup. The scintillator screen has to be translated to put it at the focal
point of the optical system and the orientation (relative to the x-ray beam plane) and
the effective pixel pitch, v (pixel dimension), have to be measured. Data collection
macros have been written and associated analysis developed for these purposes using
Matlab.

Pixel pitch calibration is measured using the so-called “raster” scan. In this
scan, the detector is translated in front of a fix x-ray beam to a set vertical and
horizontal locations using the associated set of linear translations (Fig. 2.4). A
small X-ray beam, produced from the usual line focused beam by restricting the
horizontal size with the JJ slits to roughly 5um, is imaged at each of these grid
points. Because the linear motions are precise (or are measured) to within +1um, the
distance between the grid points is well defined. The locations of the measured spots
in the images is contrasted with the expected grid locations to yield v in microns per
pixel. With an optimized focus setting, the detector pixel size should be determined
by the magnification of the optical focusing component and physical CCD pixel size.
Given that the physical pixel size is ¢ = 7.4um, and a 5x focusing optic is used,
the effective pixel size should be 1.48mum. Our measurements typically yield v =
1.47 £ 0.01pm. For an L-distanceof 5mm, the angular resolution of a pixel is given

by tan~! (&18) ~ 0.02°.

To optimize the optical focus, the beam height is measured as a function of the
focus (scintillator) position, again at a set of beam positions on the detector (the
“focus raster” scan). The aberration in the optical system is manifested as a spatial

variation of the optimal focus position approximated by
Zf(j, k)= A(j - j0)2 + B(k — kC)z + 2o, (2.16)

where z; is the focus position, (j.,k.) is the center of the focal axis, and 2, is the
optimal focus position for (j.,k.) on the detector coordinates. Therefore, z¢(j, k)
is measured by running the raster scan at different focus positions around the z.
The resulting parabola is used to optimize both the detector tilt and global focus
position. See Fig. 2.4. When optimized, the coefficients, A and B are around
10~°[m 1], contributing to a 10um difference in focus location across the detector,
which is negligible by noticeable given the ~ 3um depth of focus.

2.4 Data Reduction

While in principle explicit peak segmentation and peak identification are not necessary
for the Forward Modeling reconstruction method (Chapter 3), the relatively large
sizes of the raw diffraction images makes them difficult to handle. Therefore, data
reduction is performed by a simple background (median) subtraction and rough peak

17



2.5. CONCLUSION

identification. This process reduces the input data size by a factor of roughly 100.
Note that each of the peaks identified could be composed of intensity contributions
from multiple regions of the sample, which is sometimes referred to as accidental
peak overlap. In most other analysis methods, peak overlaps are detrimental to
reconstruction, as it results in non-unique orientation solutions [56, 90, 105]. However,
it is shown in Chapter 3 that accidental peak overlaps have minimal effects on the
Forward Modeling reconstruction algorithm.

In the data reduction, the intensity of each pixel as a function of the w is analyzed,
and the background intensity is assumed to be additive; this is,

]oxp(,ja ]{Z,W) = [background(,ja kaw)_'_]signal(jukuw)a (217>

where (j, k) are the usual detector coordinates. Here the background is simply taken
as the median of I, (j, k,w) To remove random, single pixel noise (hot pixels), a
3 x 3 median filter is applied to the background subtracted images. Peaks in the
background subtracted images are identified using a connected component algorithm,
and “tails” of the peaks are removed by applying intensity thresholding. In other
words, given a set of pixels, {p;}, forming a connected component, only the subset
{pi : I(pi) = fLnax({p:})} is accepted as diffraction signal, where f € [0, 1], and 1,4,
returns the maximum intensity from a set of pixels. This thresholding method can
be considered as an ad hoc way to remove broadening effects of diffraction peaks due
to the finite resolution of the detection system including hallowing effects due to the
scintillator being thicker that the depth of focus of the optical system. As a reference,
typical value of f is between 0.05 - 0.1 based on visual inspection and trial orientation
reconstructions.

2.5 Conclusion

In this chapter, we have described some of the experimental set-up and calibration
procedures of HEDM; in so doing, we have presented the foundation needed to discuss
the analysis methods and orientation reconstructions of Chapter 3. The components
of the HEDM set-up are sketched out, and the coordinate systems used in APS and
the analysis are also defined. A brief overview of kinematic scattering was presented,
and we have pointed out some of the results relevant to the experimental design.

The ability to spatially resolve orientation turns out to depend critically on the
precision with which the experimental parameters are determined, and several calibra-
tion methods are developed and presented in this chapter to help minimize parameter
errors. Further details of these effects and further minimization procedures can be
found in Chapters 3 and 6. The data reduction method is also presented as a brief
description of “peak” or “signal” extraction. While the Forward Modeling method
(Chapter 3) has no explicit dependence on the way diffraction peaks are identified,
the data reduction method serves as a means to control peak-dependent broadening
in the detection system (finite resolution effects).
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Chapter 3

Orientation Imaging Through
Digital Reconstruction

3.1 Overview

Similar to orientation imaging using electron backscatter diffraction microscopy (EBSD),
both high energy X-ray diffraction microscopy (HEDM) and three dimensional X-ray
diffraction (3DXRD) microscopy leverage heavily on recent advances in computational
techniques for orientation reconstruction based on digitally recorded diffraction pat-
terns.! In the case of EBSD, diffraction (Kikuchi line) patterns produced by a point
focused electron beam are captured from one spatial location on the sample at a time.
In this way, spatial location is well defined. HEDM refers to a class of high energy
X-ray diffraction methods that measure orientation and strain states of individual
crystalline grains inside of bulk materials. Under standard terminology, “far-field”
HEDM refers to measurements having detector-to-rotation axis distance (L-distance)
of at least 1m (with a large area, large pixel size detector), whereas “near-field” refers
to L-distances of a few millimeters using a small but high resolution detector. Far-
field measurements concentrate on measuring crystallographic elastic strain states
whereas near-field measurements are used for orientation mapping. For orientation
mapping, the so-called “rotation method” is used with a line focused X-ray beam.
The detector records diffraction images from many grains simultaneously, as discussed
in Chapter 2. Consequently, reconstruction of orientation maps requires simultane-
ous determination of crystallographic orientation and diffraction origin from a set of
superimposed diffraction patterns.

While X-ray orientation imaging is vastly more difficult than EBSD, a significant

'HEDM and 3DXRD are essentially equivalent measurement techniques and the acronyms are
used almost interchangeably. 3DXRD was coined by Poulsen et al [38] to refer to work primarily at
the European Synchrotron Radiation Facility (ESRF). HEDM was coined at and specifically refers
to work at the APS. While experimental parameters may be different, the real divergence in the
context of this thesis lies in the analysis methods (as discussed below).
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set of advantages makes the X-ray approach attractive. First, with the use of high
energy X-rays, the penetration depth provides access to bulk information (sample
radius up to lmm). Three dimensional structure can be accessed and re-measured
after a variety of treatments to the sample. In contrast, the penetration depth of
elastically backscattered ~ 20 keV electrons in EBSD is on the order of nanometers.
Thus, EBSD is inherently a surface technique. Three dimensional information can
only be gathered by sectioning off the previously measured surface layer. Moreover,
the quality of orientation maps from EBSD is heavily dependent on surface proper-
ties. For example, oxidation or poor polishing lead to diffraction patterns that are
not indexable, which significantly reduces the reliability of the resulting orientation
maps. Since high energy X-rays probe inside bulk material, surface preparation and
smoothness are not issues.

Not all 3D X-ray orientation imaging techniques use the rotation method. Dif-
ferential aperture X-ray microscopy (DAXM) [55] is quite similar to EBSD. Grid
points along the sample surface are scanned, and orientations are measured using the
Laue diffraction patterns generated by a polychromatic incident beam. Sub-micron
focusing yields excellent spatial resolution and careful analysis yields sensitivity to
deviatoric strains. On the other hand, DAXM suffers from some of the same draw-
backs as EBSD. While micron scale depth resolution is possible, penetration is limited
by the lower energy of the probing X-rays (< 20 keV). This leads to the inability to
collect data from sample volumes in excess of 500um?. The fact that the technique
requires at least a detector image per measured volume element implies extremely
large data volumes (and data collection times) for measurements that resolve shapes
of large numbers of crystals. Large volume characterizations are crucial to statistically
significant studies of phenomena such as grain growth or so-called “extreme-events”
(e.g., crack formation).

Intrinsically three-dimensional problems are difficult to address using standard
two-dimensional imaging techniques. For example, measurement of residual strains
on a fracture surface is a problem of three-dimensional nature. Studies by Fields and
company [108] (cite Fields, EBSD book) suggest that residual strains tend to relax
at a free surface. Therefore, observation of strain states in the depths sampled by
EBSD may not reflect the pre-crack state. X-ray techniques provide the possibility
of measuring strains in bulk material prior to crack formation. Another example
is the problem of grain growth in 3D. While statistical analyses using stereology
[54, 99] have helped advance the understanding of 3D grain growth, numerous a pri-
ori assumptions are required [14, 99]. With the advent of automated serial sectioning
by combining ion-beam milling with EBSD, three-dimensional data structures have
become more readily available. However, the destructive nature of serial section-
ing measurements makes direct observation of microstructure dynamics difficult or
impossible.

Due to the relatively complex nature of the orientation search problem in HEDM
and 3DXDR, significant focus has been placed on reconstruction algorithms, and
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numerous advances have been made in recent years. Various techniques have been
developed by Risoe/Danish Technical University [37, 105, 56, 91], for example Grain-
Dex, GrainSweeper, and algebraic reconstruction methods. A brief review of these
techniques, including some of their shortcomings will be presented in this Chapter.
The application of the forward modeling method (FMM) [116] has led to advances
in orientation reconstruction of deformed microstructures. The forward modelling
method also paved the way for the development of Stratified Monte Carlo Pruning
(SMCP) and several ongoing importance-sampling based algorithms in orientation
searches. Because the forward modelling method and orientation searches form the
foundation of the HEDM method, we will devote the first half of this Chapter to
their development and details. The orientation reconstruction problem is inherently
an inverse problem, so we will address some of the questions regarding existence and
uniqueness of an optimal solution. This includes examination of some of the objec-
tive functions used in the forward modelling orientation search. To provide a concrete
characterization of errors, a set of parameter studies is conducted. Results are re-
ported in the second half of this Chapter. Finally, some ongoing work which extends
the most recent advances is summarized.

3.2 Methods of Orientation Reconstruction

3.2.1 Problem Statement
Single Grain Diffraction

Consider a perfect single crystal at the origin, and a collimated, monochromatic
incident X-ray beam along 2. In the kinematic (single scattering) approximation,
diffracted X-ray beams will be visible in discrete spots dictated by Bragg’s Law:

—

ki —ky = Ghu
k| = |kl (3.2)

where k; is the incoming X-ray wavevector, and /’{:ﬂ0 is the diffracted X-ray wavevector.
The reciprocal lattice vector for the sets of planes specified by (hkl) is denoted by
C_jhkl. Due to the monochromatic nature of the X-rays in our experiments, diffraction
spots are only expected at discrete locations, which can be parametrized by (w, 7, 26),
as shown in (Fig. 3.1). The crystallographic orientation of a diffracting single crystal
is defined to be the rotation required to transform from the sample coordinate system
to the crystal coordinate system. To specify the crystal system relative to the sample
system at least three linearly independent vectors, or a set of basis vectors must
be specified. This information, which is obtainable by indexing of diffraction peaks
measured from the rotating crystal method, is in principle sufficient for the orientation
determination of a single crystal.
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Ideal Peak Indexing

In general, peak indexing refers to identifying the hkl values of measured reciprocal
lattice vectors. Since the incoming wavevector in a measurement is well defined
by the synchrotron source and the monochromator, peak indexing solely relies on
determining the geometry of a given diffraction pattern. Given a single crystal of
negligible size and assuming that the detector is perfectly efficient with zero noise and
that the physical setup exhibits no drift, the direction of the diffracted wavevector,
Ko, is defined by the scattering origin and the location the diffraction spot. For
convenience, let us define the detector origin as the projection of the diffraction origin
onto the 2D detector, which is assumed to be perpendicular to the incident beam.
Diffraction peaks must lie on discrete 260 rings (fixed radii) because of the Bragg
condition. In principle, ambiguity due to closeness of 26 rings are resolved by indexing
large numbers of diffraction peaks. In reality, the use of the rotating crystal method
with finite sample size results in ambiguous diffraction origin, as any sample point
not on the origin would necessarily circle about the rotation axis. To resolve this
problem, both peak index and diffraction origin must be identified simultaneously.

3.3 Review of Existing Reconstruction Techniques

Extensive literature can be found on the existing reconstruction techniques [38, 87],
and therefore only a brief survey will be provided here to justify the need for the work
described in this section.

Reconstruction and indexing of diffraction spots are thoroughly studied by Poulsen
et al and an indexing algorithm has been written; the program is called GRAINDEX
[56]. Roughly speaking, it works by identifying diffraction spots from a set of 2D
images by a combination of background subtraction and image segmentation [31,
84]. Diffraction spot centers-of-intensity, also sometimes known as centers-of-mass,
for multiple detector locations and w values are used to track the direction of the
diffracted momentum vectors, k,. Given the definition of n and # in Fig. 3.1, the lab
frame reciprocal lattice vectors can be described by

a —sinn
— =cosf | cosny : (3.3)
|Gl —tand

Given the center-of-intensity position for each of the peaks, the values of n and 6
can be estimated (the algorithm works best in the far-field limit where sensitivity
to the position of origin is minimal). Consequently, a reciprocal lattice vector can
be assigned for each of the diffraction spots. By associating diffraction spots and
reciprocal lattice vectors to a grain, a coordinate system representing the crystal frame
is defined. The crystallographic orientation of a grain is found by determining the
transformation required to go from the sample frame to the crystal frame. In practice,
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0,0) - Ly

AB

Figure 3.1: Coordinate system for a rotating crystal experiment. This is the convention
used at the APS beamline. The line-focused incident beam propagates with k; || Z and,
if not blocked, would intersect the detector along the blue line. The red rectangle at the
coordinate origin represents the sample region being measured. The blue element, v(&), is
a particular volume element in the sample space which, at rotation position w, produces a
diffracted wavevector k, intersecting pixel (j, k) of the CCD detector (withnX xnY pixels).
The polycrystalline nature of the sample suggests that intensity, 1(j, k), can be a result of
not only v(Z), but also its neighboring volume elements. This is known as “accidental
overlap.” The diffraction peak due to k, is considered a qualified peak as it satisfies the
geometrical constraints of the system (it strikes the detector at both L, and Ly). Notice
that the diffracted intensity originating from v(¥) due to this éhkl could lie on any point
along the dotted arc (20-ring) if the crystal lattice were rotated about the incident beam;
this is true even for volume elements that are off the rotation axis. On the other hand,
rotations about this C_jhkl leave this peak position unaltered. All other rotations about axes
with a component along y or z, will cause the Bragg condition to be satisfied at a different
w; those not parallel to y will change both w and n. For off-axis volume elements, changes in
w change the location of the origin of the scattering, and hence move the peak to a shifted
20-ring. The coupled, complex motion of the many diffraction spots observed from each
volume element (as a function of lattice orientation) is the key to resolving both crystal
orientations and corresponding positions.
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center-of-intensity is determined by identifying and raytracing the same diffraction
spots measured at multiple detector-to-rotation axis distances (L-distance) when the
diffraction origin is resolvable by the detector (near-field HEDM).

Unfortunately, GRAINDEX is very sensitive to peak shape, as center-of-intensity
positions can be significantly altered in imperfect grains. For example, when a peak
splits under deformation, the resulting center-of-intensity may not correspond to that
of the original peak. Accidental peak overlap from separate grains also presents a
challenge in this analysis. To alleviate these problems, multiple indexed reciprocal
lattice vectors can be used simultaneously to construct an orientation matrix. This
forms the basis of the program GrainSweeper.

Another way to understand the problem of orientation reconstruction is to gen-
eralize it to solving the full inverse problem of diffraction in 6D [37]. This is known
as the Algebraic Reconstruction Technique (ART). Specifically, the spatial geometry
and crystallographic orientation of the sample can be represented in the 6D space of
H =R ® SO(3). Intensities recorded by the X-ray detector are then produced by a
function, f : H — R?, where R? is a scalar field describing intensity on a set of 2D
detector images. The objective of ART is to find f=! : R® — H such that the 6D
configuration from measured diffraction intensities is recovered. Unlike the case of a
Radon transform in transmission tomography, the explicit inverse of the transform f
specified in this case is unknown. There is a significant amount of freedom in both
constructing and parametrizing H. For example, one could use a product of direct
space (R?®) with quaternions, Rodriguez-Frank vectors (RF), or even Euler matrices.
It is even possible to forgo the use of direct space altogether and use dual quaternions.
When the direct product space R ® RIF is used, the optimization problem becomes

Aijklmnp Ljklmnp — b;, (3-4)

where the indices are summed over the direct product space of spatial and angular
degrees of freedom. The matrix elements are defined to be

Aijklmnp = Lijlkmnp Hjklmnp I(|F|> G)a (35)

where T is the transfer function describing the fraction of the intensity from element,
Zjkimnp, that is transfered to b;, p is the measure in H associated with the 6D voxel
T jkimnp- The intensity normalization factor is given by I(|F|?, G) for a given scattering
form factor I’ and experimental geometry . No summation is performed on repeated
indices in Eq. (3.5). The reconstruction is then performed by minimizing |Ax — b|.
The detector geometry is hidden inside the function I(|F|*, G), which also has implicit
dependencies on Zjiimnp. Moreover, very little is known about A other than the
fact that it is sparse. In most realistic situations, output from GRAINDEX and
GrainSweeper are used as input for ART.

The Filtered Back Projection method [21] from computed transmission tomog-
raphy (CT), can also be used under the assumption of perfect grains. The use of
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this technique is associated with the so-called “box-beam” setup [68], a favorable
configuration when speed is needed. This is because, while typical near-field HEDM
and 3DXRD setups use a micro-focused planar beam of a few microns in height, a
box-beam is hundreds of microns tall and may fully illuminate up to several grain
volumes at a time. Here, 3D grain shapes are projected non-perpendicularly onto the
2D detector. This amounts to a modified version of the Radon transform [67, 88, 91].

3.3.1 Shortcomings of Peak Center of Intensity Methods

The particular reliance on diffraction peak segmentation, peak identification, and
center-of-intensity estimate in orientation reconstruction leads to significant short-
comings in the GRAINDEX-like reconstruction methods. The use of digital image
processing techniques such as image segmentation often depend heavily on a set of
a priori assumptions on the physical properties of the diffraction peaks. These as-
sumptions sometimes lead to highly undesirable results, some of which are discussed
in this section.

The most obvious problem is that peak identification, more generally known as
image segmentation, is fairly difficult in the most general case [31, 84]. While ad-
vances in both charge-coupled device CCD and scintillator technology have drasti-
cally improved signal-to-noise ratios, there are still significant challenges in identifying
diffraction peaks from non trivial samples. For example, a single X-ray diffraction
image (one integration interval) for a piece of well annealed, high purity Nickel con-
tains many peak overlaps, especially in the low 26 region. Peak overlap is due mostly
to the large number of crystals in the cross section, typically more than 1000 for an
interesting sample 1mm in diameter. Since measurement of polycrystalline samples
with large numbers of grains is important for statistical reasons, we are not likely to
see any reduction in this number.

In the case of sharp diffraction peaks, center-of-intensity positions easily trans-
late to grain center positions through the use of ray-tracing (following the diffracted
beam from the sample to the recorded peak). Also, albeit sometimes challenging,
the detection system’s point-spread function maybe measured ahead of time. In this
way, grain shape may be recovered either from backward projection or algebraic re-
construction of the deconvolved peak. However, peak overlaps make it difficult to
attribute peaks to their corresponding grain. A priori, it is difficult to know what
the contributing peaks look like given the composite peak. The problem gets further
complicated in cases where many overlapping peaks are present. This happens much
more commonly than one would hope in real materials, as orientation preference in
samples (texture) is prevalent in both naturally occurring and engineered materials.
The result is that the combination of multiple peaks in the same region pushes the
response of the detection system into the non-linear regime, or worse, saturation,
making both deconvolution and peak separation extremely difficult.

In considering more complicated experiments such as in situ observations of strain,
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annealing, and phase transitions, both elastic and plastic deformation lead to peak
broadening. In these cases, plastically deformed regions contain networks of very
low angle boundaries. Here, even center-of-intensity may be misleading. This is
analogous to peak shifting and broadening due to a concentration of stacking faults
in powder diffraction experiments [126]. Because peak shifts due to deformation are
usually asymmetric, the original reciprocal lattice vector is not recoverable without
fully fitting the intensity of the entire peak.

Because center-of-intensity values of segmented peaks are used to estimate a set
of reciprocal lattice vectors for each of the expected grain centers, the choice of image
process implicitly dictates the possible orientations of the final microstructure. This
is advantageous in the case of perfect image processing, where peaks are isolated cor-
rectly without error. Unfortunately, real-world subtraction significantly influences the
final outcome of the orientation reconstruction. This can be seen easily in cases where
diffraction peaks are removed through either background subtraction or segmentation.
In the most extreme case, with enough diffraction peaks removed, mis-indexing may
occur. Symmetrically related orientations may produce a significant number of over-
laps in a diffraction pattern. This problem is exacerbated in the case of deformed
materials. In addition, long tails in diffraction peaks can be mistakenly subtracted,
resulting in missing orientation variations inside a grain.

3.4 Forward Modeling

r v; ()

Figure 3.2: Discretization of a microstructure. A microstructure can be represented by an
orientation field, O(¥), where ¥ is a point in the sample space. A discretized sample space
(right) is used in the Forward Modeling method.
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3.4.1 Overview

All of the methods mentioned so far are only able to address the orientation recon-
struction problem in the case of little to no peak overlap in each recorded diffraction
image. An additional requirement of well ordered grains is also necessary if we de-
sire reliable reconstruction. This poses a problem, as most interesting polycrystalline
systems are far from being simply a collection of well ordered crystals. Defects are
introduced during many kinds of processing. Deformation can be present from a va-
riety of sources, ranging from mechanical loads to phase transitions. And, while in
some cases complete and perfect orientation reconstructions may be impossible (for
example, deformation of copper under high shock rate) reliable partial reconstructions
will still prove invaluable. The Forward Modeling Method, coupled with orientation
search, has the required robustness to address these difficult cases. While the for-
ward model method is extremely simple conceptually, it is extremely powerful in its
demonstrated ability to recover crystallographic orientation states in deformed and
highly polycrystalline microstructures. The motivation for this alternate approach to
orientation reconstruction will be discussed in this section. Also some basic defini-
tions will be provided to understand orientation reconstruction in the context of the
Forward Modeling Method.

3.4.2 Definitions

Forward Modeling Simulation

A microstructure can be represented by an orientation field O(Z), where regions with
similar orientations represent grains. In this light, grain boundaries are discontinu-
ities in the orientation field. The Forward Modeling method is simply the simulation
of diffraction patterns given a discretized input orientation field. The sample space
is discretized into volumetric pixels (voxels), which represent a small volume ele-
ment, v(Z) in the sample space. The orientation field, O(Z), is then defined on this
discretized sample space as O(v(Z)). Forward Modeling then corresponds to a sim-
ulation of the rotating crystal experiment. Note that the term “voxel” and volume
elements are sometimes used interchangeably to represent the discretization of the
sample space.

Orientation Search

Similar to the Algebraic Reconstruction Technique (ART), reconstructing the orien-
tation field O(v(Z)) amounts to solving an inverse problem of the form AZ = b. To
do this, a search is performed on each element v; to find the best crystallographic
orientation that leads to simulated diffraction patterns that best match the measured
ones. This is known as the orientation search. In principle, the orientation search is
done by exhaustively checking every possible crystallographic orientation for sample
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point, v;. Because the rotation group, SO(3), is continuous, a complete exhaustive
search by enumerating all of its elements is impossible. The orientation search must
in practice be considered as an optimization problem with respect to some objec-
tive function, C. Generally speaking, this objective function measures the similarity
between the simulated intensity, I(O") and the experimentally measured diffraction
patterns, 1(Q), where O and O are the trial solution and the real orientation field, re-
spectively. The reconstructed orientation field is also referred to as the reconstructed
orientation map.

Provided that the discretization of the sample space is sufficiently fine, and that an
optimum for the objective function, C over the orientation space exists and is unique,
the Forward Modeling method provides a way to reconstruct the crystallographic ori-
entation of an unknown microstructure. This method is powerful in that it allows
for approximations of the scattering physics and microstructure properties to be in-
serted systematically. A priori, no assumptions of the features in the microstructure
is made, and the definition of a “grain” is not predetermined. This removes the some-
what arbitrary nature in these geometrical feature definitions that could easily bias
the reconstruction results. In this section, we will detail an implementation of the
Forward Modeling method which uses only Bragg scattering and an ideal detector
model. Furthermore, we will see that a binary intensity model is sufficient for ro-
bust microstructure reconstructions that proved challenging to the center-of-intensity
methods.

Scattering Physics

The scattering physics calculation is based on elastic scattering. The location of a
diffraction peak on the detector is determined by the Bragg condition, as it specifies
the 20, n, and w Fig. 3.1 where the diffraction spot occurs. The intensity of each
Bragg peak is determined by the structure factor. For a given reciprocal lattice vector,
G, the diffracted intensity is given by

4 = T h@

I x A*A, (3.6)

where 79, is location of the nth atom, and f,, is its atomic form factor. To account for
the finite resolution effect in a rotation method (Chapter 1), an extra term of m
(the Lorentz factor) is incorporated as the pre-factor in the intensity equation. Since
no explicit intensity fitting is done in the current implementation of the orientation
search, each diffraction peak is binarized based on some predetermined threshold
value to exclude weak peaks from the simulation. The comparison of simulated versus

measured diffraction peaks is done by looking at their pixel-to-pixel overlap.
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Simulated Detector Model

Typically, a point spread function, o, (x) is associated with each point on a detector.
This point spread represents the imperfect spatial response of the detection system.
For example, in one dimension, suppose that an ideal intensity distribution is given
by I(z) (with units of energy or photons per unit length). A pixelated detector in
which pixel p, is centered at x,, and extends over x,, + /2 will see an intensity

Tnt+y/2
I, = / do / [(2/)on(x — ') da’ (3.7)

n_’Y/2

The inner integral accounts for the point spread while the outer accounts for the finite
pixel size. If o, () is uniform over the detector and sharply peaked so that its width
is less than ~, the point spread can be approximated by a J-function and ignored.

In our case, the detection system includes the scintillator, the CCD camera, and
the focusing optics. The pixel pitch is v = 1.47um. For present purposes, we make
the ¢ function approximation. This is justified by a number of optical tests in which
we see sharp feature edges with widths on the order of the pixel size. As a consequence
of using thresholded intensity values, the point spread function will only act to dilate
diffraction patterns in a detector image. This amounts to adding a border of pixels
around each measured peak.

Additional effects are neglected as well. For example, the scintillator is finite
in thickness and this causes a characteristic smearing of intensity between pixels at
non-normal incidence. The scintillator that we currently use is 20pm thick, so at
30° off normal incidence, this parallax effect can cause 10pum streaking and this can
in fact be seen around strong peaks. However, the depth of focus of the optical
system is only 2um (FWHM) and this results in the streaks being weak compared to
the central peak. In principle, such effects could be included in the forward model
of the experiment, but our observation is that thresholded peaks contain very little
contamination.

3.4.3 Cost Function

Under ideal Bragg conditions, diffraction peaks collected from HEDM are perfectly
sharp spatially and in w, and the peak shape on the detector is the projection of
the shape of the diffracting region in the sample. In the present geometry (Fig.
3.1), the observed angles w and 7 uniquely determine the orientation of a specific
reciprocal lattice vector, Gpy, while 20 gives |G| The list of measured {w, n, 26},
or equivalently {éﬁfgl} completely determines, up to crystallographic symmetry, the
orientation O for a volume element v;, provided that the list {c?ﬁf,j,} contains at least
three linearly independent reciprocal lattice vectors.

The purpose of the cost function is to measure the difference or distance between
the measured orientation O, < {626,31} and trial orientations O, « {éﬁfgl} The
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cost function should increase with increasing distance between the two orientations,
d(Oy, O,.), where this distance is known as the misorientation, which is simply the
angle of fixed-axis rotation required to get from O, to O.. In this spirit, a cost
function can be defined as

1 — A ~(e
C(0y) =+ Y leos™ (Gl - Gl ) I (38)

where N is the total number of simulated peaks, and thl is a unit vector in the éhkl
direction. It should be emphasized here that the angular deviations cos™* (é;f,zl . nggl)

are not generally equal to the misorientation between simulated and measured orien-
tations.

We should note at this point that the reciprocal lattice vectors, 65531, are in fact
not explicitly measured. They are specified by the pixel locations of diffraction spots
on the detector. This can be denoted as (w,n,20) as defined in Fig. 3.1. For small
angle deviations between Cjﬁfk)l and Cjﬁf,zl outside the singular range of n — 0, the cost
function of Eq. (3.8) can be approximated by

1
C(Oy) = NZ \/Ow? + 12, (3.9)

where dw; and 07); are the experimental deviations in w and 7 from their simulated
values. Here we make the following observations:

1. If we produce the list {Ggfk)l} from the center-of-intensity positions of each
diffraction peak, and we take the sample voxel v; to be a grain, then we re-
cover the same optimization problem as in the case of center-of-intensity based
orientation reconstruction.

2. By not having explicit definition of peaks, we have effectively defined an opti-
mization problem that requires the fitting of the list, {Gﬁflgl} , for each lit pixel
in the binarized diffraction data against the set of discretized sample elements,
v; K Vgrain, where Vi, would be the volume element that encompasses the
entire grain. In other words, the result from the optimization of the cost func-
tion in Eq. (3.9) is analogous to running the center-of-intensity optimization
for every pixel against many different sample points inside each of the grains of
the sample.

3. The deviation between experimental and simulated diffraction, dw; — 0,dn; — 0
is equivalent to having experimental and simulated diffraction overlap.

In practice, the cost function of Eq. (3.9) is fairly expensive computationally.
The angular deviations defined must be calculated for each lit pixel. By drawing a
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simple bounding box (axis-aligned bounding box, or AABB) around each isolated
connected region of lit pixels, we can speed up the angular deviation calculation by
replacing dw; and én; by the upper bound of their values. Unfortunately, the fact
that this computation scales as the number of peaks observed on the detector makes
it extremely costly. To simplify matters, we can take advantage of observation (see
Fig. 3, below) and create a cost function with similar features to Eq. (3.9). This
requires the definition of the number of peak overlaps as

N - ZX([S(wnv.jv k7 )716(wn7j7 k))7

n?j7k

1 ifl,>0AN1,>0
X(I& e):{

. (3.10)
0 otherwise,

where [, is the experimentally observed binarized intensity at pixel location (j, k),
and I, is the simulated intensity for all of the reciprocal lattice vectors, {Gpi} se-
lected. Here the location of diffracted intensity is explicitly represented as detector
coordinate instead of 20, w and 7. In this way, maximum peak overlap corresponds
to minimum angular deviation. To incorporate the data observed by multiple detec-
tors and to ensure that the measure is consistent with observation, we can enforce
consistency requirements to the peak overlaps. This amounts to modifying x such
that peak overlap must occur on all detectors, satisfying a geometrical constraint: the
coordinates of recorded intensities on all detectors must lie on a straight line including
the diffraction origin on the sample. We call a peak that satisfies this geometrical
constraint a qualified peak (Fig. 3.1). In practice, it is cumbersome to define a cost
function over all detector pixels for each of the voxels as prescribed by Eq. (3.10).
Since diffraction spots amount to only a small fraction of the pixels on a detector, it
is convenient to define overlap for the reciprocal lattice vectors generated as

N(Gur) = X (Ls(wy, g, k), Le(wy, g, y))
N = Y N(Gu), (3.11)

hkl

where wy, i, and k, are the detector and pixel coordinates of intensity produced by
C_jhkl. Because the number of qualified peaks depends on the orientation and location
of the sample voxel, we must normalize the cost function to form a useful “goodness-
of-fit” across all points in the sample space. This results in the confidence [116],

Czl

v > N(Guu)- (3.12)

qual hEl

Up to this point, we have been assuming the sample voxel, v; to have a side length
that is less than the typical pixel size, v. This implies that all peaks are weighted
equally regardless of the projected size of the grain. To generalize this cost function
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to the case where the v; is larger than the pixel size, a weighting factor in front of x in
the overlap function N can be added (W) This weighted confidence is known
as the quality. In cases of small numbers of detectors (< 2), a secondary weighting
factor is added in front of y to discriminate against accidental overlaps, which are

prevalent in polycrystalline samples.

3.4.4 Cost Function Landscape

By using the peak overlap function of Eq. (3.10), we have replaced \/dw? + 0n? from
Eq. (3.9) by an indicator function, y, which is binarized. As a consequence, the
optimum of the cost function C is sharply peaked in orientation space. Intuitively,
this is because the orientation deviation allowed while keeping total peak overlap is
roughly ~ 7, where 7 is the pixel side length, and L is the detector-to-diffraction-
origin distance. In practice, because each grain inside a sample is of appreciable size,
the cost function is broadened by the spatial extent of the diffraction peaks (Fig. 3.3).
The polycrystalline and finite grain size nature of the sample lead to some unin-
tended effects. While orientations are uniquely determined by the degree of simulated
overlap, significant accidental overlap can occur for orientations that are crystallo-
graphically similar. For example, two orientations off by a 60° rotation about [111]
in FCC crystals can share up to % of the diffraction peaks due to crystal symmetry.
While the contribution to the confidence function by each reciprocal lattice vector
is binarized, the cost and confidence functions themselves are smooth due to the spa-
tial extent of each peak (an effect of finite grain size). Deviations of a trial orientation
away from the true orientation will result in a shift of diffracted peak positions. How-
ever, this does not affect all peaks equally, leading to a smooth drop in the confidence.
The width of this drop off is roughly equal to the angular extent of the peak size,

or approximately tan™! (1) ~ 7, where r is the longest dimension of the peak and

L is the detector—to—samp]ie—rotation—axis distance. This local peak width of the cost
function is extremely important in speeding up orientation reconstruction.
Somewhat surprisingly, the binarized cost function contains much more abrupt
discontinuities across the w direction than the other directions. This is a result of
both the explicit removal of the w dependency from Eq. (3.9) (in the approximation)
and the large integration interval in this direction. To illustrate this problem, consider
a set of diffraction intensities I(A) generated by an element v at orientation A.
If we rotate this element by a small angle around the g direction by w to arrive
at orientation A’, we’d find the diffracted intensities shifted both in the n and w
directions. Because the equivalent angular resolution of our area detector is given
by the 7, and L ~ 10007, we have an effective resolution of around 0.1°. Therefore,
any small shift can be captured easily and continuously as the peaks move along 7).
On the other hand, the integration interval for w suggests that there exists some
cutoff positions, [wy,w,+1) where the diffraction spot due to a dw shift will move from
image k to kK £+ 1. While the diffraction spot sharpness is around =~ 5° equivalent
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angular width in the 7 direction due to sample size effects, the angular sharpness
remains &~ 0.1° for perfect crystals. Therefore, given a peak generated from éhkl at
orientation A that lands on w,;1 — ¢ and w,,1 at A’, the peak overlap count due to
éhkl will vanish for any sufficiently small d. In contrast, a shift ¢ in the n direction
must be at least greater than 7, if not Tgr% before making the contribution to x
vanish. This results in some interesting consequences in both the orientation search
algorithm and the resolution.

3.4.5 Existence and Uniqueness of A Global Optimum

The orientation reconstruction problem in HEDM and 3DXRD, viewed as an inverse
problem, is not well-posed. In developing the algebraic reconstruction technique
(ART), Poulsen et al. recast the orientation reconstruction problem as a linear system
of the form

Aijklmnpl’jklmnp = by, (3- 13)

where A;jrimny is defined by the detector geometry and crystallographic properties
(Chapter 2). One would hope that by formally defining the inverse problem, its
study would become easier. Unfortunately, the formal form of the linear optimiza-
tion is not entirely enlightening, as the detector geometry and scattering physics are
buried deep inside the matrix A, the exact nature of which determines the existence
and uniqueness of a solution. Regularization schemes involving removal of singular el-
ements may be applied to specific reconstruction problems, but it is generally difficult
to see if an inverse matrix exists.

There are practical reasons of mathematical interest to solve the orientation recon-
struction problem. At the very least, it gives a sense of confidence to reconstructed
orientation maps. We will only briefly describe our attempt to analyze the existence
and uniqueness of a forward modeling solution, and the discussion will focus on the
limiting cases of very small and very large grains.

Single Grain Samples

In the case of a single crystal, the maximum value of the overlap function, and there-
fore the confidence function, corresponds to complete overlap between simulated and
experimental diffraction peaks. This also simultaneously minimizes the angular de-
viation between the simulated and measured reciprocal lattice vectors, {é;f,zl} and
{c?ﬁf,jl}, respectively. Since we have established that we only need three linearly inde-
pendent vectors to define the coordinate systems or the crystallographic orientation,
the existence of a global optimum is guaranteed given {éfk)l} spans the reciprocal lat-
tice vector space. Similarly, uniqueness, taking symmetry multiplicity into account,
is guaranteed by this condition.
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Polycrystalline Samples

Determination of existence and uniqueness is much less transparent in the case of
polycrystalline samples. Work by Schmidt et al. (REFER work done by Risoe re-
garding peak overlap probability) has calculated peak overlap probabilities for an
untextured sample as a function of the number of grains. However, no explicit con-
sideration for spatial separation between diffraction origins of grains is made in their
treatment. Because our near-field HEDM technique has a field of view and detector-
to-rotation-axis distance of 4mm, the spatial separation of diffraction origins becomes
a very important consideration in peak overlap analysis. In this case, grains of iden-
tical orientation will not necessarily yield overlapping peaks if they are sufficiently
separated in space. Nonetheless, the work by Schmidt et al. still proves useful as an
upper-bound for peak-overlap probability.

Large-Grain Limit

We define the large-grain limit to be % > 1, where v is the pixel side length, and r
is the average grain radius. For a sample radius of 1mm, this approximation leads
to roughly 10 — 100 grains per cross section, resulting in an overlap probability of
0.3 —0.4% at 0.1° grain mosaicity [106]. Given that each sample point is fitted with
more than 100 qualified peaks, the chances of all coming from overlapping peaks is
very low. This suggests that the cost function for large-grain polycrystalline samples
will be similar to that of a single grain.

Small-Grain Limit

Analysis of the small-grain limit is much more difficult. We define the small-grain
limit as = ~ O(1). In this case, the number of grains in the sample is above 1000. If
significant peak overlap is present, the single crystal analysis presented above is no
longer justified. Consequently, we rely on understanding the landscape of our cost
function. In particular, most of our knowledge comes from numerical simulations of
different polycrystalline structures, as shown in Fig. 3.3. From these, we can extract
the following:

1. Our binarized cost function contains multiple maxima (corresponding to min-
imum angular error) in most polycrystalline samples. These maxima are a
consequence of rotations in the cubic lattice that leaves a significant fraction of
the reciprocal lattice vectors unchanged (i.e., 60° about [111]).

2. Given a sample element v, the cost function C(v) has a global maximum which
corresponds to a point in orientation space located within a radius d from the
true orientation. This d depends on the spatial extent and mosaicity of the
diffracting crystal.
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3. While our binarized cost function is not strictly monotonic due to noise, given
an experimental orientation O, C(O’) for any O’ € {O'|d(0’, O) < r} is smaller
than in most other outside regions (Fig. 3.3(d)).

3.5 Orientation Search Algorithm

With the cost function defined in Eq. (3.12), and its features discussed in the previous
section, we proceed to define the search algorithm. To begin, we will briefly review
the original algorithm developed by Suter et al.[l16] which recasted the orientation
reconstruction problem as an exhaustive search over orientation space. Discretization
and interpolation schemes in SO(3) will be discussed, as they are an integral part of
the search algorithm. Then, the new method of Stratified Monte Carlo Pruning, an
improvement built on the original algorithm, will be presented. The correctness of
these algorithms will be tested using simulated results and known pathological cases.
Finally, their runtime complexity will be examined.

3.5.1 Orientation Discretization

Consider a sample specified by the set of points, ;. The forward modeling method
finds the best orientation Oj such that the confidence function C = —ﬁ > Bk Nhji
is maximized. Because the cost function chosen is mostly flat with very small, local-
ized maxima, a large sampling across the orientation space (SO(3)) is required. To
ensure uniformity and reduce sampling noise (dispersion), an incremental, approxi-
mately uniform (instead of random) sampling is used [131]. This method provides us
with controls of local resolution, which is crucial for the implementation of the Strati-
fied Monte Carlo Pruning (SMCP) algorithm. While detailed proofs of this sampling
algorithm are beyond the scope of this thesis, a brief summary of the results and some
important properties are discussed in the following section.

Sampling Algorithm

Both the original exhaustive orientation search and SMCP algorithm use an orienta-
tion grid generated by the sampling method as the starting point. To construct an
approximately uniform grid in SO(3), we implement a modified version of the Deter-
ministic Sampling Methods for Spheres (DSMS) [131]. This method is designed to
sample any general S? structure deterministically. To do so, DSMS takes advantage
of the property that any regular polytope in (d 4 1)-dimensions can be centered on
a circumscribing S sphere that intersects all its vertices. In so doing, the vertices v;
of the (d + 1)-polytope partition S? into f sections, where f is the number of faces
of the polytope. For example, S, a circle, is sampled by a square. The vertices of
the square partition the circle into four sections, one for each of the faces (edges). A
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Figure 3.3: Representative landscape of the cost function for a single voxel. (a), (b), and
(c) are successively expanded scale representations of the same cost function C for the
reconstruction of a single simulated voxel in absence of any other diffraction spots, i.e., a
single crystal experiment. The misorientation angle (x-axis) indicates the distance away
from the known orientation solution, which goes up to =~ 62° because of the fundamental
zone restriction. The sampling rate of the cost function is lowered in (a) to show the local
minima structure typical to C. The plot in (d) shows the features of a single-voxel cost
function in a polycrystalline sample (Qmae = 10). Features seen here are indicative of
well ordered crystals (500 randomly oriented grains). Multiple local minima occur across
the fundamental zone plotted, with a significant number showing up around 60°, which is
attributed to rotations about high symmetry axes. General broadening of the cost function
can also be observed when Q... is reduced. This restriction amounts to lowering the
total number of peaks used for orientation reconstruction. This feature is exploited in the
adaptive search method (Algo. 3).
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hyper-cube is used in the case of SO(3) sampling. To obtain approximately uniform
sampling on S¢, regularly sampled points on each of the faces of the k-polytope are
projected onto the d-sphere. In S!, this is equivalent to uniformly sampling the sides
of a circumscribed square and drawing a line between the center of the circle and
sample points on each face.

The fact that the set of unit quaternions, H, forms the surface of a 3-sphere, S?,
and that H is a double cover of SO(3), with H = —H were exploited for the applica-
tion of DSMS to SO(3). Therefore, selecting sample points corresponding to one of
the “hemi-3-spheres” would result in a uniform sampling of SO(3). Furthermore, pro-
jecting regular sample points from the faces of the hyper-cube circumscribed by the
unit 3-sphere amounts to applying trilinear spherical linear interpolation (SLERP)
between the vertices (eight quaternions) that specify each of the hyper-faces, where
SLERP is defined as

_ sin () sin((1 —¢)Q)
S(q17 q27 t) - ql Sln(Q) + Q2 Sln(Q) 9
Q = COS_I((h “q2),
for 0<t<1. (3.14)

The sampling of SO(3) thus corresponds to sample points {q|¢gs > 0}, were g3 is
simply the third component of the quaternion q. A trilinear-SLERP is simply apply-
ing SLERP three times. In this way, a mapping of R* — SO(3) that approximately
preserves the sampling structure of R? is created. What is left is the sampling of R?.
Any sampling, regular or otherwise, could be used; however, the layered Sukharev

grid is chosen because it results in some very useful bounds on the sampled points.

Sampling Properties

Intuitively speaking, the problem with random sampling in a space S is that the
dispersion could be too low in some local regions. This could happen even with
perfectly random numbers without having a prohibitively large number of sample
points. Specifically, we would like to guarantee low dispersion and discrepancy, two
measures used to decide the uniformity of a sampling method. Roughly speaking,
given a region R sampled by the point set P, dispersion (6(P)) is the maximum ball
in R such that no point p € P lies inside. Suppose that a volume V' of the region
r C R is estimated using the number of points in the point set P inside r, then, the
discrepancy is the maximum difference between the estimated and the real volume
in the sampled region. Formally speaking, let X = [0,1]¢ C R be the region to be
sampled, and R the set of possible of subsets of X. For example, R could be a set
of rectangles that lies within X. Then, given that point set P samples R, and any
r € R, P()r, the point set P estimates the volume (area) of r. Suppose that for any
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r, its volume can be measured by u(r), then [130] defines discrepancy as

POl

D(P,r) = sup | == — u(r)

reR

: (3.15)

where N is the number of sample points in the point set P, and |P (7| is the “number
of elements” in the intersection of the sets. Discrepancy can thus be identified as the
volume of largest over- or under-sampling within the entire sample space. On the
other hand, dispersion is formally defined as

§(P, p) = supmin p(p, q), (3.16)

geX PEP

where p is any metric. In the case that we are interested in, the natural metric for
points in SO(3) parameterized by quaternions is given by

p(p,q) =cos™ (p-q). (3.17)
It can be shown [131] that the sampling method by Yershova et al. is bound by

2T

oP) < dy/n((2¢—1)+ 1)

(3.18)

and for our case, d = 3 for the quaternion representation of SO(3), and n is the
number of sample points in the Sukharev grid. This gives us a direct way to control
the sampling resolution in SO(3) based on the number of points selected in R3.

Sampling in the Fundamental Zone

So far we have seen how an approximately uniform grid can be generated on SO(3).
Because of crystal symmetry, only a subsection of the entire SO(3) produces unique
orientations for a sample point. This is referred to as the fundamental zone. For
the purpose of our orientation search, we would like to modify the orientation sam-
pling method so that only the fundamental zone is sampled given a specific crystal
symmetry. This amounts to finding the set of sample points in SO(3). However, the
operation of selecting sample points specifically for a fundamental zone sometimes
destroys the dispersion guarantee around the zone edges. Therefore, an additional
“hole-patching” operation via local SLERP is performed to restore the dispersion
guarantee along the edges of the fundamental zone. Unfortunately, the remaining
sample points still violate the discrepancy requirement in that the resulting point
set oversamples the zone edges. This problem is ignored, as it does not affect the
correctness of the search algorithm.
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3.5.2 Exhaustive Search

As the name suggests, the exhaustive search algorithm follows the original forward
modeling prescription, in that all discretized orientation sample points are searched.
To improve performance, several well known searching techniques are implemented.
First, the orientation space is searched sparsely in a global search. Taking advantage
of the small but finite width of the cost function, the sampling grid is set such that the
discrepancy 6 < r, where r is the radius of the cost function in orientation space. The
set of grid points near a local minimum are saved. In the context of our cost function,
this is indicated by > Bkl Npka > 0. Alocal optimization, namely a zero temperature
Monte Carlo, is used to find the optimal solution (Algo. 1). The algorithm is more
concretely defined as follows.

—

Algorithm 1 ExhaustiveSearch for a given sample space element v(Z)

for all 0, € SO(3) do
X < Overlap(o;,v)
if x > 0 then
CandidateList «— (0;,X)
end if
end for
Sort( CandidateList ) { Sort candidate list by y in decreasing order}
for ¢ =1 to min( MazCandidates, size( CandidateList ) ) do
(0;, x) < CandidateList]i]
¢ < OrientationMonteCarlo(o;)
if ¢ < BestCost then
BestCost «— c
BestSolution «+— o,
end if
end for

Algorithm 2 OrientationMonteCarlo for a given orientation, o, maximum number
of steps, Nz, and max accepted cost Caz
while N < N,uz A C> Crae doO
¢ < UniformRandomRotation(d )
¢« Cost(Co, v)
if ¢ <c then
c—c
o+~ (o
end if
N «— N-+1
end while
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The function “Cost” simply calculates the confidence function given in Eq. (3.12)
when the voxel, v, is below pixel size. The “quality” generalization is used when v
spans multiple pixels. The function “UniformRandomRotation,” not detailed here,
produces a uniform random rotation matrix centered at the identity with a radius of
0. In the case of small rotation deviations of a few degrees around o, this is simply
the infinitesimal rotation matrices, namely

0 03 —d
@(51,52,53) = —(53 0 (51 . (319)
0 —01 O

In the current implementation, a specialization of the method that maps R? — SO(3)
from Sec. 3.5.1 is used. The result is the ability to produce uniform random matrices
around the origin out to a larger angular radius.

The need for local optimization arises naturally from the fact that SO(3) is a
continuous group. If the cost function is relatively smooth and continuous, a common
optimization scheme such as conjugate gradient could have been used. Unfortunately,
since the cost function is extremely sharp, usually ranging from 1° to 5° in width
with many sharp local minima of 0.1° to 0.5° in width (Fig. 3.3), most optimization
routines are unsuitable. As discussed in Sec. 3.4.4, this particular landscape of the
cost function is due mostly to peak overlaps in a polycrystalline material.

On the other hand, the use of purely uniform grid points is extremely expensive.
For a system with cubic symmetry, the volume of SO(3) that produces a unique orien-
tation is %mdz’an?’. To reach a resolution of 0.1° would require approximately 6 x 10°
sample points. At conservatively 200 floating point operations (FLOP) per diffraction
peak, and roughly 150 diffraction peak computations per orientation, roughly 2 x 104
FLOP would be required for a single point in the sample space. As a comparison,
at the time of this writing, a typical processor can perform roughly 10'* FLOP per
second (FLOPS). Neglecting the fact that most of this computation is not instruc-
tive to the final optimized solution, it would take roughly three hours to optimize
the solution of a sample point. Considering that the typical spatial resolution would
require roughly 10® sample elements per layer, this method of orientation reconstruc-
tion becomes prohibitive. The use of local orientation Monte Carlo optimization is a
way of adaptive refinement of the orientation space, which reduces the total number
of sample points required.

3.5.3 Stratified Monte Carlo Pruning

Even with local orientation optimization, the exhaustive algorithm is still searching
a significantly large number of grid points (10°). Furthermore, low order peaks are
much more likely to fit than higher order peaks due to the projection geometry and
intensity drop-off of diffraction spots at high ). That is, the cost function contribution
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due to lower @) peaks tends to be more spread out in orientation space (Fig. 3.3).
Consequently, the minima are wider due to the limited number of peaks.

A new, adaptive sampling method was developed for the purpose of orientation
search to replace the uniform grid search. It was developed based on the following
observations:

1. Most of the time spent in the uniform grid search does not produce any viable
orientation candidates.

2. While, globally, the cost function contains many very deep false minima, the
region around each minimum is relatively narrow and can be sampled explic-
itly. The “integral” of the cost function around some local minimum can be
estimated, and thus the average value of the minimum can also estimated. This
provides an estimated local bound for the cost function.

3. Regions with bounds below some threshold can be safely ignored since they are
unlikely to produce any admissible solution. This is usually known as “bound
and search.”

4. The cost function, C(Qma:) can be approximated by C(Q),4.), for Q)0 < Qmaz,
which results in a lower angular resolution. This is because the number of
peaks used evaluate the cost function decreases with decreasing (... As a
consequence, the approximated cost function can be computed quickly.

By taking advantage of these observations, the algorithm “prunes” the orientation
space, and locally increases resolution in the regions of lower average cost. This
process is performed iteratively until the algorithm reaches some local threshold res-
olution. The new algorithm is described below. We use a modified version of the
exhaustive search at each step to find the list of candidate orientations to be opti-
mized.

A pictorial representation of this algorithm can be found in Fig. 3.4.

The idea of applying an adaptive method to a problem with discrete cost functions
is fairly well established. If the trajectory of the orientation search is mapped out
as a graph, a search tree could be constructed. In this context, our search problem
is closely related to many of the search problems in artificial intelligence (AI) and
robotics [57], where a large, discrete solution space is to be searched. Similar to
problems in Al it is in general very difficult to decide if a candidate solution is near
the optimal solution in the orientation search. The pruning method then allows us
to estimate the final cost of a candidate solution by sampling around it rapidly. In
so doing, large neighborhoods of orientations around a candidate solution can be
eliminated quickly.

By the appropriate choice of § and r in the adaptive reconstruction, we can see
that the algorithm converges rapidly by re-sampling regions with low cost.
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Algorithm 3 AdaptiveSearch. Find the best orientation given volume element v,
minimum and maximum angular radius, 0 and r, and initial maximum ) and Q-step,
0Q.
Input: v, 9, Qnaz, 0Q, MaxLocalCandidates Output: Opes:
SearchGrid «— GetGlobal Grid(r)
CandidateList < ExhaustiveSearch(SearchGrid, v, Qmaz)
while r > § A |CandiateList| >0 do
r <« r/s {s is a tuning parameter for the search algorithm}
for all o; € CandidateList do
(¢;j,0;) « EstimateLocalCost( v, 0i, Qmaz, 7) {Estimate local cost by locally
sample around o5}
NewCandidates < (cj,0;) { Insert the list into the set of possible candidates
}
end for
Sort( NewCandidates ) {Sort by averaged cost, ¢; in decreasing order.}
Niaw < ||LocalCandidates|, M ax LocalCandidates |
Candidates «— NewCandidates[i, Nyqz)
Qmam H Qmam + 5@

end while

@ @ @
? + +

7 - * @ * S
(a) Rough uniform grid over (b) Level 1 local refinement (c) Level 2 local refinement

SO(3)

Figure 3.4:  Pictorial representation of the refinement process. The intersections of the
black lines represent the uniform grid used to sample globally. The blue circles indicate
regions of shallow, broad minima of the cost function. Green circles indicate sharp false
minima, while the solid red circle is the true global minimum for the specific QQq, used for
this reconstruction. At each iteration going from (a) to (c), the angular resolution of the
cost function is increased by increasing Qmaz-
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3.5.4 Simple Spatial Resolution Model

Assuming perfect orientation reconstruction, the error in the determination of geo-
metrical features can be prescribed using a simple ray-plane intersection. The sample
space can be described by the plane equation as

(ﬁ—é)z:m (3.20)

where we have taken the sample plane to be perpendicular to the z axis for conve-
nience. [inconsistent axes!] The point O is the origin of the sample plane, and P
is any arbitrary sample point. Assuming that we are using only two detectors, then
given two pixels measured at EL’,I; of detector 1 and 2 whose intensities are due to
diffraction at 13, the points ]3, a, b form a line given by the equation,

!

P = ti+0b,
L (3.21)
@ — b|

To find ﬁ, the intersection equation can be solved by

(ti+5—6>-2 = 0
(O

()
[z

The location P is estimated by the average value, (]3) from many different diffraction
peaks. Given that different diffraction peaks contribute (d;, b;) with errors of da =
0b = 67, we have the error of (P) to be estimated by error propagation in the usual

way, namely,
opP 2 /0P oP
. ¢(_8ai5ai) (Y (L) 523)

g;

o/(p. = .
(P;) \/N

W (S
Q>

Q| |
=

Z>+E (3.22)

R
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Following the arithmetic, we find

oP; @ — bl L ai=bif (ai—b)
o s b 3.24
da; (O = bs) 73 (as — by)? as—b?,\a—b\] @ — | 2
. 0 (a;—bj)(ai =b) | (O—0)- 2 (3.25)
a— b i@ —bf? L-s
OF 1% 4 (0 —by) | -9 )|
% | @ = bl(as —by) (o2 =ba)*] | J7 -
RCEDR: 0y _ (a; — bj)(gz- —b) ) L (3.26)
iz @ — bl @ — b]*
oP, di3 ) a; — b;
[y b 3.27
00; [(m Ic?—bll o

Here, §;; is the usual Kronecker delta, and indicies ¢ € {1,2,3} correspond to the
spatial components.

General and somewhat unsurprising features are observed in this model. As ex-
pected, the error contributions are non-isotropic. This is expected as our measurement
has a preferred direction. Secondly, all errors decrease with the increase of detector
spacing. It should be noted that the detector spacing is limited by the field of view
of the CCD camera. Ideally, micron-resolution area detector with field of view of
10’s of centimeters would lead to much higher reciprocal (angular resolution around
1 x 107°%) and real space resolution, but that is simply impractical at the time of this
writing.

Of course, objections could be rightly raised here for the assumption of inde-
pendence between different measured quantities. For example, the measurement of
diffraction spots clearly depends on the origin, and the deviation between the two
measurements at different L-distances certainly be correlated if the origin of the error
comes from either the detector or the X-ray source. As such, the off diagonal ele-
ments of the error matrix should also be computed. Similarly, error estimates using
Monte Carlo studies are also viable, but it is beyond the scope of this thesis. For
these reasons, a number of “numerical experiments” were conducted on many differ-
ent synthetic and experimental data sets in an effort to quantify the errors associated
with experimental uncertainties, as described in the next section.

3.5.5 Validations

A series of validation tests were performed on the reconstruction method. Simulated
scattering produced from a set of synthetic microstructures was used to test the recon-
struction algorithm’s sensitivity. Because of the significantly large parameter space
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on the potential experimental configurations, synthetic microstructure characteris-
tics, and detection noise, we have limited our studies to a selected few that directly
affects some of the on-going experiments. Namely, synthetic microstructures with the
following properties are used.

1. Random orientations.
2. Dense, symmetrically related orientations.
3. Plastic deformation reflected as orientation gradients.

The effects of random orientations is omitted in this thesis, as it has been thor-
oughly described in [10]. As a validation of the correspondence between peak and
grain shapes, the reconstruction of segmented diffraction peaks in high purity Ni is
also presented. Because of the large number of three-dimensional orientation maps
produced thus far in this work, a representative selection of the reconstructed mi-
crostructures will be presented in the appendix. Some results from the analysis of
these orientation maps are presented in Chapters 5 and 6.

Dense Symmetrically Related Orientations

To test the robustness of our orientation reconstruction algorithm against a poten-
tially pathological case, a microstructure was created using only highly symmetric
points in the orientation space. Moreover, curved surfaces meeting at sharp points
are deliberately put into this microstructure to mimic boundary lines seen in nature.
The synthetic microstructure was created by assigning orientations to regions on a
N x M gird. Starting from the top left, orientations were assigned to regions centered
at grid points (nx, my), where n,m € {1,2,3,...} The traversal order is row major,
in that n is incremented faster than m. At grid point (0,0), a random orientation,
0(0,0) was selected. At each successive point, O(l) = ¥,0(l — 1), = m - N + n.
The rotation matrix Y, belongs to a set of specialized rotations such that for a large
number of h, k, [, ¥,0G = OGpy. These are typically rotations about some high
symmetry axis of the crystal lattice, for example, rotation about [111] direction by
60°.

Diffraction patterns were generated using a grid that is incommensurate with
the reconstruction grid. In so doing, accidental suppression of reconstruction noise,
especially in the recovered grain boundaries is avoided. The reconstructed orientations
are shown to agree with the test patterns from Fig. 3.5. A small number of regions
were not reconstructed, and they are indicated by areas of low confidence. This is
expected, as the convergence criteria were deliberately relaxed to demonstrate the
failure mode of this reconstruction algorithm. The fact that regions of low confidence
coincide exactly with regions of failed reconstruction suggests that confidence is in
fact a good figure of merit. As expected, the confidence of the reconstructed map
drops off rapidly outside of the synthetic microstructure. While this is true in general,
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deviation in geometrical parameters, such as L-distance, or the introduction of noise
into the measurement would certainly lead to less dramatic drop-off.

(a) Test Pattern

08
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0.6
505 06
5
g 04
T 03 04
0.2
0.2
0.1I
0 — 0
0 02 04 06 08 1 -05 0 0.5
Confidence
(c) Distribution of Confidence (d) Reconstructed Confidence

Figure 3.5: Reconstruction test using a synthetic microstructure (a) designed to be difficult
for the reconstruction code due to the successively neighboring twin structures that lead to
significant peak overlaps. The reconstructed map (b) with its confidence plot (d) indicates
that while most “grains” are reconstructed, about ten distinct points appear to have below
expected confidence. The blue ring around the reconstructed confidence map indicates
that the analysis code is unable to find suitable orientations for these points, which is in
agreement with the synthetic structure. (c) is a plot of the distribution of the confidence.

Microstructure with Orientation Gradients

In most scientific and engineering applications, material defects and damage lead to
orientation gradients across grains. In fact, arguably some of the most interesting
applications of HEDM involve measurement of the degree of deformation in a sam-
ple. For example, the measurement of plastic deformation manifested as orientation
gradients and local misorientation in an in-situ uni-axial strain experiment performed
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on a high purity (99.9999%) copper wire is expected to be an unprecedented input
for modeling calibrations (see Chapter 6). In situ observation of a structural phase
transition of Ni-Mn-Ga will hopefully provide insights into the effects of strain on the
phase transition temperature [103].

A microstructure produced from a simulation of a piece of deformed titanium was
used as an input for the test of orientation gradient reconstruction [63]. This data
set, obtained from the Dawson group at Cornell [18], indicates a likely mode of orien-
tation evolution in a typical uni-axial load experiment, similar to those that we have
performed on copper. As with other simulation tests, X-ray diffraction patterns were
generated based on locally sharp Bragg scattering. While in general, the deformation
model, and thus its effect on diffraction peaks should be input explicitly into the scat-
tering model for a correct simulation of intensity, we have stayed with the assumption
that each volume element (voxel) is a perfect crystal for the time being. This restricts
the study to purely the limits of geometrically based orientation reconstruction, as
the detailed effects of intensity variation is not considered. Moreover, intensity fitting
requires optimization of, at the very minimum, multiple voxels across a grain simul-
taneously. This leads to extremely expensive reconstructions. Significant algorithmic
development is required before intensity fitting could become accessible even for the
present simulation study.

The typical effect of orientation gradients is the smearing of diffraction peaks
across both w and 7 direction. This can be seen in Fig. 3.6(b), where diffraction
peaks are smeared into arcs. In fact, these arcs will be identified as single peaks using
most typical image segmentation or peak identification algorithms. Consequently,
estimated center-of-intensities are no longer useful for orientation reconstructions.
Because the peak motion along the n and direction is a function of the sample ro-
tation (different w-integration intervals) and depends on the diffraction origin, the
Forward Modeling method is still able to uniquely determine the orientation of each
voxel (Fig. 3.6).

Convergence of Reconstructed Orientations

It is often difficult to determine the optimal value for the parameter, (),,.. used for
orientation reconstruction a priori. While a large upper limit can be determined based
on the diffraction geometry, namely the field of view and the detector distance, other
factors, such as peak intensity variation as a function of |@| are not so transparent.
For example, the finite dynamic range of a detector places an upper and lower bound
on |@Q| due to both saturation (low |@|) and weak signal (high |Q]). Because the
diffracted intensity drops off rapidly as a function of |@|, higher order peaks have
much lower signal to noise ratio. On the other hand, effects of strain and deformation
are much more prominent for higher order peaks. For example, peak shift due to
random stacking faults in general increase with @ [120]. As seen in Fig. 3.3, the
representative cost function sharpens significantly upon increase of ),,.. The direct
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Figure 3.6: Orientation reconstruction test for plastically deformed Ti. (a) Plastic defor-
mation, manifested as orientation gradients across each grain (shown as variations of the
false color) on titanium was simulated using finite element methods [18]. (b) Diffraction
signals of the deformed Ti generated using the forward modeling method. It is shown that
the diffraction patterns are smeared across many images and pixels (both n and w direc-
tions). (c) Reconstructed orientation map from the deformed Ti diffraction patterns. This
test shows the viability of reconstructing materials with orientation gradients. (d) Point-to-
point misorientation comparison between the original and reconstructed orientation map.
We see that the errors in the orientation reconstruction are relatively low and that the grain
boundary geometries across the two maps are very similar. It should be emphasized that
the reconstruction grid and forward simulation grids are deliberately incommensurate so
that reconstruction noise is not artificially suppressed.
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effect of Qnq: on the reconstructed microstructure is seen by comparing Fig. 3.7(a)
with Fig. 3.7(b).
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Figure 3.7: Orientation noise variation with Q.. and reconstructed resolution. Noise is
measured by a locally, or kernel, averaged misorientation calculation (the strained copper
wire data and kernel averaging are discussed in detail in Chapter 6). (a-d) A comparison
of the effects of different spatial and reciprocal space resolutions on reconstructed orien-
tation maps. A progression of degradation of features can be seen as spatial resolution is
decreased. Reduced number of peaks used for orientation reconstruction leads to significant
increase of orientation noise, as seen in (a). Finally, while overall features of kernal averaged
misorientation remain relatively stable as spatial resolutions were varied, changes in Qmaz
significantly alter the global result.

Intensity Decomposition

The analysis method of HEDM indicates that geometrical information of each grain
is encoded by the diffraction peak shape. Therefore, the outline of a grain at the
observation geometry is considered to be represented by the outline of a diffraction
pattern. Similar to absorption tomography, given sufficient number of diffraction
spots, the shape of each grain could be recovered. In fact, there has been significant
effort in applying backward filtered projection algorithms to reconstruct grain shapes
(88, 91]. Unfortunately, as mentioned in Sec. 3.3.1, existing techniques such as those
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Figure 3.8: A histogram comparing the variation of the distribution of local average mis-
orientation (Fig. 3.7 as a function of Q a4z, sample spatial resolution, and L-distance. All
fits were performed at Q.. = 12 except for the case indicated otherwise. Broadening of
the local misorientation distribution can be seen in the Q.. = 10 case. Along with the
spatially resolved KAM map, this indicates that the use of lower ;4. results in a generally
noisier reconstructed orientation map.
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in referenced in [87, 91] are limited to reconstruction of microstructures with low
defect content.

To show that geometrical information is indeed reconstructed correctly using the
forward modeling method, reconstruction of high purity nickel is compared at dif-
ferent intensity threshold levels. Using a method termed “intensity decomposition,”
diffraction peaks are split at different relative intensities before forward modeling re-
construction. In so doing, only part of the diffraction peak is fitted at a time. Specif-
ically, given a set of diffraction intensities that are segmented into disjoint peaks
after background subtraction, the maximum intensity of each peak is identified as
Inaz(n), where n is the ID for this peak. For a given threshold range [fi 1z, fulmaz),
where f;, f, € [0, 1], the set of connected pixels {p;} that forms this peak within this
intensity range is accepted.

For grains with low defect content, as expected for well annealed high purity nickel,
diffracted peaks should have simple intensity contours corresponding the shape of each
grain. As an example, taking [Io, I1] = [0.1],44, 0.21,02], only the “bottom” contour
corresponding to the grain edges is selected for each diffraction peak Fig. 3.9(b).
While intensity decomposition of overlapped peaks may lead to undesirable result
(e.g, cases where a strong peak and a weak peak overlap), it provides a good way to
classify the source of experimentally observed diffraction signal and the corresponding
reconstructed voxels.

The reconstruction results of the same measurement of high purity Ni at different
decomposition levels are shown in Fig. 3.9 and Fig. 3.10. For comparison, reconstruc-
tion using data from standard background subtraction processing is also shown as a
baseline. Confidence values in Fig. 3.10 show that the removal of peak centers leads
to significantly lower confidence in the center of each grain. Moreover, a progression
of regions with higher confidence can be seen as we move across the different threshold
ranges in an expected manner. The reconstructed region moves toward the center as
the both [}, I,] increases, thus approaching the diffraction peak centroids. Finally,
comparison across all four of the orientation maps in Fig. 3.9 shows the marked
consistency in orientations reconstructed amongst the different intensity ranges.

3.5.6 Experimental Parameter Bootstrap Optimization

As mentioned in Chapter 2, deviations in experimental parameters lead to significant
differences in the quality of the reconstructed orientation maps. A numerical “boot-
strap” method is used to estimate the geometrical parameters, as they are difficult
to measure directly.

Taking advantage of the fact that the cost function in the Forward Modeling
method varies with different geometrical parameters, an objective function is con-
structed as the sum of Eq. (3.12),

(@) = > Clal@), (3.25)
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Figure 3.9:  Orientation maps reconstructed using different intensity thresholds of the
diffracted peaks. Each map is thresholded at 0.6 confidence. Different intensity ranges of
the diffraction peaks correspond to different regions of the reconstructed grains.
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Figure 3.10: Confidence plots for reconstructed maps with different intensity thresholds.
Only regions around grain boundaries are reconstructed in cases where the high intensity
portion of the diffraction peaks, i.e., central regions, are removed.
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where Z; is a point in the sample space, represented by a voxel, ¢ is the list of
experimental parameters (i.e, L-distance, detector orientation, and pixel size), and n
is the number of sample point used. The list of experimental parameters is recovered
by maximizing F(g) by a parallel optimization method. This amounts to performing
an orientation reconstruction on a set of voxels randomly sampled from the sample
space at different § until F(g) is maximized. Because the experimental parameter
space is large (six most relevant dimensions due to detector orientation and diffraction
origin), the optimization can become very computationally consuming. Adaptive
sampling in the parameter space and a judicious choices of voxels helps to reduce the
total run time of the algorithm.

In the present case, the experimental parameter search space is sampled with low
resolution initially (large step size) and successively refined as the cost improves. This
is done using a finite temperature Monte Carlo method in the serial algorithm, but
because the cost evaluation dominates the total CPU time (and takes up to minutes
per evaluation), the serial optimization strategy is impractical. To reduce total run
time, a parallel optimization heuristic is constructed by subdividing the experimental
parameter space into M regions, where M corresponds to the number of processors
used for optimization, and local optimization is performed in each subregion.

Since the basis of this optimization comes from maximizing the amount of the
sample space with high reconstruction quality, a uniform random sampling is used for
voxel selection in the initial optimization. However, as F(g) approaches its maximum,
uniform random selection may not represent the optimal search asF(g) varies slowly
for voxels selected from the interior of grains. In this case, selection of voxels along
grain boundaries proves to be much more effective, as they remain sensitive to small
parameter perturbations even when ¢ is close to optimal.

Finally, from numerical experiments, it is found that the orientation reconstruc-
tions are not equally sensitive to all of the geometrical parameters. Specifically,
deviations in L-distance and beam center typical dominate the reconstruction qual-
ity; detector orientations are only relevant after the displacement parameters are
optimized; X-ray beam energy and detector pixel size (not counted above) are only
relevant to the final optimization. Based on this observation, we restrict the initial ex-
perimental parameter space heuristically to a smaller subspace to save computational
time.

3.6 Summary

3.6.1 Major Advances in Orientation Reconstruction

A plethora of three-dimensional orientation maps has been made available due to
the recent increase in both robustness and efficiency of the digital orientation re-
construction method. Just as a scale, the total amount of data reconstructed with
the first incarnation of the exhaustive search algorithm was less than 100 layers. It
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amounted to approximately 1 x 10® total voxels. This is less than a single volumetric
measurement consisting of (=~ 2 x 10® - ~ 4 x 10®) at the time of writing. For the
desired orientation resolution for highly deformed copper, we have determined that
Monte Carlo pruning has reduced fitting time from = 2000 to ~ 150 seconds. The
number of different materials measured and reconstructed is also increasing rapidly.
For example, we have measured BaTiO, Ni-Mn-Ga, Zr, and shock loaded Cu, just to
name a few.

Increased reconstruction efficiency, combined with rapidly improving acquisition
speed, could lead to unprecedented access to real-time, high resolution, and statis-
tically significant measurements. However, to keep up with increasing demand and
data rate, continued improvement is necessary on both the computational optimiza-
tion as well as the theoretical understanding of the reconstruction. While the idea
of spatially resolved orientation reconstruction is straightforward, aside from very
limited cases, very little is known regarding its convergence criteria. At the time of
this writing, the conditions where an optimal solution exists and is uniqueness are not
known. While numerical studies and experimental validation with existing techniques
are helpful guidelines, they are anything but definitive. Practically speaking, the lack
of theoretical understanding of the reconstruction problem is the reason for the slow
reconstruction code; aside from empirical experience, it is simply difficult to decide if
a reconstructed orientation map is optimal under the metrics considered.

3.6.2 Future and Ongoing Work

Ongoing development efforts are focused mainly on two aspects: the ability to use
peak intensity profiles in the reconstructions, and optimization of the orientation
search algorithm. The need for intensity fitting arises from the interest in spatially
resolved elastic strain state measurements. Elastic strain in the crystal structure leads
to changes in the lattice spacing, and consequently leads to peak shifts. Since the
strain state for a single sample volume element is averaged across many unit cells, the
resulting diffraction is a peak shape that is broadened non-trivially across w,n, and
20. By fitting to peak shapes [90, 62, 83, 60], strain states can be recovered. However,
thanks to the polycrystalline nature of the samples, intensity from each peak may be
contributed by multiple sample points. While approaches such as ART [87] propose to
use segmented and deconvolved peaks for orientation and strain state reconstruction,
difficulties involving large sparse matrices stands in the way of practical applications.

While the development Stratified Monte Carlo Pruning method for orientation
space searching has yielded significant improvement over existing search techniques,
serious effort is still required for the algorithm to meet the ever increasing demand
of spatial and angular resolution. As shown in Fig. 3.7, it can be seen that both
spatial and orientation resolution are crucial for geometrical and differential feature
extractions. Using 0.5um resolution for most 1mm diameter samples typically re-
quires between 10® - 10° voxels per layer. Even with the adaptive spatial resolution
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methods implemented thus far, each of the 2D maps would still require approxi-
mately 20,000 CPU hours for deformed materials. Some shortcuts can be made by
using only local optimization on neighboring points. Based on this idea, orientations
from random seed points in the sample are reconstructed using a global search, and
the n-th neighbors of these seed points are selected in a breadth first traversal and
fitted using local optimization. This breadth first traversal stops upon encountering
sample points with confidences below some predetermined threshold. However, this
shortcut only accelerates reconstructions for well ordered materials. The demand for
high angular resolution also results in diminishing speedup, as the local orientation
search dominates the run time.

It should be noted that the theoretical aspect of the orientation search function
has been addressed inadequately thus far. In many ways, this has indirectly hindered
the development of further algorithmic optimization. At the most basic level, it is not
known if orientation reconstruction is a well-posed problem. Specifically, neither the
uniqueness nor existence of a solution is sufficiently addressed in the polycrystalline
case. While representative test cases have shown that when peaks are smeared across
multiple images, reconstructed orientations become significantly unreliable, there is
very little analytical understanding of the connection between peak broadening and
reconstruction quality. While we observe from experimental results that the cost func-
tion we use seems disastrously sharp, it is not clear if a better behaving cost function
exists. For example, could the set of optimal solutions occupy a volume of essentially
zero measure in orientation space? The ability for intensity to resolve ambiguity is
still mostly unknown, and so is the upper and lower bound on reconstruction com-
plexity. For example, less effort should be spent on algorithmic optimization if any
of our algorithms can be proven to be asymptotically optimal. Unfortunately, at the
time of this writing, many of these questions are still left unanswered.
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Chapter 4

Robust Geometric Extraction

4.1 Overview

In order to obtain useful physical insight from microstructure measurements, one
must extract statistical, topological, and geometrical information. For example,
grain boundary information is captured in 2D micrographs or orientation images,
and grain size distribution and volume fraction may be obtained through stereol-
ogy [99, 54, 100]. Since typical results of microstructure measurements are images,
image processing becomes a crucial step in the data extraction and reduction. For
example, noisy images due to instability in the data acquisition system could lead to
uncertainty in orientation determinations. This could lead to artifacts in grain recon-
structions and ultimately in the grain size and grain boundary character statistics.
To mitigate these effects, a judicious amount of image clean-up has to be performed
to remove artifacts while minimizing bias introduced to the measurement. With the
widespread use of scanning orientation measurements such as EBSD, HEDM, and
DAXM, three-dimensional, spatially resolved orientation and local differential prop-
erties such as orientation gradients are readily available. Robust estimation of both
geometric and differential properties are important for materials characterization. For
example, grain boundary character distribution depends on the extraction of bound-
ary normals through the use of volumetric and surface mesh generation. Another
example is to observe clusters of low dislocation content regions within a single grain.
To measure dynamics in a polycrystalline system, the ability to identify and quantify
morphologies of interesting regions becomes crucial. Grain boundary mobility in an
annealing experiment is measured directly by the point-to-point difference beteween
reconstructed surface mesh of two different states; deformation evolution is monitored
by the development of low angle boundaries and grain mosaicity identified by isocon-
touring and kernel average misorientations. These capabilities must be automated, as
tracking individual features by hand is simply impossible for a sample with upwards
of a few thousand grains.

In this chapter, we will discuss the process of data extraction from reconstructed
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HEDM orientation maps. We will first introduce the data representation used in
HEDM reconstructions. We then discuss some issues regarding 2D data extraction
and image processing. Some effort will be put into applications of simple graph
theoretics to microstructure analysis. To extract geometry from a set of 2D orientation
images, we will need to look at three dimensional mesh generation. Finally, we will
discuss feature tracking in three dimensions as well as ways to generate non-manifold
surface meshes to represent generalized low angle grain boundaries. The applications
and developments of these techniques have been made in the context of 3D data sets
obtained from focused ion beam-orientation imaging microscopy (FIB-OIM) in the
last several years [59, 26, 27], and therefore a brief summary of prior work will also
be provided as a reference.

4.2 Extraction of Geometries and Topologies

4.2.1 Data Representations
Reconstructed Data

In this chapter, reconstructed orientation points as opposed to diffraction spots or
Kikuchi patterns will be considered as raw data. This distinction will help keep the
discussion of data processing concise. We will implicitly assume that the uncertainty
of the reconstruction will be characterized faithfully by the goodness of fit parameter
associated with each of the data points. Of course, in a real measurement, we would
often look at the diffraction images to help interpret the reconstruction results as
well as the fit parameters. However, this is not easily quantifiable, especially in the
context of feature extraction.

With HEDM, EBSD, and DAXM, data values are assigned to each of the sample
points in the imaged volume. Some of the more typical data values are crystallo-
graphic orientation, goodness of fit, and strain tensor. The nature of the “point-by-
point” assignment suggests that the raw data should be stored in similar manner to
images, with values assigned to grid points that delineate the sample space. For the
purpose of this chapter, we will only consider rectilinear grids for our reconstructed
data representation. This results in n x m pixels for each layer of the orientation map.
To represent multiple layers of orientation maps, we simply have k layers of (n x m)
sized orientation maps, which results in k£ x m x n pixels.

Historical Comment on the MIC File Format

Representations in most computer generated images are typically in some type of
grid format. In the most common cases, an image is stored in a two-dimensional grid
of (n x m) square pixels. Each pixel contains a value (binary, gray-scale, vector, or
tensor) representing the imaged function at that sample point. To reduce image size,
sometimes hierarchically sized pixels are used to better approximate local features of
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different length scale. Historically, the development of the MIC (microstructure file)
file format for HEDM had a similar intent. Started from the development of 3SDXRD,
grains were viewed as a single object with little or no resolvable internal structures.
Therefore larger grains are seen to be representable by larger pixels. To this end, a
single MIC file may contain pixels of different size, with boundaries containing signif-
icantly smaller “pixels,” or triangles to accommodate for smaller local feature size. In
many ways, a MIC file format is closer to a 2D mesh than a typical pixelated image.
The MIC format is a set of equilateral triangles specified by the “left most” vertex
(vertex with the minimum x-coordinate) and “up” or “down” designation. Since grain
sizes are usually several orders of magnitude larger than boundary feature size, the
potential saving using this representation is significant. Furthermore, the use of tri-
angles allows for more directions representable in a typical boundary. However, with
recent work in characterization of local orientation spread, there has been renewed
interest in extracting intra-granular misorientation. Combined with the studies of
angular resolution limits of HEDM to around < 0.25°, it has become apparent that
many interesting intraganular features can be extracted from high spatial resolution
orientation maps. This, combined with the use of linear interpolation, representations
of boundaries can become more fluid than that given by grid discretization. Finally,
some of the well established image processing operations are not well define on a tri-
angular grid. For example, the application of a median filter on a triangular grid does
not guarantee convergence. All these reasons significantly diminish the advantages
from the MIC file format. As a part of the future work, orientation field information
will be compressed and stored in a high resolution rectilinear grid format.

Grain Extraction

Given a grid representation, a nearest neighbor of a pixel (i, j) is defined to be pixels
immediately adjacent to it, i.e., (i +1,7), (¢, 7 £ 1). When applying an n x n filter or
a majority filter to the data structure, centered at pixel (i, 7), a region of n X n pixels
centered at (i, 7) will be considered. In three-dimensions, a region of n x n x n will
be considered. For the purpose of this thesis, a grain is defined to be a set of nearest
neighbor connected pixels satisfying the equivalence relation,

pij =pirjy <= d(qj,qrj) < 0 A IsNearestNeighbor(p; ;, pi j), (4.1)

where misorientation d(q, ¢') is defined in the usual way with respect to the fundamen-
tal zone of the measured sample. The use of this equivalence relation immediately
allows us access to several connected component algorithms, most notably union-
find, which is proven asymptotically optimal [I17]. As a note, “burn algorithm” is
the name used for connected component identification associated with grain extrac-
tion in the material science literature [97]. By defining the equivalence relationship
with different properties, such as dislocation density and confidence, we can similarly
define connected regions representing dislocation cells and high confidence grains. In
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Figure 4.1: A graph G provides an abstract representation of the two-dimensional mi-
crostructure shown. Each grain is represented by a vertex v (numbered.) Each connection
between a pair of grains are represented by an edge e(v,v'). Two grains are limited to neigh-
bor at most once with each other (i.e., the graph G is undirected, and there exists at most
one edge for each pair of vertices.). Edges of G therefore provide an abstract representation
of boundaries between each pair of grains.

general, microstructure component extraction belongs to the larger class of problems
know as image segmentation [841, 81].

Grain Graphs

Grain extraction naturally leads to discussion of grain neighbor statistics and net-
works, which allows us to easily compute grain-to-grain misorientation statistics.
Naturally, connectivity amongst grains can be represented as mathematical graphs,
G, where edges represent grain boundaries, and nodes represents grains (Fig. 4.1).
By interchanging edges for nodes in G, the dual graph, G* is obtained, which rep-
resents the grain boundary network. Not only does a graph provide easy access to
information within a microstructure and therefore their statistics, graphs can also be
readily analyzed using some of the standard methods. For example, finding the so-
called “min-cuts” in G* identifies the minimum number of boundaries required to be
removed in a microstructure to separate the grain boundary network into two disjoint
sets. Application of graph theoretics forms the basis of the present orientation map
analysis code and could be potentially applicable to analysis of microstructure data
in the context of grain boundary engineering and percolation theory [108, 31, 32].
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4.2.2 Interpolations and Approximation

Even though the microstructure maps are measured on a fixed grid, it is sometimes
necessary to provide well defined data values between grid points and layers. An
example is the case of alignment of two different measured orientation maps. Since
perfect alignment of different measurements is rarely possible, interpolation is often
used to match values from the two grids being aligned. A potential drawback, though,
is when kernel averaged misorientation is applied to a grain boundary. Orientations
from two distinct grains would be averaged, and the result represents neither of the
original values. To circumvent this problem, a discrete, indicator function based inter-
polation is used in the case of surface mesh generation. Details of each interpolation
method will be reviewed in this section.

Linear Interpolation

Given a function f(z) defined on the real line but only measured at discrete intervals
x; = {xo + dx}, the function values f(z + ) for all  + 6 ¢ {x;} can be defined via a
linear interpolation,

r € Ja,b),
fw) ~ lin(r, f(a), /)
= )+ T ), (42)

This is also known as the lever-rule or convex combinations. A similar scheme can
be generalized to two-dimensions. For a function f(x,y), the linear interpolation for
the point, p(z,y) € [a,b) X [¢,d) is defined as

f(zy) =~ lin(p, fa,c), f(b,d), f(a,d), f(b,c))
= lin(y, lin(x, f(a,c), f(b,c)), lin(z, f(a,d), f(b,d))). (4.3)

This is known as bilinear interpolation. Further generalization into any nD rectilin-
ear coordinate system is simply successive reapplication of the linear interpolation
function. The space over which the interpolation is defined needs not be rectilinear.
For example, interpolation within SO(3) between two orientations can be defined as

sin (w(1 —1)) sin (wt)

qt) = q Sn(0) + ¢

sin(w) ’
w = cos (g q) (4.4)

where ¢ is a quaternion representing an orientation. This is known as the spherical
linear interpolation, or SLERP. It can be shown that the path traced out by ¢(t) is
in fact the geodesic in SO(3) at constant angular velocity, which mimics the constant
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Figure 4.2: A schematic showing a common way to use linear interpolation functions to
help define boundaries in a multi-domained material. In this two-dimensional example, the
three different colors indicated correspond to three different domains with grain indices 1, 2,
and 3. The interpolation scheme shifts the entire image by (%, %), which does not affect
the outcome of the defined boundaries. Bilinear interpolation is applied to the indicator
functions x; to define x;(p) everywhere in the domain. The interpolation parameters, o and
B are defined by the location of p with respect to the reference point (Zy in this diagram)

in the interpolating domain D,,.

derivative in the interpolated function as seen in rectilinear spaces [111]. In general,
linear interpolation can be applied to any function f(q) : SO(3) — R provided that it
is smooth and differentiable. As it turns out, this is equivalent to having f(q) satisfy
the generalized Cauchy-Riemann equations for quaternions [66].

Linear interpolation is exploited thoroughly in the literature for the use of multi-
domain surface mesh generation [135, 9, 82, 129]. While crystallographic orientation
is useful for misorientation calculations, it is rather cumbersome to use in surface mesh
generation (i.e., calculation of isocontours in an orientation field). Instead, grains are
extracted, and their corresponding volumetric pixels (voxels) identified ahead of time
with a grain index using a connected-component algorithm (Eq. (4.1)). Grain indexes
are then assigned to a set of grid points. To help define grain boundaries, we will
define the indicator function,

1 if %, € D,
i(Tn) = 4.5
Xi(%n) {0 otherwise (45)
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We then define the linearly interpolated indicator function as 6;. The two-dimensional
version of §; (Eq. (4.2)) is defined as

0:(p) = lin(a, B, xi(To), Xi(T1), Xi(T2), xi(T3)) (4.6)

(see Fig. 2). From this, the grain index of point p is defined everywhere by

I(p) = argmax (6;(p)) - (4.7)

7

Grain boundaries are defined by the points where the index I(p) changes.

Kernel Average Approximation

A kernel average approximation, also known as kernel average smoother in the non-
parametric statistics literature, can be simply stated as

o(z) = /D F&)ple! — x)de’
1

/ plx)dx = (4.8)
D
A discretized version can be found as

2. K(zi — )

It should be noted that this kernel average approximation, or more generally kernel
density estimate method is used widely ranging from astrophysics (Smooth Particle
Hydrodynamics) to machine learning. It is not too surprising to find that one can
generalize both the continuous and discrete kernel function from the form K(z; — z)

to K (x;, ). One such example is the n-nearest-neighbor averaging, where K (x;, z) is
defined as

L if |#; — 2| < h and x; is the m—th nearest neighbor, m < n

) (4.10)
0 otherwise.
In fact, by using f(Z) = &, we get the n-nearest neighbor smoothing function for triple
lines and quadruple points used in the our implementation of feature preserving sur-
face mesh reconstruction. In general, the kernel average smoothing method can be
applied to relatively noisy data to produce a smooth, differentiable quantity. This
step of noise removal is especially crucial when looking at quantities like the Nye ten-
sor [78] estimate from an orientation map. Extra care must be taken when applying
kernel smoothing to microstructure orientation data. The kernel averaged smoothing
method has the side effect of averaging across discontinuities. Consequently, grain
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boundaries, representing jump discontinuites in the microstructure, would be sup-
pressed or removed. The resulting kernel averaged orientation would be far away

from all its composite orientations. It is therefore convenient to introduce a cutoff
kernel [72],

K(zi,2) = (4.11)

i lo — /| < h, d(g(z),q(2')) < 6,
0 otherwise

where d(q, ¢’) is the misorientation between the two orientations with respect to the
fundamental zone in the usual way. By setting the cutoff angle appropriately, only
misorientations that would not have been classified as a boundary would be added to
the kernel average contribution. One could certainly go on to cook up more compli-
cated versions of this kernel that would ignore boundary points explicitly in a grain
identified data structure.

4.2.3 Approximation vs. Interpolation in Surface Mesh Gen-
eration

The slight difference between approximation and interpolation should be clarified here
before proceeding to the description of mesh generation, as both techniques are used to
define the boundaries in a microstructure. Given a reconstructed surface represented
by S(Z), it interpolates the measurement point set {po, p1,p2, - p;} if and only if
S(Z) passes through every point p;. The surface function S(#) approximates the
points {p;} if S(Z) passes close to but not necessarily through the points {p;} [01].
The main choice of interpolation versus approximation rests solely on the reliability of
the raw data. If the point set {p;} is faithfully representing the surface geometry, and
the expected errors are negligible, then we would prefer our reconstructed surface to
pass through these points. On the other hand, if the point set is known to be noisy, or
if we know ahead of time that there is significant measurement uncertainty globally,
then an approximation scheme may be better suited. In the context of surface mesh
reconstruction used in this thesis, we assume that triple (3-junction) and quadruple (4-
junction) points identified in two-dimensions have significantly better resolution than
boundary points and triple lines estimated in three-dimensions. It will therefore be be
sensible to interpolate through these points and approximate through the rest of the
point set. This is justified by the typical in-plane measurement resolution of around
1um versus the out of plane resolution of > 4um. Furthermore, 3-junctions and 4-
junctions identified within the two-dimensional map are resampled in the orientation
space multiple times by the reconstruction algorithm. The chances of misidentifying
triple and quadruple points directly from the 2D reconstructed orientation map is
significantly lower than incorrect estimates of their location in 3D.
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4.3 Mesh Generation

4.3.1 Overview

Our primary interest in mesh generation, or more specifically, surface mesh generation
is to identify grain boundaries, triple lines, and quadruple points. By identifying these
geometrical features, we can fully characterize grain boundary properties, such as
normals and curvatures, which allows us to measure the mobility and energy for each
of the boundaries in a microstructure. The challenge is then to have a high fidelity
representation of the measured grain boundaries. Unfortunately, simply estimating
normals from the exterior surfaces of a set of 3D voxelized grains is not sufficient
for grain boundary characterization. Cubic voxels will only provide six different
orientations for each of the normals, and all triple lines are necessarily “stair-cased”
due to the voxel representation.

Surface and volume reconstruction is not a problem unique to material science.
Similar effort can be found in mesh generation for CT-scans (computed tomography),
MRI (magnetic resonance imaging), and even LIDAR (Light Detection and Ranging).
Different data collection schemes have different set of advantages and uncertainties,
and the meshing procedures (algorithm and data preprocessing methods) designed
for one method may not necessarily be optimal to the other. An example is the appli-
cation of point-cloud reconstruction to LIDAR data. Point clouds designated by a set
of points, {p;} are recorded by a LIDAR. Because points measured by LIDAR do not
typically lie on a uniform grid, finding connectivity of points is not straightforward;
therefore it is sometimes difficult to determine the geometry of the surface mesh in
areas with sharp features [25, 43, 49, 73, 24]. Preprocessing is sometimes necessary
to find connectedness between points [43]. In the example of CT-scan, difficulty may
lie in segmentation of images with low resolution and contrast. CT image quality is
sometimes lower than computationally desired because of the limitations on radiation
exposure for a human patient. Similarities in electron density in different body parts
(i.e., kidney and liver) contributes to the lack of contrast and therefore difficulties
in segmentation. However, since most body parts are relatively smooth, CT-scan
and MRI results usually do not have to worry about sharp, sliver like geometrical
features often seen in three-dimensional microstructures. This indicates that cur-
vature minimizing mesh smoothing techniques can be applied as a means for noise
removal. Preservation of sharp features (i.e., triple line, quadruple point) is in fact
crucial to microstructure analysis, as they often play a dominant role in determina-
tion of microstructure dynamics. For example, MacPherson-Srolovitz relations [70]
indicate that isotropic grain growth is determined by the mean width and edge length
of each grain. More generally, measurements of curvature for capillarity driven grain
growth requires that noisy features be minimized on each boundary. This leads to
a contradictory requirement of sharp features preservation and smoothing. Appli-
cations of anisotropic smoothing using geometric flow [134, 112, 23] were exploited
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to address these concerns. This still leaves the uncomfortable question of exactly
when smoothing would leads to bias in the resulting geometrical extraction, or worse,
when does discretization alter the topology or geometry of the original surface. Our
approach to geometrical extraction though mesh generation is in fact an application
and extension of the feature preserving methods developed by ref [9]. Moreover we
insist on applying explicit smoothing only as the last resort. We will view surface
reconstruction in our microstructure as surface approximation! from predetermined,
interpolated fixed triple lines and quadruple points using piece-wise linear functions
[2]. To facilitate this approach, we have implemented [9] using CGAL [3], an open
source geometrical algorithm library. By adaptively refining our three-dimensional
Delaunay triangulation, we are able to control the distance between reconstructed
mesh boundaries and the defined grain surface, leading to an alternative direction in
data restricted smoothing.

4.3.2 Related Work

The problem of both two-dimensional and three-dimensional mesh generation has
been extensively explored. We will only review a very abridged list of existing work
that is relevant to this thesis. Roughly speaking, there are three classes of algorithms
used for mesh surface reconstruction from voxelized data: primal type algorithms,
such as Marching Cubes and its variants [64, 85], dual algorithms, such as Dual
Contouring [18, 101], and Delaunay triangulation [8, 6, 16]. The first two are better
known and extensively used in the imaging community [135], while Delaunay triangu-
lation based surface reconstructions are more commonly studied in the computational
geometry community [16, 6]. For the purpose of this review, the terms “isocontour-
ing” and “surface reconstruction” will be used interchangeably. Furthermore, we will
focus mostly on gray level isocontouring and discuss the multi-indexed version as an
extension.

Isocontouring

Given a scalar function f (), the problem of isocontouring is simply to find the surface
f(Z) = C, where C' is constant. The isocontour of f(#) = C, which is {z;| f(z;) = C'}
is also known as the C-level set. Because experimental measurements are digitized,
the maximum resolution of the reconstructed isocontour depends on the density of
the sample grid, p; ;x, where f(Z) is defined. By using suitable interpolation schemes
on a sufficiently dense sample grid, a number of guarantees can be made regarding
the geometrical and topological properties of the approximated isocontour and the
true contour [0, &].

!To be clear, the surfaces must go through all constrained points but not all unconstrained
boundary points.
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Figure 4.3: Interface between two regions with red being regions of f(p; ;i) < 0 and white
being f(pi jx) > 0. The voxels (shown only as a two-dimensional projection) approximate
the plane indicated by the blue line. As we decrease the voxel size in the sample grid, the
distance between the approximate isocontour (grid steps) and the actual isocontour will
converge to zero. However, since each facet of the grid point is fixed, the local normal
estimate will never converge.
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PN

Figure 4.4: The two-dimensional version of Marching Cubes for illustrative purposes. In
the pixelized region, red and blue indicate regions of two different gray levels. New vertices
(white) are placed on the edges of the cube based on the configuration of signs in each cube
(green square). Because the vertex placement is determined locally, some configurations
(center and right) do not produce unique isocontouring.

To start, it is usually more convenient to work with f(p; ;x) —C. The isocontour in
this case, also know as the O-level set, is located between any grid points p; ; k, pir.j &/
with a sign change. However, a reconstructed isocontour obtained directly by applying
this method to the discretized function, f(p;;x), is necessarily “stair-cased.” More
importantly, we should note that while the approximated isocontour will converge
point-wise to the true isocontour, the normals will not converge (see Fig. 4.3). This
type of catastrophic failure is a classical problem seen in computational geometry. To
alleviate the stair-casing problem, most applications of isocontour extraction involve
interpolation or smoothing of the discretized data. It should not be too surprising
that boundary reconstruction and isocontouring are the same problem. In this case,
boundaries will be identified as locations where grain indices changes.

Marching Cubes

Originally designed for gray level isocontouring in medical imaging, Marching Cubes
is well known for its easy look-up table based implementations. Since triangles and
vertices are inserted independently for each cube associated with eight voxels (Fig.
4.4 ), run time of Marching Cubes scales linearly as the number of voxels. In ad-
dition to some minor preprocessing, there are essentially two steps to the Marching
Cubes algorithm. A sign function based on f(p; ;i) —C' is computed across the image
volume to determine the location of the isosurface. From this, sign crossing between
two points x; and x; indicates crossing of the isosurface. The edges of each voxel
can then be either sign-changing or sign-constant, and each cube will consequently
have 2% possible configurations. The union of all triangles from each of the voxels
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Figure 4.5: An octree is used to decompose the domain of f(p;;i). A two-dimensional
schematic is shown here. Meshes produced from a spatially adaptive octree will exhibit the
same hierarchical features. This means large triangles will be used to represent regions with
large features, and small triangles will be used in sharp regions to ensure that the meshed
surface conforms to the true isosurface.

is identified as the reconstructed surface. Because the Marching Cubes method re-
stricts the insertion of vertices to edges only, reconstructed features sometimes do
not resemble the original geometry or topology, especially when sharp features are
expected. Moreover, the output mesh from Marching Cubes tends to be dense, as
the number of triangles is at least equal to the number of boundary voxels. Triangle
quality also suffers from this vertex insertion restriction. These shortcomings have
led to a plethora of work on topological and geometrical conforming Marching Cubes-
like algorithms [76, 77, 52, 85, 20] In general, algorithms that place vertices on the
edges are called “primal” methods, while algorithms that perform cell-interior vertex
placement are called “dual” methods.

Dual Contouring

Using an octree to partition the domain of f(p;;x), the Dual Contouring method
triangulates by placing a vertex anywhere within each octree cell (Fig. 4.5). This
significantly helps improve the triangle quality and geometrical conformity of the
output mesh compared to constraining vertices to edges. The vertex placement is
decided by minimizing the quadratic error function

B@) =3 (- (7= 51)° (4.12)

Conceptually, the quadratic error function minimizes the magnitude of the gradient
of the reconstructed isocontour, as shown in Fig. 4.6.

Given that the octree level is chosen appropriately, the reconstructed mesh is
guaranteed to have the same topology and geometry as the isocontour represented
by the interpolated function, f(p;;x) [102]. The point-wise distance between the
reconstructed mesh and the true isocontour decreases with higher leveled, or more
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Figure 4.6: A two-dimensional schematic of Dual Contouring. Red and blue pixels represent
two regions separated by an isocontour. The green box represents the octree (quadtree in
2D). The cell with the dotted line is expanded to demonstrate the calculation of the
minimizer point (green dot). The normals n; and ny are estimated using the trilinear
interpolation of f(p; ;). The minimizer point, the intersection of the two tangent lines of
the estimated isocontour at the points p1 and po, is obtained by minimizing the quadratic
error function (Eq. (4.12)). The levels of the quadtree are chosen for illustrative purposes
only.
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refined octree (Fig. 4.5). Taking advantage of this convergence property, a function
can be defined to quantify the error for a mesh at octree level n,

i+l i

T = (4.13)

|7 [
Here, f*! and f* are the interpolated function values at octree levels i + 1 and 1,
and v/ is the usual gradient operator [133, 118]. It can be seen from Eq. (4.13) that
the octree level necessary for a fixed value of ¢, increases with local surface gradient,
which translates to sharp features.

By refining only in local regions where the e exceeds the predefined convergence
error limit [132], it is possible to produce an adaptively sized mesh that preserves sharp
features. Finally, to extend to the multi-index case, vertex placement is determined
by calculating a minimizer point with the position and normal of all immediately
neighboring domains. This method circumvents the possibility of having more than
one minimizer point per dual contour cell, which results in not being able to have
multiple grain edges intersect at a common point. It should be emphasized again here
that some information loss during the discretization of f(x) may not be recoverable
in the surface reconstruction.

Delaunay Triangulation

Obtaining an isocontour with Delaunay triangulation is slightly more complicated
than the previous two methods and the correctness and mesh quality of the result-
ing isocontour depends on several recent theoretical results on sampling and surface
reconstruction. To be concise, we will only summarize briefly several key properties.
A large body of literature ([16, 6, 109, 24, 25, 82, 15, 8], just to name a few) can be
found on the details and proofs for the results stated here.

1. Given a set of sample points P = {p;} on D, the domain where the scalar func-
tion f(Z) is defined, a Delaunay triangulation, DT'(P) is a triangulation where
no point p; lies inside the circumcircle (or circum-sphere in 3D) of any trian-
gles (tetrahedron in 3D). Note that we will not discuss the result of Delaunay
triangulation in terms of triangle qualities?, as they are not important to our
current analysis.

2. A Voronoi diagram is the geometric dual of the Delaunay triangulation. This
means that every (d — n)-dimensional object in the Delaunay triangulation will
become a n dimensional object in the Voronoi diagram. For example, in 3D a
tetrahedron in a Delaunay triangulation becomes a point at its circumcenter in
the Voroni diagram, and a point becomes a Voronoi cell.

2Triangle and tetrahedron qualities refer to the shape property. Roughly speaking, a triangle
is “good” if it is close to an equilateral triangle [19, 110]. The origin of this measure comes from
computational geometry and finite element analysis. Acute triangles with angles < 15° can easily
lead to singularities in a finite element calculation.
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3. A restricted Delaunay triangulation, DT'(P)|p, is a triangulation of P restricted
to asubset, B € D. For the purpose of our discussion, B is simply the boundary
or isocontour that we are interested in. Furthermore, given a Delaunay trian-
gulation of the domain, DT'(D), the restricted Delaunay triangulation on B is
a subset of simplices in DT'(D). Furthermore, this subset of simplices must also
be the dual of Voronoi objects (i.e., Voronoi edge) that intersect B. Therefore,
finding the “sign change Voronoi edges” is equivalent to finding triangles on
DT (D) that approximate the isocontour. Here, a “sign change Voronoi edge”
is an edge with two Voronoi (sample) points of different signs (Fig. 4.7).

4. Given that point set P samples B sufficiently densely [0, 8], the restricted De-
launay triangulation DT'(P)|p approximates both the topology and geometry of
the boundary B. Furthermore, as the sample point density increases, the recon-
structed surfaces, curvatures, and normals converges point-wise to B. Roughly
speaking, because we have a Delaunay triangulation, the circumsphere of the
tetrahedron neighboring the boundary triangle bounds the distance, d, between
the boundary triangle and the true isocontour (Fig. 4.7). Reducing the size
of this tetrahedron simultaneously reduces its circumsphere and its distance
bound. Thus, given some threshold value €, one could locally refine the bound-
ary tetrahedra until the desired bound on ¢ is achieved. The full details of the
proofs are beyond the scope of this section and can be found in ref [15, 25, 8].

4.3.3 Implementation

Taking advantage of the theoretical machinery outlined above, surface mesh recon-
struction using Delaunay triangulation is implemented and available as a package in
CGAL [3]. We will use this as a starting point. This package gives us the following
tools which are crucial in implementing feature preservation [9].

1. Three-dimensional Delaunay triangulation.
2. Adaptive Delaunay refinement based on generic criteria (specified as functions).
3. Ability to specify sampling points used for Delaunay triangulation.

4. Mesh quality improvement routines.

Surface Sampling with Delaunay Triangulation

We start with the surface reconstruction method implemented in CGAL, which uses
a restricted Delaunay triangulation to sample the isocontour to be reconstructed, as
outlined in Sec. 4.3.2. Roughly speaking, the accuracy of the reconstructed surface is
controlled by the facet distance parameter (§) (see Fig. 4.7 for an illustration). The
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(a) (b)

Figure 4.7: A 2D schematic of surface reconstruction using Delaunay refinement. The
diagram on the left shows the point set P (black dots) sampling the domain. The Delaunay
triangulation is shown by the black and green edges. The green edge (triangle in 2D)
corresponds to the facet that represents the isocontour B, indicated by the red curve. The
purple lines are the Voronoi edges. Note that the dual Voronoi edge of the boundary facet
intersects the isocontour (green dot). A Delaunay ball (black circle), a ball circumscribing
the vertices of the initial facet (two points in 2D, three points in 3D), is centered on
the intersection point between the surface Voronoi edge and the isocontour. To refine
the triangulation, a vertex is inserted at the center of the surface Delaunay ball. The
original triangle (tetrahedron in 3D) is removed, and the Delaunay triangulation is updated
(right). As a consequence, the new facets (green and brown edges) better approximate the
isocontour, i.e., the distance 0 will decrease for some number of the new facets [S]. The
algorithm will continue to refine any triangles containing facets with § larger than some
predetermined threshold value (green dot contrasted with red dot in (b) ).
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Figure 4.8: An illustration of the sampling of a sharp feature. The black lines indicate
the isocontour, and the red line segments represent the reconstructed surface. Blue dots
are used to show the locations of the vertices of these 1-facets. The dashed circle indicates
the problematic region. The refinement scheme shown in Fig. 4.7 will not be able to
reproduce the isocontour unless a vertex is placed at the sharp corner. The result is a
reconstructed surface with a large number of facets, many of which intersect the isocontour.
This is undesirable for microstructures, as it produces significant error in the mean width
calculation (discussed below).
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facet distance parameter acts as an L' measure between the reconstructed surface
and the isocontour. The reconstruction adaptively refines the Delaunay triangulation
around the boundary surfaces where ¢ is calculated to be larger than some prede-
termined threshold, §; (Fig. 4.7). As stated in Sec. 4.3.2, provided a sufficiently
small 0 is used, the reconstructed surface should be faithful to the isocontour. As
the sampling rate becomes higher (via increasing number of Voronoi-objects used,
or lowering of §), the L! distance will be minimized. However, this is also assuming
that the isocontour is C? continuous (a condition of the e-sampling used for the sur-
face reconstruction proved in [8, 5], which is not the case in many microstructures.
Simply put, the sampling rate around a sharp object can increase substantially with-
out resulting in L' convergence (Fig. 4.8); the resulting noise proves detrimental in
some of the typical geometry estimates (mean width, triple line length). This is the
motivation for the sharp feature preserving surface reconstruction method in [9].

As a side note, while ideally, § = 0 results in perfect reconstructions for a C?
continuous surface, the number of sample points, and hence surface patches needed
in the reconstruction mesh would grow dramatically. Since the computational com-
plexity of point-insertion, or adding new points, in Delaunay triangulation is in the
worst case O(n?), where n is the number of existing points, the computational time
would become impractical. Moreover, when performing surface reconstruction from
a voxelized data set, the reconstructed surface is not expected to have an L' norm
error that is below the voxel size. Consequently, one voxel side length is the usual
lower bound for §.

Sharp Feature Specification

The correctness, or conformity of the reconstructed surface to the isocontour, of the
Delaunay triangulation based surface reconstruction method outline above depends
on the ability to produce a dense sample of the isocontour [3, 5]. However, with
the present method, a dense sampling can only be produced if the isocontour C?-
continuous; in the presence of discontinuity and sharp features, the reconstructed
surface may not conform to the isocontour®. Unfortunately, microstrctures often con-
tain sharp features and nontrivial topologies (self-intersecting), and the preservation
of both of these properties are crucial for analysis. To circumvent some of these prob-
lems, a priori knowledge of sharp features from the measured microstructure can be

3The meshing method used in this thesis is based on e-sampling. The condition of point-wise
and normal convergence is related to a quantity known as the medial axis. Concisely, the medial
axis is the locus of centers of maximal balls B such that B(\X = ), where X is the surface to
be reconstructed. The isocontour to be constructed is further assumed to be C? continuous in the
surface reconstruction methods [3]. Recent work aimed to address the theoretical aspects of the
surface reconstruction problem in the presence of sharp features can be found in [14, 15]. The topics
of surface reconstruction errors and e-sampling is fairly broad, and much more extensive treatments
than what we can present here already exist in a large body of literatures [5, 24, 25]. We refer the
interested readers to these references for more details.
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Figure 4.9: A pixelized boundary (left) is interpolated on the right, as indicated by pixels
with cut corners. The black line indicates the true boundary. Since the true boundary is
not faithfully represented by the pixelized, interpolated data, resolution of the reconstructed
boundary is limited by pixel size. Surface reconstruction methods can at best capture this
interpolated boundary from the discrete data (edges shared by both red and blue regions).
While reducing the parameter § below the pixel side length to something arbitrarily small
will lead to the convergence of the reconstructed surface to the interpolated surface, it
may not necessarily converge to the true boundary. The resulting surface may also contain
artifacts, such as noisy surface normals (white), where a relaxed § could lead to a smoother
surface (green).
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directly inputted into the surface reconstruction. Points and edges in the material
are identified as constrained points, leaving the specification of boundary points to
depend on the meshing algorithm [9].

In the present method, constrained points selected in our meshing algorithm are
kernel averaged 3- and 4-junctions (triple and quadrupole points). 3- and 4-junctions
are defined to be voxels whose neighboring voxels have two and three different unique
IDs. Because of measurement noise, multiple apparent 3- and 4-junctions may appear
within a small area of the order of measurement resolution. In many cases, insertion
of these constrained points leads to artifacts in the reconstructed surface that are
identified to be unphysical. A crude way to resolve this problem is to replace multiple
constrained points within a small neighborhood (identified by the expected resolution
of small features in the measurement) with a point at their center-of-mass location.
The algorithm is explicitly defined in Algo. 4.

Algorithm 4 SpecifyConstrainedPoints. For a given voxelized data set and the
smoothing length r, return a set of smoothed constrained points.
for all voxels v;(¥) do
NgbList <« GetNeighbors(v;)
IDList «— GetMateriallDs( NgbList )
if NumberUnique( IDList ) == 3 A NumberUnique( [DList ) == 4 then
ConstrainedPointList «— &
end if
end for
for all p; € ConstrainedPointList do
NgbPointList < GetNeighborPoints(p;, 1)
SmoothedNgbPointList < Average(NgbPointList)
end for
return SmoothedNgbPointList

Note that the smoothing parameter also serves the second purpose of relaxing
the constraints on the triple lines. Triple lines formed by connecting measured triple
points necessarily are “stair-cased,” which is an aliasing problem due to the voxelized
data structure and is not reflective of the microstructure. By imposing a smoothing
parameter, triple points are inserted sparsely, and the interpolation is again left for
the meshing algorithm.

It should be mentioned that various groups have put significant effort into triple
line smoothing [20, 112]. However, to simplify the implementation, we have chosen
a simple kernel smoothing approach. Certainly, a more sophisticated moving finite
element or anisotropic smoothing method is also possible. Our approach is unique
in that we attempt to control the smoothing error by separately smoothing different
components of the microstructure before the meshing procedure, but a comprehensive
comparison amongst the different methods has not been done at present time.
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Weighted Delaunay Triangulation

Because the mesh refinement algorithm [3] will remove any tetrahedron neighboring a
“bad facet,” indicated by either poor geometrical conformity or bad element quality
(dihedral angle, for example), we have to explicitly protect constrained edges and
tetrahedra from being removed. By placing a weight on constrained vertices, we
have converted the Delaunay triangulation into a weighted one. Practically speaking,
weight w placed on the vertices v specifies that no other vertex v can be placed
within distance w from v. By setting the appropriate weight for multiple vertices
of boundary tetrahedra, T, we can ensure that vertex insertion will not be possible
within 7". This consequently ensures that T', along with its pre-specified boundary
facets, will stay fixed, which preserves the sharp features in the domain. Through
experience, we observe that setting the weight to be roughly % of the desired final
edge length is a good compromise between relatively smooth reconstructed triple lines
and sharp features.

4.4 Geometric Extraction

Once a surface and volumetric mesh is produced, approximation of many typical
geometrical qualities (surface area and volume) become fairly straightforward. How-
ever, error associated in the approximation is another matter. To get a better sense
of reconstruction errors, resolution studies are performed on the meshing algorithm.
Scaling of error as a function of resolution is examined. In the interest of experi-
mental comparison with isotropic grain growth, a discussion of mean width and its
approximation is provided. A discussion of microstructure evolution analysis with
the use of reconstructed meshes, relevant to grain growth studies, is presented at the
end of this chapter.

4.4.1 Mean Width

Mean width is a natural linear measure of an nD object. Most commonly, mean
width is defined as % times integral of mean curvature around an enclosed object?
where mean curvature is defined as

li1—|—li2

K = ,
2

(4.14)

4 Actually, mean width simply refers to the natural linear measure for a domain D in n-dimensions
that satisfies L(D1|JD2) = L(D1) + L(D2) — L(D1()D2). However, Hadwiger’s Theorem (the
original proof is in German, and a proof in English is found in [51]. A very good summary can be
found in [107] ) [70] states that for all linear measures L(D) in any nD satisfying the condition above
may only differ by an arbitrary multiplicative constant. In other words, the definition of mean width
is L(D) = C [,,, KdS for any arbitrary C. The choice of constant C' may differ between authors.
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and k1 and ks are the principal curvatures. Given a local patch of smooth, differ-
entiable, specifically C? surface, S, in three-dimensions, the two principal curvatures
can be defined by the two eigenvalues of the Hassian of the local height function. We
represent S with the height function z(z,y) from the local tangent plane, then the
Hassian is defined as

Hij - 82‘8]'2, (415)

and the curvatures are simply the diagonal terms. For example, the local curvature
of a sphere is 1—1% everywhere, and therefore so is the mean curvature. The mean width
of a sphere is simply 47 R? (}lz) (%) = 4R. Given a polygon mesh representation of an
object, the most straightforward way to calculate the mean width is simply done by

using the equation,

1
L(D) = o Z lei] v, (4.16)
where «; is the turning angle across the edge ¢ and |e;| is the length of the edge. For
a uniform polygonal mesh, the error converges as something like

L(D) - L(P)| [ Aa
(D) ““(L(D)?)’ (4.17)

where P is the polygon approximation of the domain D, and Ax is the side length of
the polygon [70]. The multiplicative constant « in front of the scaling is associated
with different reconstruction parameters and domain geometries. This error scaling
gets a bit more complicated when the mesh is adaptive. Furthermore, the required
assumption here is that the polygon mesh approximation converges both point-wise
as well as via normal and curvature. A counter example would be a voxelized rep-
resentation of the domain D. Since the normals and curvature estimation do not
change as a function of voxel edge length Az, the mean width will not converge.

4.4.2 Noise and Reconstructed Surfaces

Approximations and interpolations mentioned in the meshing section in terms of dis-
tance, ¢, away from the isocontour or boundary surface are provided. However, the
isocontours are often extrapolated from voxelized raw data. The sampling rate of
boundaries are in fact limited by the density of the grid in the voxelized measure-
ments. Therefore, no matter how densely we sample the voxelized data structure,
any features missing between the measured object and the discretized measurement
is not recoverable through surface reconstruction. In this context, we can specify a
minimum feature size observable based on the size of each voxel. While there is no
analytic expression to propagate the experimental error to the reconstructed surface,
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Figure 4.10: Resolution parameters’ effect on unconstrained reconstructed meshes is shown
here for a rotated cube in a rectilinear grid. The facet-to-boundary parameter decreases
from § = 2 to 6 = 0.5 going from left to right. Moving down the columns, we can see the
effect of maximum edge length going from e. = 0.1 to e, = 1 in normalized units. Corners
and sharp edges tend to become noisy with lower §, while larger § results in meshes that
poorly approximate the original shape.

we would like to know if 1) the result converges as we decrease voxel size and 2) if
there is some minimum size below which extracted geometries are no longer reliable.
The above considerations are especially crucial for looking at microstructure geom-
etry (volume, mean width, triple lines) and topology evolution. Topological infidelity
can easily lead to miscounted numbers of neighbors, resulting in misidentification of
critical events. Increasing variance with the decrease of voxels per grain affects the
quality of extracted mean widths and volume, which are the main components in
many of the grain growth theories [70, 125, 74]. Attempts to quantify the effects
of surface reconstruction error will be performed with the help of numerical exper-
iments. Specifically, the errors of extracted geometrical quantities for a number of
representative shapes will be studied as a function of discretization resolution.

4.4.3 Resolution Studies of Extracted Geometry
Numerical Experiment Method

In this study, we have specifically looked at the error scaling behavior as a function
of object size (in number of voxels) for constrained and unconstrained surface recon-
struction using Delaunay triangulation. We have varied two parameters, the facet to
boundary approximation, ¢, and normalized maximum edge length, e.. e. is generally

80



4.4. GEOMETRIC EXTRACTION

used to reduce the total mesh size; however, the use of larger edge size and larger o
can also provide an ad hoc smoothing on the reconstructed mesh, as illustrated in
Fig. 4.9. It can be seen, for example in Fig. 4.10, that the output mesh is adaptive.
Triangles of the surface mesh tend to be smaller towards the edges as the number of
sample points and refinements required to approximate the local feature increases. As
the parameter, 0 is decreased, the reconstructed surface is required to become closer
to the boundary specified by the data. Thus, local surface refinement is initiated
resulting in smaller triangles and shorter edge lengths (e < e.). Element quality of
the output mesh is ignored in this study, and therefore quality improvement meth-
ods such as sliver exudation [13] are not performed. This removes the complexity of
having mesh quality improvement affect the errors of the reconstruction.

We chose to study the relative error as a function of voxel side length instead
of mean or median triangle side length, s, to capture the error induced by the dis-
cretization and reconstruction altogether. Relative error, defined as @, where f is
a geometrical quantity and f, is its polygonal approximation, is computed for volume
and mean width. The interest in these two quantities comes from the need to use
reconstructed surface meshes for the analysis of curvature driven grain growth.

Convergence and variation behavior of the polygonal mean width and volume
approximations were studied by reconstructed surfaces of the chosen shapes. We have
chosen to use a free sphere, a free cube, and a constrained cube for our resolution
analysis. The choice is by no means exhaustive, but they encompass the commonly
encountered microstructure features, i.e. smooth surfaces, sharp edges, and sharp
corners. Furthermore, analytic forms for both mean width and volume exist for
spheres and cubes, which simplifies the error calculation. Neither the free sphere nor
free cube have constrained points. In other words, their surfaces are not subjected to
the restrictions of sharp feature preserving (i.e., insertion of sharp feature constrained
points which align directionally with the voxelized grid); thus they provide a idealistic
comparison between the errors from the two different classes of objects. On the other
hand, the resolution study on the constrained cube will lead to error estimates that
are more representative of the observed microstructures. Each object is produced
from a voxelization of a region defined by an implicit function at varying resolution.
Because discretization in a rectilinear grid results in orientation dependencies of the
reconstructed surfaces, each object is randomly rotated before voxelization. Note
that this is a study on L! norm type errors; a completely separate analysis would be
required to estimate errors found in reconstructed curvatures and normals.

Results

Relative error scaling as a function of volume and mean width can be found in Fig.
4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig. 4.16, and Fig. 4.17. Each study is
fitted against the analytical form of the polygonal approximation error [70], i.e.,
AL~ O (%) for mean width and AV ~ O (ﬁ) A straight line indicates agreement
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Region 1 Region 2

‘5

(a) (b)

Figure 4.11: A schematic describing the approximation parameter ¢, which specifies the
maximum distance between the facet (red) and the grain boundary (black curve). Facets in
two-dimensions (edge) and three-dimensions (triangle) are shown on the left side and right
side respectively.
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with the error scaling relationship. To better show the convergence behavior, a plot of
AL vs. L and AV vs. V is also shown, and each data point is a result of averaging the
object in 40 randomly chosen orientations. The variation of each error as a function
of orientation is characterized by its standard deviation. The edge length indicated
by e. is measured in the normalized unit of object radius in voxel side length (i.e.,
for a sphere, it is the radius and for a cube, it is Dalficubesidelength ©rpp g

) voxel side length’ 'Voxel side length
characterizes the number of voxels used to represent the object.

From the result of the mean width scaling, we can see that a range of recon-
struction parameters leads to significant differences in the scaling factor, «, of the
approximation error (Eq. (4.17)). For the case of a sphere, the error does not vary
as a function of its orientation, which is consistent with the fact that the standard
deviations are smaller than the symbol size. Furthermore, convergence behavior of
the free sphere is markedly better than both the free cube and the constrained cube.
This is attributed to the lack of sharp edges or corners, or more precisely, that the
surface of a sphere is C? continuous. This also explains why the reconstructed surface
using 0 = 0.5 (voxel side length) results in little or no increase in reconstructed noise,
as evidenced by the mean width estimates. This suggests that given a C? surface, it
is possible to approximate mean width with discretized data at high precision. Even
with fewer than 10 voxel radius (Lgphere(D) = 4r = r = 2), the approximation
error remains less than 0.01 for 6 = 0.5. The deviation in the scaling seen in Fig.
4.12(a) in the 6 = 0.5 case can be attributed to the fidelity of the reconstructed
surface to the isocontour surface. Recall that given a scalar function f defined on
the voxelization grid, {Z;}, all points f(Z) such that & ¢ {Z;} are defined by linear
interpolation (f). Therefore, the isocontour representing the sphere is faceted at low
resolution. In the limit of one voxel diameter, the sphere is represented by a single
voxel, which is a cube.

On the other hand, the free and constrained cubes should be perfectly represented
by the linear interpolation at all orientations. However, their corresponding recon-
struction errors are not particularly better, as shown by Fig. 4.13 and Fig. 4.14.
At around the same resolution (Leye(D) = 3¢ = § = &), the relative error of the
free and constrained cubes are between a factor of 2-20 larger than the free sphere
case. Moreover, while the relative error of the free sphere converges below 0.01, the
same cannot be said about either of the cube cases. This is attributed to the surface
reconstruction error due to sharp corners, which is exacerbated significantly in the
constrained case.

The marked error increase in the constrained cube case is due to the rudimentary
sharp edge (triple-line) smoothing algorithm. As indicated before, sharp edge iden-
tification is done by simple averaging of neighbor positions, also known as nearest
neighbor point simplification. While this works nicely for some cases (smooth triple-
lines), it is particularly prone to errors in sharp corners, as those that are seen in a
cube. This is particularly apparent when looking at Fig. 4.10, where corners of cubes
have turned into the noisy surface illustrated in Fig. 4.8.
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While the linearly interpolated scalar function f retains the same shape under
rotation, the triple-lines are seen to be distorted. Consequently, random rotation leads
to different constrained points being placed at most sv/3 (voxel diagonal) away from
the isocontour; thus incorrectly constraining the location of the reconstructed surface.
This is supported by the fact that the free cube has much lower error variations than
the constrained cube. Advances in triple-line smoothing [20, 112] can be combined
with the sharp feature preservation method outline here; however, this is still an
on-going effort at the time of this writing.

Maximum allowable edge length (e.), which characterizes the facet size is shown
to have some small effect on the relative error of the mean width and volume ap-
proximations. This is attributed to the fact that the reconstructed mesh is adaptive.
Consequently, in regions where higher resolution mesh is required, local adaptivity
reduces the edge length significantly below e..

Since volume is a “bulk” measurement, the effect of surface reconstruction error
tends to affect its approximation much more timidly. Generally speaking, the relative
error in the volume estimate converges much more rapidly than those see in the mean
width. This is attributed to the fact that the error in a volume estimate is only due
to the surface tetrahedra. As the surface starts to dominate at low resolution, the
relative error of the volume approximation diverges to up to ~ 0.30.

4.4.4 Multiple Microstructure Registration

Unless successive microstructures are measured in situ, alignment of multiple meshes
is particularly challenging. There are many ways to perform registration across mul-
tiple objects assuming that a fiducial mark exists. However, in the absence of a
reliable fiducial mark, microstructure alignment depends on minimization of some
distance between landmark objects. In the case of orientation imaging, alignment is
done through global optimization of a point-to-point misorientation function across
multiple maps. Specifically, given two orientation maps a and b, the mis-registration
cost function is defined as

N

C= N ; d (Qa(fi)a Qb(sz + Af)) 5 (418)
where ¢ is the orientation at point #, R and AZ are the rotation and translation that
are adjusted to best align the two orientation maps, and d(q, ¢’) is the misorientation
function defined in the usual way. The number of points sampled, N helps determine
the accuracy of the registration. The two orientation maps are aligned at the global
minimum of C. This registration is relatively straightforward if microstructures of
the two states being registered are not too different, but it becomes problematic
when dramatic changes occurred between the two different states. Multiple minima
of C may occur in that case. Moreover, when the two orientation maps are grossly
misaligned, the amount of time required to find R, AZ such that C is minimized may
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Figure 4.12: Relative mean width error of a free sphere. (a) Relative error is plotted
against ﬁb)g, where s is the voxel side length. Near linear scaling is attributed to a good
convergence of the mean width as a function of resolution. A line indicating y = x is
supplied as a reference. Note that error bars shown are smaller than symbol size, indicating
minimal orientation variation in the relative reconstruction error, which is expected for a

sphere. (b) A plot of the relative error as a function of L(D) better shows the convergent

behavior.
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Figure 4.13: Relative mean width error of a free cube. (a) Significant variation is found
in the errors estimated, indicating directional dependence of the discretization, which is
expected. (b) A plot of the relative error as a function of L(D) to show an exception in the
convergent behavior (6 = 0.5). In both plots, § = 0.5 produces an error that does not follow
any scaling. This is an indication that the mean width error is dominated by the noise in
the reconstructed surface mesh. The scale of the error seen here is not dramatically worse

than the sphere case.
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Figure 4.14: Relative mean width error of a constrained cube. (a) Marked difference in the
error scaling behavior can be seen here. Notice here that the error from the case of 6 = 0.5
is significantly higher. This is mostly attributed to noise in the triple line reconstruction.
Variation as a function of orientation is also dramatically larger than observed for the free
sphere or the free cube. (b) All cases except for 6 = 0.5 converged rapidly with increasing
resolution.
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Figure 4.15: Relative volume error of a free sphere. (a) Relative volume error scaling with

ﬁ, where s is the voxel side length for a sphere. Note again that the error bars are
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below symbol size. (b) Relative error plotted against volume to demonstrate convergence

criteria.
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Figure 4.16: Relative volume error of a free cube. (a) Variation of volume approximation
error is significantly lower than that of the mean width calculation. (b) It can be seen that
the volume converges much more sharply than the mean width approximation. However,
noting the scale indicates here that the relative errors can become significantly higher (up
to 0.25 in the volume approximation in contrast to 0.15 in the mean width test).
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Figure 4.17: Relative volume error of a constrained cube. (a) It is seen that all four values
of § result in very similar volume approximations. The non-convergent behavior seen in the
6 = 0.5 case of mean width is not present here. Error variation across different orientations
is also significantly lower. (b) Compared to the free sphere and the free cube, we see that
the volume approximation here converges much more slowly. Note again that § seems to
have no effect on the reconstruction.
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take a significantly long time. This alignment method is applied in the analysis of
both Chapters 5 and 6.

4.4.5 Grain Tracking

Given grain G, from state a, we would like to find grain G} that corresponds to the
same grain as G, in state b. To simplify this problem, we will make the following
assumptions.

1. If G, and Gy, correspond to the same grain in two different measurements (de-
noted by G, = G}) and D(G,) and D(G},) correspond to the domain of the two
grains, then D(G,) () D(Gy) # 0 (finite overlap).

2. The volume of the intersection D(G,) () D(G) is the maximum out of all of the
two grains’ respective neighbors, Ngb(G,), Ngb(Gy).

3. G, = Gy, implies that d(qq, ) < 0;, where q,, g, are the crystallographic orien-
tations of G, Gy.

The algorithm to perform the tracking is given in Algorithm. (5). Notice that this

Algorithm 5 TrackGrain. Given a grain G, with orientation ¢, from a microstructure
represented by a volumetric mesh, M,, find the same grain in a second measured state
represented by the mesh M,. The two meshes are assumed to be optimally aligned.
ClosestGrainInB «— Locate(M,, G,) {Locate G, in M,}
NgbGrainList «— GetNeighbors(M,, ClosestGraininB)
for all Grain g; € NgbGrainList do
¢a < GetAverageOrientation(g;)
V « IntersectionVolume(g;, G,)
30; — d(q;, q.) {Calculation the misorientation between the grains}
if 960; < 6, then
GrainMatchList < (g;, 00;, V)
end if
end for
return FindMaxIntersctionVolume( GrainMatchList ) { Return the grain with
maximum overlap. }

algorithm is currently unable to keep track of grains with significant orientation evo-
lution, i.e., lattice rotation. Furthermore, this method is somewhat unreliable when
grain sizes change drastically or asymmetrically (Fig. 4.18) as the intersection volume
may not be all that telling. Also, no explicit attempt is made to identify disappear-
ance and appearance of grains. This is particularly problematic in the case of grain
growth studies. However, by imposing a strict threshold misorientation, #;, and in-
sisting that AV = W < 1, this method is sufficient to track a number of grains
across four anneal states. The result of this method is shown in Chapter 5.
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State 1 State 2

Misidentified Grain

Figure 4.18: A schematic of how a maximum Iintersection grain tracking scheme may lead
to misleading results. Grains of the same color in the diagram are considered to have the
same orientation. As grain boundaries move, even with perfect registrations between two
states, it is possible that the same grain across two states cannot simply be identified by
having maximum intersection and minimum misorientation.
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4.4.6 Boundary Tracking

Given that a microstructure in two anneal states is represented by the two surface
meshes S, and Sy, then boundary tracking determines the minimal distance traveled
by each of the triangles between the two states. Specifically, for each triangle T, € S,,
a triangle T, € Sy, is found such that d(7,, T}), the distance between the two triangles
is minimal. This is accomplished by point location in S, using vertices of the triangle
in T,. Roughly speaking, point location simply searches for the nearest region of
triangle in a mesh given a point. The resulting set of triangles can be used to estimate
a point-to-point shift between two meshes, which is applied to nickel grain growth
analysis in Chapter 5. Because no explicit tracking of boundary types is performed,
the current analysis is only valid for differential boundary movements.

4.5 Conclusion

A brief review of the surface reconstruction literature, although by no means exhaus-
tive, is presented in this chapter. We have summarized the theoretical results used in
the Delaunay triangulation based surface reconstruction method, and a rough descrip-
tion of the implementation details of a sharp feature preserving extension is included.
Most of the analysis techniques developed in this chapter are used in analysis of the
data discussed in Chapters 5 and 6.

A method was developed to quantify the error associated with discretization and
surface reconstruction error for arbitrarily shaped objects defined by an implicit func-
tion. This method of error analysis is general, and it can be applied to estimate errors
in experimentally measured materials. The result of our initial analysis shows reason-
able convergence behavior in the reconstructed meshes, although significant caution
must be used to avoid problems with constrained sharp features. Specifically, the
directional dependence of sharp edges in the voxelization leads to markedly higher
mean width and volume approximation errors. Attempting to address this problem
is an on-going effort.

4.6 On-going and Future Directions

Clearly, much of the geometrical analysis is not in a completed state. For example,
grain and grain boundary tracking are currently at a rudimentary state. Signifi-
cant on-going effort is being put into a more robust grain tracking method based
on minimum Hausdorff distance between grains. With the automated surface mesh
generation and testing methods developed in this chapter, we would like to estimate
the reconstruction error for general shapes that are representative of real objects in-
side a microstructure. The purpose is to provide a foundation to estimate errors in
experimentally measured quantities, such as grain boundary mobility, energy, and
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curvature. Some of the preliminary results from these techniques are shown in Chap-
ter 5.
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Chapter 5

Non-destructive Observation of
Grain Coarsening in 3D, Initial
Report

5.1 Overview

Grain coarsening is an interesting phenomenon both from a scientific and an engi-
neering perspective. Since material properties are heavily influenced by grain size,
the ability to predict and control grain growth in a manufacturing process is criti-
cal. In the most ideal and familiar case of curvature driven grain growth, movement
of boundaries can be attributed to local curvature as exemplified by soap bubble
coarsening, which could be described by

v=—-M~yk (5.1)

where grain boundary curvature, x, interfacial energy -, and mobility M dictate
the grain boundary velocity, v, the velocity perpendicular to the local tangent plane
(k > 0 for convex regions would lead to v < 0 or inward velocity). This way, velocity
will be minimized and the grain boundary position stabilized as the curvature is
minimized; intuitively, this is why grain boundaries become flatter as a microstructure
is annealed.

In two dimensions, Eq. (5.1) leads to the famous n — 6 rule [125]. The rate of
area swept out by the movement of a boundary segment dl at velocity v is given by

% = |7 x dl] = v dl, (5.2)

where [ is the tangent direction of the boundary curve, and we have assumed the
direction of the velocity to be perpendicular to the local boundary tangent. Conse-
quently, the total area change due to the motion of the boundary of the domain D,
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0D, is given by

dA
E = — ngU dl
= —va K dl. (5.3)
oD

Taking advantage of the fact that curvature at any point on a 2D curve can be defined
as k = % where ¢ is measured from an arbitrarily chosen origin leads to

dl >’
dA

— = M . A4
v N ngdcb (5.4)

If the grain boundary is smooth and continuous, the growth rate % would be constant,
as the closed contour integral is identically 27 for any shape. However, given that
discontinuities occur where more than two boundary lines meet, the contour integral
is given by

qua = Z/fi+ld¢+@i
= 2; + Z 0., (5.5)

where ©; is the turning angle associated with the ¢-th discontinuity along the bound-
ary [71]. By assuming triple lines mechanical equilibrium and isotropic boundary
energy, all turning angles of the domain are given by ©; = %, and we arrive at n — 6
rule.

% = —My (27?— Z ®i>7 (5.6)

i€vertices

= 2nM~y (1 - %n) : (5.7)
Note that there are as many vertices as sides in a closed 2D loop. This states that
grains with seven or more sides grow, grains with five or fewer sides shrink, and grains
with six sides are stable. Equation 5.7 is left in this form to highlight the geometrical
nature of the grain growth law. The three dimensional version of Von Neumann’s
n — 6 rule proved elusive until work by MacPherson and Srolovitz [70] showed that

0;—‘; = —27 M~ (L(D) - % > e> (5:8)

ecE

where D is now the three dimensional domain, L(D) is the mean width of D, and E is
the set of all edges of D, each of length e. In general, edges in 3D may be intersected
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by any n > 3 domains; however, in the case of grain growth, triple lines are typically
observed, since n > 3 leads to mechanical instability.

Experimental observation of 2D grain growth is possible in some limited cases
[113, 29] while studies of three dimensional grain growth are dominated by computer
simulations [37, 122, 136, 36, 46] and statistical analyses of 2D data via stereology
[54, 99]. Until recently, microstructural measurements were limited to optical and
scanning electron microscopy. The use of manual serial sectioning was done in an
isolated heroic effort to observe the growth rate of aluminum in 3D [93]. In most
of these cases, the study of grain boundaries was limited to geometry and topology.
Recent advances in orientation imaging using electron backscattering diffraction mi-
croscopy (EBSD) have changed this significantly [128, 108]. The ability to measure
crystallographic orientations for points on a 2D surface leads to significant advances
in the understanding of microstructures. Although coupling results from EBSD ori-
entation measurements with stereology enables statistical observations of 3D grain
growth, restrictive assumptions, such as equiaxed grains is required [14, 99].

Full three dimensional measurement had not been practical until the advent of
EBSD with dual-beam focused ion beam (FIB), which performs automated serial
sectioning [121, 27, 98, 59, 96, 26]. Even then it is still not possible to track the
same population of grains in 3D, as the measured part of the sample is destroyed
during the measurement. Non-destructive measurement attempts were made using
both Differential Aperture X-ray Microscopy (DAXM) [55] and 3DXRD [38] to ob-
serve recrystallization and grain growth of high purity aluminum [104]. However,
the sample size limitation of DAXM precluded it from being able to conduct grain
tracking through a statistically significant population of grains, as many of the grains
measured from the initial states disappeared by the final anneal state. Attempts with
3DXRD have faltered due to limitations in the reconstruction technique; the inability
to resolve grain boundaries to high precision inhibits any reliable resolution of grain
boundary movement or curvature.

Finally, simply having the ability to produce grain maps or orientation maps
proves insufficient to the study of grain growth or, more generally, any annealing
process in real materials. For example, in Nickel, grain boundary mobility is highly
anisotropic, varying by as much as four orders of magnitude [11, 79, 22]. Since a
typical grain is bounded by a union of multiple boundaries, each of a different type,
the variation of mobility can lead to some very non-intuitive results for volumetric
changes, even if the growth mechanism is dominated by capillarity. Unfortunately,
grain boundary mobility measurements are difficult. In the few exceptional instances
of bi-crystal measurements [127], mobility measurements can only be carried out on
a few select boundary types. A much more comprehensive survey of grain boundary
mobility is necessary to empirically test grain growth theory.

High Energy X-ray Diffraction Microscopy (HEDM) helps circumvent several of
the obstacles mentioned above by providing a means to image large volumetric ori-
entation maps with statistically significant numbers of grains per cross section at
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micron-scale boundary resolution. By measuring and following the crystallographic,
geometrical, and topological evolution of thousands of grains simultaneously, HEDM
affords us access to anywhere from 10° — 10° unique points in the five dimensional
macroscopic grain boundary character space. The geometrical resolution indicates
that grain boundary curvature as well as motion can be tracked to within a micron.

In this chapter, we describe the non-destructive measurement of the evolution
of a statistically significant population of grains in three dimensions using HEDM.
This set of data provides an unprecedented view into grain growth and boundary
motion. Due to the unprecedented data volume, development and validation of both
data processing and analysis is still an ongoing effort. A subset of the initial results
will be presented in this chapter to demonstrate the current capabilities of HEDM
and its accompanying analysis tools. A set of common statistical distributions, such
as normalized grain size distribution and grain-to-grain misorientation distribution
are shown to validate of our measurements. Unlike most previous measurements,
these statistical distributions follow and characterize the same ensemble of grains
throughout their evolution. An initial characterization of grain boundary motion will
be shown. Grain tracking and geometrical feature extraction (introduced in chapter
4) will be demonstrated. As an application, the evolution of 16 grains, tracked across
four anneal states, is compared against predictions from the MacPherson-Srolovitz
relations. Grain boundary character distributions (GBCD)[50] are compared between
different anneal states to highlight changes in the grain boundary population. We
conclude with some remarks on current developments and future directions.

5.2 Experimental Procedure

5.2.1 Sample Preparation

High purity, fully recrystallized nickel was prepared to have an initial grain size of
approximately 25-50 microns using the procedure described in [39]. Further screening
of the initial samples and calibration of the annealing procedures were done by optical
microscopy and EBSD. Because fully recrystallized grains are expected to have very
low dislocation content, boundary dynamics are expected to be largely dominated by
curvature-driven motions. A cylindrical sample was cut to be approximately 1mm
in diameter by 2cm in length using Electric Discharge Machine (EDM). To facilitate
alignment between different measured states, a fiducial mark was produced by EDM
at approximately 1mm above the measurement location. The sample was initially
annealed at 750C° for two hours in a forming gas (3%H, 97%Ar hydrogen) ambient
to achieve the desired initial grain size. Successive anneals between measurements
were done ez situ using the same furnace setup for 23, 30, 25, 35, and 25 minutes,
respectively, at 800C*°.
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5.2.2 Orientation Imaging Procedures

Volumetric orientation maps of this sample were measured using the HEDM setup
at sector the 1-ID of Advanced Photon Source at Argonne National Lab. Using a
monochromatic X-ray beam of 64.5 keV (monochromacy of 107%) micro-focused to
6um FWHM vertically, and an effective width of 1200um horizontally). A LuAG,
(Lutetium aluminum garnate, 25um thick) scintillator was used in conjunction with
5x focusing optics and a Photometric CoolSnap K4 CCD imaging system. The use
of the 5x optical magnification on the 7.4um pixels of the CCD results in an effec-
tive pixel size of 1.47um, which is confirmed experimentally using optical and X-ray
characterization.

The effects of optical distortion after calibration are negligible. For optimal diffrac-
tion spot imaging, we chose detector-to-rotation-axis distances (L-distance) of ap-
proximately 4.8, 6.8, 8.8mm. With this experimental geometry, typically 70 - 120
diffraction peaks are imaged for a random crystal across the 180 integration intervals
(0w = 1°). From our resolution studies [10] (presented in Chapter 2), this amounts
to an angular resolution of 0.1°. As a validation, measurement of a “single crystal”
ruby sample showed two regions separated by a low angle boundary of around 0.5°.
This was found to be consistent with a measurement done using a rotating anode X-
ray source!, which shows a peak splitting of ~ 1.2°. The latter measurement rotates
about an arbitary axis relative to the misorientation axis, so the splitting should be
< 0.5°. The spatial resolution of the orientation image map is limited by the effective
size of the detector system pixels.

To produce the volumetric orientation map, the sample was scanned one layer
at a time. Optimally, resolution in-plane should be identical to that out-of-plane.
However, limits of X-ray focusing as well as time constraints make this impractical.
With a focused beam of approximately 6um FWHM, we decided to use 4um spacing
between layers. This resulted in the ability to resolve grain boundaries for grains
with radii of around 25um (feature size prevalent in the initial state) with 5-6 sample
points. As boundaries could be locally approximated as 2D quadratics on the tangent
plane, the ability to acquire more than 3 sample points per direction was crucial to
local curvature and normal estimation.

A total of six anneal states were observed for an imaging volume of 280um x 1mm
for the first two states (anneal 0, anneal 1), 336um x 1mm for the next three states
(anneal 2, 3, and 4), and 400pum x 1lmm for the final state. Successively larger
volumes were used in an attempt to capture any grains protruding outside of the
imaging volume.

Taking advantage of the non-destructive nature of HEDM, all six anneal states
were imaged in approximately the same region of the sample. An unfocused X-ray
beam (1.3mm x 0.3mm vertical) was used to produce transmission tomographic im-
ages of the sample, and the fiducial mark was used as a reference point to identify

1 AE -5
AE ~ 10
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Figure 5.1:  (a) A representative orientation map from the nickel sample. The color is a
mapping of the orientation space to red, green, and blue (RGB). The confidence map (b)
shows the fit quality of the orientation map.

the imaging volume at each state. The resulting alignment is believed to be accu-
rate within few detector pixels, or about 5um. Additionally, the orientation of the
planar layer cutting across this fiducial mark was measured at the beginning of each
volume. This allowed us to perform point-by-point matching of orientations between
two different states to get optimally aligned structures.

Measuring the orientation map for each of the anneal states took approximately
24 hours, which implies potential problems with sensitivity to cumulative drifts in
both the sample holding apparatus and the X-ray beam. These effects are observed
and compensated using a novel optimization method in the orientation reconstruction
(presented in Chapter 3).

5.3 Analysis

A total of six volumetric orientation maps were measured (one for each of the anneal
states, see Table 5.1). A representative two-dimensional cross section of the initial
state can be seen in (Fig. 5.1). Unlike in analysis methods used in 3DXRD and
Diffraction Contrast Tomography [88, 68], orientation maps obtained from Forward
Modeling analysis completely fill the measured volume. This is particularly important
for grain boundary measurements. Mean grain volume was measured across the
different states and found to be monotonically increasing (Fig. 5.2). It should be
noted that it would be difficult to consider anneal states as time steps, as the annealing
time varies for each step. The small number of time steps also makes it difficult to
produce a reliable fit against the expected result of (V) o t2,

Since we would like to track small grain boundary movements to extract mobility
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Table 5.1: Grain size (interior only) and annealing time for each of the measured states.

States | NpLayers | Volume measured | Nso (V) (Req) | Anneal Time
(mm?) (mm?) (mm) (minutes)

0 71 0.269 2142 [ 0.992 x 10~* | 0.0287

1 71 0.269 1848 | 1.223 x 10~* | 0.0308 23
2 88 0.334 2295 | 1.310 x 10~* | 0.0315 30
3 87 0.330 2168 | 1.382 x 10~* | 0.0321 25
4 85 0.323 2036 | 1.429 x 10~* | 0.0324 35
5 104 0.395 25

and curvature changes, differential annealing was performed on the sample. To ensure
that not too many grains had disappeared between successive states, we used partially
fitted orientation maps from subregions of the measurement as a guide. Annealing
time was adjusted at each step to help achieve the desired growth.

Consistent analysis of the final two anneal states is complicated by the develop-
ment of a bend in the sample during annealing. A bend developed unexpectedly and
became more pronounced in the specimen after the fourth and the fifth annealing
steps. The exact cause of the deformation is unknown, but grain rotation is sus-
pected. In the last two anneal states, several grains with radii between 1—16 and é of
the sample’s cross section radius were found. Rotations of these larger grains could
easily affect the macroscopic shape of the specimen, causing a bend. We do not expect
this to be a result of sample handling damage, as neither diffraction peak broadening
nor increase in local orientation variations were observed. Because sample alignment
problems resulted from this, the analysis for the final anneal state is incomplete and

will not form part of the discussion.

5.3.1 Orientation Reconstruction

Volumetric orientation information for all six anneal states were reconstructed using
IceNine (chapter 3), an implementation of the Forward Modeling Reconstruction
Method (FRM) [116]. Each of the voxels were fitted independently with Q0 =
10A~%. With our imaging geometry, this resulted in 70 - 120 fitted Bragg peaks per
voxel. Fitted two-dimensional cross sections of the sample were stacked together to
produce the volumetric orientation map. Drift between successive layers and through-
out each volume measurement was found to be minimal, as verified from parameter
optimizations and past comparisons with tomographic reconstructions. We found the
orientation spread across each grain to be below 0.1°, which is our resolution limit.
This figure remained consistent throughout the five anneal states.
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Figure 5.2: Mean and median grain volume for each of the anneal states.
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G itks

(a) (b)

Figure 5.3: (a) An example of a grain with non-trivial geometry found in the initial and
the first anneal state. The region that is “wrapped around” by the grain is identified as an
in-growing twin. (b) Evolution of a grain across four states going from initial to final (left
to right). Dramatic changes can be seen at the narrowest part of this grain throughout the
annealing process.

5.3.2 Grain Extraction

Grains are defined to be connected regions with similar crystallographic orientations.
In the case of our orientation maps, this is a set of connected voxels. Two voxels in an
orientation map are considered connected if and only if 1) they are first neighbors, and
2) the misorientation 06 between them is less than some threshold value 6;, which was
set to 3° in this analysis. The choice of orientation threshold is somewhat arbitrary,
and depends on the expected orientation gradient in the sample. Since our specimen
exhibited extremely well annealed grains, we expect the number of grains extracted
to be quite stable with respect to orientation threshold variations.

Since reconstruction noise is expected at grain boundaries (i.e, orientations from
neighboring grains mis-assigned across the boundary), image artifacts are sometimes
present in the grain identified maps. A “majority filter,” the discrete version of the
median filter, is used to remove these artifacts. Given a m xm majority filter centered
at (i,7), the voxel v(, j) would be assigned the majority grain ID of its m x m — 1
neighbors. Note that no grain size restrictions are placed on the microstructure, and
grains are not guaranteed to be simply connected?, as indicated by Fig. 5.3.

5.3.3 Microstructure Geometry

Both volumetric and surface meshes are generated for all six of the anneal states.
This enables us to define boundary normals, curvature, and mean widths of grains.
Furthermore, the reconstructed geometry was used to track grains between anneal

2Simply connected is defined in the usual way, i.e. the region must not contain holes or self
intersections.
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states. Both meshes were generated using feature-preserving mesh generation [9],
which was implemented with CGAL [1] (presented in Chapter 4). Because mesh
quality (e.g., minimum dihedral angle, aspect ratio, edge-length-to-circumcircle ra-
dius) is unimportant in our calculations, most of our effort was directed at assuring
that the surface mesh was a faithful representation of the microstructure. This was
achieved by restricting the reconstructed surface mesh to be a maximum distance of
two voxel side lengths from the surface indicated by the data.

5.4 Results

5.4.1 Grain Statistics
Single Parameter Statistical Characterizations

Normalized grain size distribution, misorientation distribution, and grain boundary
character distributions are extracted for the four different anneal states. Three-
dimensional grain size distributions are shown in Fig. 5.4. Unlike previous mea-
surements, the evolution of grain size distributions shown here contains the same
population of grains in 3D, which is a first to the best of the author’s knowledge.

Grain volumes are calculated from the reconstructed volumetric meshes. A sphere

equivalent radius is calculated as R.q, = (%V)%. It can be seen (Fig. 5.4) that the
grain size distribution remains invariant throughout the anneal, which suggests sta-
tistical self similarity [75], a hallmark of curvature driven growth. It should be noted
however that explicit comparison with proposed grain size distribution functions, such
as Hillert [12], log-normal [30], and Rayleigh [65] may not be able to prove or disprove
any particular grain growth model, as variations in each distribution may be achieved

through adjustment and addition of parameters [33, 15].

A grain-to-grain misorientation distribution is computed using grain-averaged ori-
entations, and the usual features are present (Fig. 5.5). The expected peaks for a fully
recrystallized nickel sample, 33, X9, and ¥11 are clearly visible, with 33 (60°, [111])
being the most prominent. We see that the misorientation distribution remains rel-
atively unchanged throughout the five states, with the exception of anneal state 2.
This is due to the combination of reconstruction and alignment problems that is cur-
rently being addressed by on-going analysis. Aneal 2 was measured in two indepen-
dent sessions due to beam time scheduling constraints. The difference in calibration
characteristics and sample orientation resulted in some unexpected errors in the fi-
nal, combined orientation maps. The result is a significant reduction in orientation
resolution, which is indicated by the broadening of the 60° peak in Anneal 2.
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Figure 5.4: Grain size distribution, plotted as normalized radius, %, where Req = (%) 3

is the spherical equivalent radius. Annealing progresses from (a) to (d).
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Figure 5.5: Single parameter misorientation distribution for four (initial to third anneal
state in the order of (a) - (d)) out of six anneal states measured. The discrepancy in the
second anneal state is at this time believed to be an artifact due to errors in the experimental
parameters, pending results from the final error analysis.
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Five parameter Grain Boundary Character Distribution

While the grain-to-grain misorientation distribution remains stable during the mi-
crostructure evolution, the same cannot be said regarding its five-parameter counter-
part (grain boundary character distribution, or GBCD). The GBCD is measured from
the combination of reconstructed surface mesh and the volumetric orientation maps.
On the mesoscopic scale, grain boundaries can be described by the combination of
misorientation and boundary normal. Given two grains a and b with orientations
ga and g, the misorientation is given by Ag = g, 'g,. Because this misorientation is
also a rotation operator, it can be quantified by a set of Euler angles, quaternions,
or Rodriguez vectors. In any of these cases, three independent parameters are re-
quired. An additional two parameters are needed to define the local surface normal,
which, along with the misorientation, results in a five parameter representation of
grain boundaries. The GBCD is the area weighted distribution of different types of
grain boundaries characterized by these five parameters.

By constructing a histogram in the five-parameter grain boundary character space
the evolution of specific boundary type populations can be observed. It has been sug-
gested that evolution of GBCD is intimately related to the boundary energy [27, 7].
For example, the so-called Y3 coherent twin boundaries, or grain boundaries with
misorientations of Ag = R(60°, [111]) with normals that point along the [111] direc-
tion, are found to have significantly lower energy than other high angle boundaries
[86, 79, 80, 95]. Therefore, 33 coherent twin boundaries are expected to increase in
population during annealing process, as the total energy of the system is expected
to be lowered. As expected, by plotting the evolution of the distributions for grain
boundary normals of all boundaries with misorientation of Ag = R(60°, [111]) (Fig.
5.6(a)-(c)), we observe an increase in population for the first two anneal states. From
the geometrical perspective, Fig. 5.6 also shows the evolution of grain boundary
normals. Alignment of the boundary normal with the rotation axis (shown as sharp-
ening of the [111] peak) in the case of 33 is also seen as an indicator of boundary
smoothing, suggesting curvature minimization during the annealing. Similar behav-
iors are observed in the evolution of two other boundary populations (X5 and 311,
Fig. 5.6(d)-(f), and (g)-(i)), and a more exhaustive search for features in the GBCD
space is currently underway.

5.4.2 Direct Observations of Grain Geometry Evolution
Grain Boundary Movement

From Table 5.1, we expect subtle boundary motions to dominate the statistics: be-
tween the initial and first anneal states (which are analyzed here), the average grain
radius changes from 29um to 32um. This is consistent with our intention to achieve
“differential” annealing that would allow comparison to boundary motion predictions
based on curvature. It is shown here that our reconstructions and analysis procedures
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Figure 5.6: Sub-spaces of the five parameter grain boundary character distribution selected
by the misorientation. Annealing proceeds from left to right. Each figure is a plot of the
boundary normal distribution, represented in the stereographic projection form and plotted
as multiples of random. (a)-(c) ¥3, (60°,[111]) Note the strengthening of the [111] peak
by a factor of 100 across the annealing process, which indicates the alignment of boundary
normals with the rotation axis. (d)-(f) ¥5, (36.87°,[100]) and (g)-(i) ¥11, (50.49°, [110])
Signals from both Y5 and %11 are much weaker that those seen in 3. One reason is the
significantly lower statistics (count of 28007 boundary patches for ¥.3 in contrast to 1185
and 804 for ¥.5 and X.11). Secondly, the energy of the X3 coherent twin corresponds to a
much deeper minimum than X5 and ¥11.
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Figure 5.7: Distribution of apparent grain boundary motion between initial and first anneal

state.

The horizontal axis is the number of microns shifted, and the vertical axis is the

faction of boundary patches. The total number of boundary patches is also displayed to
exhibit the difference in the population sizes. A Gaussian (red) is fitted to the distributions
in an attempt to isolate random components of the shifts from potential signal. The raw
data is shown in blue, and the Gaussian subtracted signal is shown in black.
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Figure 5.8: An example of the global plot of the grain boundary motion distribution seen
in Fig. 5.7 for ¥3 (a) and ¥25a (b). A small number (less than 10) of boundary patches
is found to have noticeably large motion (upwards of 20 um). However, these patches are
more prone to misidentification across the two anneal states.
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Figure 5.9: Apparent grain boundary movement, classified by misorientation type, plotted
as projections of the boundary normal weighted by multiples of the mean boundary shifted.
For each plot, the mean boundary shift is classified by the boundary normals and binned
according to the two angles, (¢,1), which represent the normal in the upper hemisphere.
The average shift in each bin is compared with the shift of all boundaries.

are sensitive to the relevant length scales but that we have not yet achieved clear res-
olution of such small motions. It appears that the current data sets may well be able
to resolve these by using finer scale reconstruction meshes and, of course, applying the
current methodology to later anneal states should certainly resolve larger boundary
motions.

Boundary motions are extracted using reconstructed surface meshes. Surface and
volumetric meshes for two of the five anneal states are aligned visually and boundary
patches are associated across different anneal states. Specifically, grain boundary
motion for the anneal states n and n+1 is estimated by the distance between patches
of the two reconstructed surface meshes. Given a vertex v(p) in state n, its motion
is estimated by dp’ = p'— p', where p’ is the point where the closest vertex to v is
located in state n + 1. The distance shifted for a given surface patch A(vy, vq, v3) is
estimated as the average distance shifted amongst its vertices. A final alignment is
done by computing the average boundary patch translation vector and subtracting
this from all annealed state mesh node positions. While for any specific grain, the
boundary shift measured may be directionally biased due to its physical motion and
the voxel based surface reconstruction®, motions in the sample-aggregate distribution
are expected to be random. This is justified by the fact that large numbers of grains
(2142) of different shapes are measured, thus allowing for reliable averaging.

In spite of the above resolution discussion, it is clear from, for example, Fig. 5.8
that there is boundary movement. This implies that small numbers of boundary
patches dominate the motion statistics. This is further illustrated by the evolution
of the grain seen in Fig. 5.3(b) where it is seen that only a small subset of the
boundaries move significantly. A comparison of the later anneal states reveal clear

3Surface reconstruction errors are geometry dependent.
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boundary motions. Note for example the change Fig. 5.6(a) to Fig. 5.6(b) compared
widt Fig. 5.6(b) to Fig. 5.6(c).

MacPherson Srolovitz Comparison

To directly compare our experiment with the MacPherson-Srolovitz relations, grains
were tracked across five out of six of the measured states. Very strict selection criteria
led to only 16 of the total initial 2142 grains being selected. The criteria for this
selection are as follows:

e Each grain must be internal through the annealing process.
e The volume change between successive anneals must be less than 100%

e Given grains g, and g, from states n and n + 1, the misorientations between
these two grains must be below some threshold value, which is set to 5°.

e [t must be possible to track forward and backwards through the five anneals.

These criteria were used to ensure that no grains are misidentified across the different
states, which turns out to be a relatively common error. Because most grains do not
grow isotropically, the center of mass tends to shift as the microstructure evolves.
These effect coupled with the occurrence of annealing twins, turns out to be make
grain tracking surprisingly difficult.

Mean width for a triangular mesh approximation of a closed surface S is defined
by

L(D) = % Z ey (5.9)

where e; is the length of the edge shared by the two facets in the mesh [70]. The
turning angle, ; is positive when the surface is locally convex and negative otherwise.
To obtain the turning angle from a triangular surface mesh, one uses

a; = cos” H(ni, - 1) (5.10)

where n,,7;, are the normals of the two facets sharing the edge e;. Note that no
mention of topological properties of the region enclosed by the S is made. Specifically,
the region is not guaranteed to be simply connected, which tends to occur when the
surface represents a grain with an in-growing twin (Fig. 5.3).

From Fig. 5.4.2, we can see that little or no correlation can be found between
volume changes and the linear measure Eq. (5.8) for the 16 grains analyzed. This
is not particularly surprising, as it is well known that nickel has anisotropic grain
boundary mobilities and energies that range across four orders of magnitude [30].
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Figure 5.10: A test of the MacPherson-Srolovitz relationship dV = =2t M~(L(D) — % e)
for the 16 grains tracked across four volumes. Aside from globally not following MacPherson-
Srolovitz’s relationship, deviation for each of the grain is markedly different from what is

expected for isotropic grain growth.
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Figure 5.11: Evolution of topological class and volume for 16 grains tracked across four

of the six anneal states. It is shown that the change of grain volume is correlated with the
change in topological classes.

5.4.3 Direct Observations of Grain Topology Evolution

Significant interest has been expressed in the topological evolution of 3D microstruc-
tures during grain coarsening [341]. Specifically, while topological evolution of mi-
crostructures in 2D is completely determined by the Von Neumann relation Eq. (5.7),
grain coarsening in 3D is significantly more complicated Eq. (5.8). As expected, this
is yet another quantity that is difficult to measure using 2D surface techniques. By
using the extracted geometry from the volumetric orientation maps produced by
HEDM, we are able to track the topological evolution of the same 16 grains examined
above. As shown in Fig. 5.11, the topological evolution is correlated with the volume
changes for each of the grains. While this result itself is not entirely surprising, it
serves to improve one’s confidence in the MacPherson-Srolovitz comparison, which
appears to be completely random (Fig. 5.4.2). It should be noted that while volume
changes between successive states is incremental, the topological evolution seems to
vary significantly, indicating multiple critical events, or disappearance of grains in
the microstructure. This is further attributed to the fact that a small number of
boundaries and grains are responsible for a large portion of the dynamics.
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5.5 Discussion

We have seen in this chapter the application of HEDM to non-destructive grain growth
experiments, and a set of initial results are shown to both validate and demonstrate
Forward Modeling reconstruction’s capabilities. Grain boundary motions are ana-
lyzed, and a majority of boundaries were found to have moved minimally. While this
spells inconclusive results that in qualitative comparisons with simulation and theo-
retical predictions are not possible, the results highlight the consistency and precision
of the HEDM method. The grain boundary motion distribution peaking at ~ 2.5um
indicates that the majority of the near idle boundaries were repeatedly measured to
a great precision. In fact, this measurement is currently limited by sample discretiza-
tion resolution, i.e., the boundary noise is dominated by the voxel size. This problem
will be addressed in on-going analysis.

As seen in this chapter, the usual statistics, such as grain-to-grain misorientation
distribution can easily be measured by HEDM, with the advantage of the capability
to track the same populations of grains through the experiment. This is particularly
useful in the case of GBCD observations. Other work has found that population
of grain boundaries are inversely related with grain boundary energies [94, 7]. In
principle, energy measurements could be done with the current HEDM volumes. In
addition, higher resolution volumetric and surface meshes will produce much more
reliable measurements of mean width and local boundary curvatures. Combined with
calculations of grain boundary energy from triple lines, and mobility measurements
from boundary shifts, we can directly compare our results with some of the recent

(

advances in simulation and theory [70, 79, 80].

5.6 Future Work

Up to this point, the majority of the alignment and grain tracking work in the liter-
ature has been mostly manually. This was not a particular concern in past measure-
ments [55, 88] where only a few grains are tracked, but it becomes nearly impossible
for our sample with well over 1000 grains throughout the six volumes. Current ob-
stacles in automated grain tracking are mostly due to the anisotropic nature of grain
growth in Ni. Oftentimes one side of a grain would be growing while the other side
shrinks. Consequently, the resulting orientation map would seem as if the grain has
shifted. On-going improvement in grain tracking will certainly help alleviate most of
these problems.

Significant improvement in triple line reconstruction will also be needed to obtain
grain boundary energy estimates to fully test the anisotropic nature of grain growth.
Coupled with improvement in sample alignment, grain boundary mobilities could be
estimated. This will be combined with local curvature measurement on the grain
boundary network mesh. A lot of this work is partially completed at the time of this
writing, pending cross checks and simulation validation.
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To fully take advantage of the six volumes of data we have, direct comparison
with simulated models would be needed. For example, comparison with Potts and
phase field models would help elucidate the nature of anisotropy in the boundary
movement. Work by Hefferan and company [39] is in the process of producing a com-
parison of grain boundary mobility with results from atomistic simulations [79, 80].
Direct validation of this type is currently unavailable, as non-destructive volumet-
ric orientation maps of bulk materials have been elusive until the recent advances
of X-ray techniques. Finally, some small improvement of the current reconstruction
software is necessary to achieve the optimal resolution of our orientation maps, which
will reduce some of the aliasing effects of extracted grain boundaries.
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Chapter 6

In Situ Observation of Spatially
Resolved Orientation Evolution in
the Deformation of High Purity
Copper Wire

6.1 Preliminaries

The experiment described in this chapter was preceded by two prototype develop-
ment runs at Argonne National Laboratory, which led to improvements in various
aspects of the apparatus, calibration methods, data acquisition methods, and sample
preparation. Useful feedback were obtained from the data sets measured in these pro-
totype experiments, which served to improve validation the application of Forward
Modeling reconstruction method to deformed microstructures. To limit the scope of
this chapter, those results have been omitted.

6.2 Introduction

It is well known that anisotropies in material properties play a prominent role in the
evolution of microstructures during deformation [53]. In particular relevance to our
experiment, elastic moduli for most materials are directionally dependent; hence for
a single crystal, the mode of deformation differs as stress is applied from different di-
rections. In the case of polycrystalline materials, this anisotropy manifests itself as an
intimate connection between the crystallographic orientation and strain state of each
grain. Specifically, grains with different orientations respond to external mechani-
cal stimuli differently; consequently, the stress states inside a material could vary
significantly depending on local orientations. On the other hand, crystallographic
orientation for each grain changes as the bulk sample undergoes plastic deformation.
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This is commonly observed as lattice rotation, low angle boundary formation, and
increase of orientational mosaicity across a grain. In general, the ability to produce
spatially resolved orientation maps proves to be an invaluable tool in studying de-
formed materials.

Until recently, spatially resolved orientation measurements have been considered
all but impossible. With the advent of electron backscattering diffraction microscopy
(EBSD), orientation maps become much more readily available. However, EBSD is
limited to surface measurements, and therefore it is particularly difficult to apply
EBSD to the study of deformation. Deformation is an inherently three-dimensional
problem, as quantities such as dislocation densities are measured through 3D spatial
derivatives of the orientation field representing the microstructure. Many attempts
were made to infer and extract three-dimensional information from 2D orientation
maps [114]. However, strain measurements from EBSD tend not to be reliable, partly
due to relaxation of the free surface [92, 108](CITE: Field). Recent advances in syn-
chrotron X-ray based techniques, such as DAXM [55], 3DXRD [88, 90], and near- and
far-field HEDM [116, 83, 71, 62] have led to the possibility of measuring orientation
and strain states inside a bulk polycrystalline sample. Of these techniques, near-
field HEDM is best suited to measure spatially resolved three-dimensional orientation
maps for deformed bulk materials. In contrast to the far-field HEMD [62, 71, 83],
near-field HEDM has a much higher spatial resolution at the cost of lower angular
resolution (factor of 10-100). Analysis technique of 3DXRD and Diffraction Contrast
Tomography were not designed to handle deformed materials, and DAXM has limited
penetration depth and imaging volume size. Consequently, neither of these techniques
are suitable for measurement of deformed bulk samples.

In this chapter, application of near-field HEDM to measure in situ damage ac-
cumulation of high purity copper wire under uniaxial strain will be discussed. The
resulting spatially resolved lattice rotation map is shown. We start by describing the
experimental method, imaging setup, and sample preparation. A total of five states
(one initial and four deformed) of the copper gauge section were measured. The effect
of deformation to the diffraction signal was studied; furthermore, spatially resolved
volumetric orientation maps were reconstructed and compared across three of the
five states using the Forward Modeling Method [116]. Lattice rotation and low angle
boundary formation were observed along with formations of sub-grain structures. Be-
cause of the novel nature of this experiment, in that a macroscopic sample is deformed
and imaged in situ until ductile failure, several concerns are raised regarding the re-
construction reliabilities of the forward modeling method. To address these concerns,
resolution, convergence, and systematic error studies are performed to validate the
correctness and stability of the reconstructed orientation maps. Transmission X-ray
tomography on the sample as is reported as cross check of the bulk sample geometry
evolution.
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6.3 Methods

6.3.1 Adaptation of Near-field HEDM for in situ Study of
Deformed States
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Figure 6.1: (a) Side view schematic of the experiment, with the blue arrow indicating the
diffracted X-ray beam. The diffracted peaks are measured at distances L1 and Lo. The
dotted green line indicates the location of the copper wire in tension, and the red region
indicates the gauge section being imaged. (b) An expanded side view of the sample holder
in (a). The 1mm wire can be seen here to be fixed by set screws (red section at the top and
bottom). The sample housing around the wire is made out of Macor, an X-ray transparent
ceramic. (c) A photograph of the actual sample after electropolishing (the image was cleaned
up to remove some of the residual lacquer). The narrowest section of the necked wire is
roughly 250pum in diameter. (d) The load cell reading plotted as a function of displacement.
Green dots indicate states where HEDM imaging was performed.
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Three-dimensional, spatially resolved orientation maps of in situ deformed ma-
terials have never been obtained from a bulk material, and there are good reasons
why this is the case. Leaving aside the immediate and potentially intractable prob-
lem of orientation reconstruction with weak, overlapping diffraction signals from a
deformed sample, there is still the concern of sample geometry. In both HEDM and
3DXRD, the sample is required to rotate about a fixed axis. Simultaneously, the
“load frame” must be compliant with experimental geometry, i.e., it must be small
(radius r < 5mm), and cylindrically symmetric. Furthermore, the material for the
load frame used must be both stiff (high elastic modulus) and X-ray transparent.
Many of these problems were solved using a specially designed load frame and Macor
sample housing, Fig. 6.1(b), which will be explained in more detail in the next two
sections.

Since diffraction peaks from a deformed structure tend to broaden due to effects
such as subgrain formation, lattice rotation, and dislocation accumulation [126, 17,
89], significant care must be taken in the experimental design. Specifically, peak
broadening in the n direction leads to intensity being spread out across a much larger
area on the detector, increasing from the typical width of én < 1° in the undeformed
case to 0n ~ 10° in strained materials; this broadening also reduces the signal to noise
ratio. To further complicate matters, higher order diffraction peaks tend to be the
most noise sensitive, as they tend to have lower intensity. This could normally be
compensated by increasing integration time, but constant rate backgrounds (flores-
cences and stray scattering) are always present and are relatively strong in our case
due to the strain apparatus (see below). Specifically to our in situ experiment, tex-
ture development due to the applied load resulted in orientations that diffract more
heavily along the low 7 direction. Since the integrated intensity for a diffraction peak
scales with

£

—_—— 6.1
> | sinn| sin 260’ (6.1)

Isim

a region of disproportionately high intensity is developed in the low 26 high 7 area,
which saturates the dynamic range of the CCD detector. The best we can do is a
judicious choice of integration time.

While validation and characterization of HEDM and the Forward Modeling recon-
struction method is sufficiently addressed in the case of well-ordered polycrystalline
samples (chapter 3, 4), the same cannot be said about imaging of deformed materials.
Specifically, little study has been done on the effect of peak broadening in both the
7 and w directions on orientation reconstructions in the HEDM and 3DXRD geome-
try. A validation and sensitivity study performed to fully characterize the effects is
discussed in Sec. 6.4.
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Figure 6.2: Images corresponding to the same 1° integration interval in states S0, S1, S2,
and S3. These are background subtracted images for a layer at a sample location equivalent
to z16, the 16th layer of state S1. Since the sample is moved and deformed noticeably
during strain steps, layers measured do not have a direct correspondence between different
states. Best match layers are shown here instead. Significant deformation of the sample
can be observed as peak broadening in the n direction. Note that we do not expect any
observation of elastic strain since it is on the order of 10~* for copper, which is below our
resolution limit.
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6.3.2 Apparatus and Sample

The tensile sample was fashioned from a piece of copper wire and measured using near-
field HEDM while in uniaxial tension. The specimen was prepared from commercially
available, 1mm diameter 99.9999% purity Cu wire from Alfa Aesar. To focus stress in
a small region where the measurement would be done, a narrowed region was created
by electropolishing a 1mm long section at the center down to a 500um diameter (Fig.
6.1(c)). An acetone soluble lacquer (Midas 335-009) was used to protect the rest
of the wire. Then a 300um long section within the gauge was necked further to an
~ 250pum diameter. The polishing was done at 20V in a 30% nitric acid/methanol
solution kept at —50 to —30°C'. The use of a two-step polishing process is necessary
to reduce stress concentration around sharp edges and corners outside of the imaging
region.

The sample holder (Fig. 6.1(b)) forms part of the load frame (Fig. 6.1(a)) and
was constructed using the ceramic Macor, which is high energy X-ray transparent but
produces a diffuse background. A load cell (Transducer Techniques, GSO-1k, 0.1%
sensitivity) was used to provide direct readouts of the force on the wire. The load
frame is driven by an elevation stage (Micos ES-50), with a maximum load of 5N,
minimum step size of 1um, and minimum traveling velocity of 1um/s.

The sample was mounted on using set screws, penetrating into the surface of
the 1mm diameter regions. After mounting in the Macor cylinder, the sample was
annealed at 400°C' for 30 minutes to allow for recrystallization and recovery from any
damage introduced during processing.

6.3.3 Volume Measurement Procedures

Five different strain states were measured with HEDM with macroscopic true strain
of 0%, 0%, 6.2%, 15.3%, and 26.9% (henceforth referenced as S0, S1, S2, S3, and
S4). These strains values were determined by the length of the gauge section deduced
by the location of fiducial marks on transmission X-ray projection images. The two
fiducial marks are the sharp corners at the transition between the 500um and 250um
necks (Fig. 6.1(c)). The error associated with location of the fiducial marks is deter-
mined by the sharpness of the X-ray images, which is estimated to be +15um. Note
that the macroscopic strain between SO and S1 is undetectable by this estimation
scheme. Diffraction images and the load curve also imply that this first “load step”
simply brought the wire to a taught state.

The load curve, the force reading from the load cell plotted against macroscopic
displacement, is shown in Fig. 6.1(d). The stress state of the sample is not uniform,
and therefore not shown in the plot. The use of simulation would be needed to esti-
mate the stress state of the sample with consideration of the non-uniform geometry.
Orientation map of the gauge section indicate that the sample consists of roughly ten
grains per cross section. As suggested from the literature [69, 28, 35, 120], the de-
formation behavior in this sample is expected deviate significantly from a continuum
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model.

To facilitate alignment and experimental parameter determination, orientation
maps were measured at the position of the two fiducial marks using three L-distances.
Diffraction signals from the fiducial mark layers remain sharp throughout the experi-
ment, as both layers are well outside of the narrowest and most highly deformed part
of the sample. Detector to rotation axis distances (L, Lo, L3) were set based on the
physical limitations of the Macor sample housing and the location of the direct beam
stop (Fig. 6.1(a)) To ensure the ability to image a significant number (> 100) of the
diffraction peaks, L; was set to 6.40mm, Ly = L1 + 2mm. and L, = L, + 3mm.

The measurement volumes for states SO, S1, and S2 are 200m in height, centered
on the necked region. A larger volume of 252um height was imaged for state S3, to
account for the elongated sample. Due to the large deformation seen in most of
the sample, only a small region near the fiducial mark was imaged in the state S4.
To save time, these measurements were made with two L-distances, with L; and Lo
given above. The length of measurement time (approximately 18 hours per volume)
requires that the deformation be performed in “stop-action.” Load was applied in situ
and the sample was allowed to relax (approximately 30-60 minutes) before imaging
began. The sample was held at constant displacement for up to 24 hours, and the
load reading was found to have minimal drift. This indicates that effects of motor
movement associated with the HEDM setup is minimal. Load was applied to the
sample by discrete displacement steps with minimum step size and velocity of the
Micos ES-50 elevator stage. During loading, steps were taken once every few seconds,
thus allowing the load frame to stabilize from the motor motions.

6.3.4 Diffraction Signals

The deformation of the copper specimen can be seen from both the load cell reading
(Fig. 6.1(d)) and the tomographic reconstructions, Fig. 6.3. By inspection of the
tomographic reconstruction, the region with the maximum deformation is located in
the center of the electropolished neck. This is further substantiated by the diffrac-
tion patterns shown in Fig. 6.2. Reconstruction quality suffers as we approach the
narrowest parts of the sample.

We have specifically chosen layer 16 from state S1 (L16S1) as our reference point
and as the subject for development of detailed analysis methods. Layers correspond-
ing to L16S1 in states SO and S2 are used as a basis for comparison. Layer 16 was
specifically chosen because it resides in a region that is noticeably deformed, yet ori-
entation reconstruction is still possible. Moreover, since sample alignment between
strain states is not perfect, having multiple neighboring layers lets us optimize the
state-to-state alignment.
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(C)‘ S3

Figure 6.3: Tomographic reconstruction of the four deformed states.
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6.4 Analysis

Orientation reconstruction requires fitting of diffraction peaks, but it is not cleared a
priori that peak-broadening and splitting produced by a deformed sample is tracked
by the Forward Modeling algorithm. Specifically, we would need to assert that broad-
ened peaks do not lead to accidental overlaps, which are seen as orientation candidates
by the reconstruction. This can be accomplished by tracking and comparing exper-
imental and simulated diffraction peaks across multiple integration intervals. This
is in contrast to well-ordered materials, where peak fitting seen in one integration
interval is sufficient to substantiate that the diffracted peaks are correctly fitted. To
further ensure the reliability of the reconstructed orientations with respect to exper-
imental uncertainties, a sensitivity study was performed on the reference layer (z16).
By varying the detector origin and reconstruction resolution, we have found the re-
constructed orientations to be stable under significant systematic parameter variation
(i.e, %—f ~ 3%, constrasted with = 0.3% in the well-ordered case). The details of
these studies are presented in the next two sections.

6.4.1 Forward Modeling Validation

Because splitting and broadening of diffraction peaks are not explicitly input into the
diffraction model, it is not entirely clear that the measured diffraction spots would
be tracked by the simulation. We examine this peak tracking problem by focusing
on a subregion of the detector where an experimental diffraction peak is split and
broadened across 20 integration intervals (only nine are shown in Fig. 6.4). Specifi-
cally, diffraction spots simulated from the reconstructed microstructure tend to stay
closely to, if not directly overlap the experimental peak. It should be noted here that
the detector geometry specifying the entire HEDM experiment is bootstrapped at the
fiducial layer using the procedures outlined in Chapter 2 and 3. These experimental
geometry parameters may therefore contain a certain amount of systematic error, as
the detector or sample could potentially drift throughout the experiment.

Simulated intensities plotted in gray scale can be found in Fig. 6.5, which contains
some qualitative similarity with the experimentally measured spots. As the diffrac-
tion peaks are extended along the 7 direction, integrated intensity along the vertical
or horizontal direction could provide additional insight in how well the experimental
diffraction spots are tracked by the reconstruction. Normalized integrated intensities
along vertical and horizontal directions are compared between the experimental and
simulated diffraction spots in the region shown in Fig. 6.4 in Fig. 6.6(c) and Fig.
6.6(d). The simulated pixel intensity is the sum of intensities produced by each voxel
as described by Eq. (6.1). The stacks of plots show a progression of integrated inten-
sity across the vertical and horizontal direction in successive w integration intervals.
It should be noted here that due to the projection geometry of HEDM (REF Chapter
2 and 3), sample spatial resolution along the direction of the X-ray beam is signifi-
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Figure 6.4: (a) - (i) Observed evolution of a diffraction peak as the sample rotates about
the z-axis. Experimental diffracted intensity is shown in grayscale, while simulated pixels
are plotted as green dots. The simulation overlap is typically concentrated in the higher
intensity area of the experimental peak, in spite of the fact that no explicit intensity fitting
is used in this reconstruction. (See Chapter 3).
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Figure 6.5: Diffraction spots generated from forward modeling reconstruction, with intensity
approximated by Eq. (6.1). Each image (a) - (i) shows a diffraction peak in one out of nine
consecutive integration intervals. It can be seen that the peak splitting in the simulated
result is similar to that in the measured images.
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cantly compromised. Consequently, the peak resolution along the vertical direction is
typically worse than the horizontal direction. This provides a basis for the generally
smoother integrated peak intensities along the vertical direction.

As expected from inspection of the 2D detector regions in Fig. 6.4, splitting,
broadening, and movement of diffracted peaks are tracked in the integrated intensi-
ties. It should be emphasized here that the “intensity model” used in the orientation
reconstruction is in fact binary. In other words, the intensities used in the recon-
struction are thresholded, and therefore they resemble more closely the figures 6.6(a)
and 6.6(b). Overlap between simulated versus experimental lit pixels then completely
determines the “goodness-of-fit” for a certain peak (REF Chapter 3). The fact that
simulated intensity tracks the experimental intensity so well indicates that intensity
variations in each diffraction peak are mostly due to geometrical configurations. In
other words, Bragg scattering is sufficient to describe the measured diffraction. This
is compatible with the fact that elastic deformation in copper is below the detection
resolution of the current HEDM setup. Orientation mosaic resulting from plastic de-
formation seems to be resolved accurately by the Forward Modeling method, thanks
in part to its insensitivity to diffraction signal overlap.

6.4.2 Stability of Forward Modeling Reconstruction

The reliability of the reconstructed orientations is determined by their stability, i.e,
small perturbations of reconstruction parameters lead to small changes in the recon-
structed orientations. Specifically, the reconstruction is expected to converge rea-
sonably smoothly with increasing spatial and orientation resolution (i.e., changes in
resolution should not lead to wildly different reconstructed orientations). While errors
in sample geometry are expected to induce changes in grain boundary locations, there
should be minimal effect on the global reconstructed orientations. This assumption
is justified by the fact that orientation distributions can be measured without spatial
sensitivity, as in the case of traditional X-ray measurements. Therefore, Forward
Modeling simply resolves the orientation spatially. Sample geometry errors translate
directly to sample location uncertainties, which should not affect the set of possi-
ble reconstructed orientations. Unfortunately, a theoretical framework to study the
stability of the Forward Modeling algorithm is not available, and a sensitivity study
must be performed on each data set. We have selected four areas of focus for our
sensitivity study:

1. Detector-to-rotation axis distances (L-distance)
2. Diffraction Origin
3. Orientation Resolution

4. Sample Space Resolution
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Figure 6.6: Vertical and horizontal intensity profiles from Fig. 6.4 and Fig 6.5. The
stacking of profiles vertically indicates successive integration intervals. In all four figures,
red indicates simulated intensity profile, and black indicates experimental results. (a), (b)
Binarized integrated intensity profiles. (c), (d) Integrated intensity using Eq. (6.1) to
estimate intensity contributions from each diffracted peak. It is shown in all four cases that
diffraction spots and peak splitting are tracked across multiple integration intervals by the
Forward Modeling reconstruction method.
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It should be noted here that the experimental parameters are typically coupled in
a non-trivial way as pointed out in Chapter 2. To account for parameter coupling,
constrained optimizations of experimental parameters are performed. In the case of L-
distance variations, all experimental parameters were allowed to optimize freely while
the L-distance is constrained to below motor movement precision. This procedure is
performed for the parameter studies. To be consistent with the rest of the chapter, all
sensitivity studies are performed using the reference layer, 216 of state S1. To better
quantify local orientation variations, a measure, the kernel averaged misorientation,
is introduced.

Kernel Averaged Misorientation

Because local orientation variation tends to be small and difficult to see from the
orientation maps, characterization of noise is done using a spatial orientation varia-
tion known as kernal averaged misorientation (KAM). Two-dimensional KAM maps
show both geometrical features (structure and location) and a relative magnitude of
deviation. Lines (in 2D) formed by orientation variations are indicative of low angle
boundaries. The location and magnitude of KAM features are important for studying
plastic deformation in that it serves to quantify deformation accumulation [72, 114].
Geometrical features extracted from KAM maps, such as low angle grain boundaries
(LAGBs), delineate regions of subgrain formation, which serves as a path to direct
comparison with deformation models [119, 41, 58]. Here, the KAM maps are used to
characterize reconstruction sensitivity to experimental geometry.
In our case, kernel averaged misorientation, K (Z) is defined to be

where ¢(Z) is the orientation at location &, d(q,q’) is misorientation defined in the
usual way, and the summation is performed over the N-nearest neighbor points of 7.
The weighting factor, w(Z’Z), is defined as

(6.3)

{— if d(g(#), o(7")) < 6,
w(#'7) = ¢ 77 .
0 otherwise.

The resolution of the kernel averaged misorientation is controlled by selecting the
number of nearest neighbors to be consistent with the resolving power of the setup.
In our case, this is limited by 1.47um pixel size of the detector system. It should be
noted that the traditional definition of KAM in the EBSD literature does the Flfﬂ
weighting factor. The point of using a weighting factor is to produce a metric that
can be used across voxels of different resolutions.
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Figure 6.7: (a), (b) Orientation reconstruction for the same layer at two different optimized
positions (L1 = 6.3732 and Ly = 6.3948). Orientations are represented by a mapping of
the Rodriguez vector to RGB (red, green blue) colors. We notice that while small features
(i.e., grain in green at the intersection of four other grains) and boundary locations differ
across the two maps, the two reconstructions are largely similar. (c), (d): Comparison of
local misorientation properties for the corresponding orientation maps. Notice again that
qualitative features are similar.
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Variations in L-distance

Reduction in measurement spatial sensitivity is expected due to the broader peaks
in deformed samples. Two reconstructed orientation maps are produced from L-
distances that are approximately 20um apart. Note that the constrained local op-
timization at L = 6.3948mm shifted the beam origin by approximately a pixel, or
1.47pm in the horizontal direction. This is well within the expected error in the op-
timization. Deviation of 20um corresponds to a factor of 10 larger than the typical
errors seen in measurements of well ordered materials; consequently, noticeable but
minute changes in the grain boundary are expected and observed in Fig. 6.7 (a)
and Fig. 6.7 (b). Meanwhile, orientation reconstruction errors are not typical for
AL = 20um in well-ordered samples. Overall, very little difference is seen in Fig. 6.7
(a) and Fig. 6.7 (b).

Kernel averaged misorientation maps are shown in Fig. 6.7 using 6; = 5°. The use
of relatively low threshold is to focus the feature extraction on low angle boundaries.
Because the KAM map gray scale is deliberately saturated at 2°, we can see the
consistency in the locations of well-ordered regions (low KAM). Observe that some of
the low angle boundaries extend through multiple grains; such structures are referred
to as shear bands [53, 38].

Large scale features shown in both the orientation and kernel averaged misorien-
tation map were found to remain observable as the L-distance is varied (figures 6.7).
However, the spatial location of individual features tend to shift even for high angle
grain boundaries. Thus, orientations in the sample are recovered, as evidenced by the
orientation maps (Fig. 6.7), but the assignment of these orientations in the sample
space vary noticeably when the L—distances changes. In other words, variations in
L-distances directly alters sharp feature resolution of the reconstructed orientation
map. This is not entirely surprising, as deviation of L-distances directly translates
into spatial errors in the sample.

Variations in Diffraction Origin

In the HEDM setup, the planar cross section of the sample illuminated by the mi-
crofocused beam is responsible for the diffraction signal observed in the detector.
Consequently, the diffraction origin is parameterized by the location (z) of the illu-
minated cross section. With a beam height of 6um (FWHM of a Gaussian profile),
the diffraction origin is not infinitely sharp; the measured diffraction signals comes
from a region z € [z9 — 0z, 29 + dz]. This signal is “deconvolved” by the infinitely
sharp origin at z = 0 used in the reconstruction. Consequently, variations in the
scattering origin should lead to small changes in the reconstructed microstructure.
This change is expected to be small due to two reasons. First, in the case of materials
with large grain size, microstructures do change much over the length scale of a few
microns. Secondly, small, sharply contrasting features of sub-micron size tend not to
generate a large amount of diffraction signal, as diffracted intensity is proportional to
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Figure 6.8: Kernel averaged misorientation computed for reconstructions with the beam
origin at different detector pixel k locations (= 3um difference in the z direction). This is
equivalent to vertical sample position. Note that both reconstructions are done at Q,qz =

12471
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the volume. A test result can be seen by comparing the Fig. 6.8(a) and Fig. 6.8(b),
where only very subtle differences can be seen between the two KAM maps.

Variations in Q).
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Figure 6.9: Kernel averaged misorientation computed for reconstructions at different Qnqz
and diffraction origin. (a) Qumaz = 10471, (b) Qmaz = 1241,

Major differences can be seen in the KAM maps between the reconstruction
using Qmee = 10A~" and 124~ (Fig. 6.9), but their corresponding orientation
maps remain very similar (not shown). For copper, with a lattice constant of a =
3.61A4, qipo = 27” = 1.74A71. Thus Quas = 1047 corresponds to VA2 + k2 + 12 =
5.74, whereas at Qmae = 1247, VA2 + k2 + 12 = 6.89. The key feature seen here
is the appearance of regions with large local orientation variations. This suggests
that the orientations in the higher @),,., reconstruction may have converged. Because
the number of peaks fitted increased between Que. = 104! and 124, significant
reduction in orientation noise is expected. Analysis similar to that seen in Sec. 6.4.1
suggests that simulated higher order peaks are indeed consistent with the experiment.
It should be noted that the maximum number of peaks observed is highly dependent
on the material, as scattered intensity tends to drop off sharply as a function of Q.
The difference in scattering intensity between the [100] and [800] peak could easily be
more than the dynamic range of the detector. Since reconstruction time is propor-
tional to the number of peaks fitted per voxel, judicious choice of @4, i necessary
to optimize computation time and reconstruction accuracy. In present case, we have
found Q4 = 12471 to be optimal.
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Figure 6.10: Aliasing effects are reduced as sampling rate is increased. As spatial resolution
is increased from (a) to (c), sharpening of boundaries is observed. More importantly, the
KAM features seem to be converging with the increase of spatial resolution, with no large
(> 2.4p1m) feature in (b) that is missing in (a). These reconstructions all use Qqz = 12471,

135



6.5. RESULTS

Variations in spatial resolution.

A systematic study was performed on the reconstruction as a function of sample space
element, or voxel, size. In general, the minimum resolution of reconstructed features
is limited by voxel size. The practical lower bound on this size is typically considered
to be the effective pixel size on the detector. However, as pointed out in the last
section, sample space resolution is also limited by @,,q., S0 optimization of these two
parameters is coupled. With Qe = 12471, we see in Fig. 6.10 (a) and (b) that
reducing the voxel size from 2.4pm to 1.2um (with detector pixels of 1.47um) does
indeed improve definition of features.

Because in any kind of imaging system, pixelation distorts reconstructed features,
a so-called “super-resolution” study at half the detector pixel size was performed, as
seen in Fig. 6.10(c). Note that each diffraction signal is a projection of a region of the
microstructure onto the detector. Since each region generates 100 to 150 such peaks,
the measurement samples each region this many times. This is analogous to super-
sampling of a spatially continuous intensity signal. Because of the high sampling rate,
one can expect features to be resolved to better than the detector resolution. This
effect is rather clearly seen in comparing Fig. 6.10(a) to Fig. 6.10(c). The fact that
geometrical features converge with increasing resolution is important, as it indicates
the reconstruction algorithm is stable (i.e. orientations do not vary wildly around the
neighborhood of the solution).

6.5 Results

By comparing the reconstructed orientation maps of the reference layers (layer 16
of state S1, Fig. 6.11) across the first three strain states, we have measured the
microstructure evolution of the copper sample under uni-axial tension. Texture evo-
lution of the three states is quantified by inverse pole figures (Fig. 6.12), and lattice
rotations are detected between strain states S1 and S2. This is confirmed by a point-
to-point misorientation calculation between layer z16 of S1 and its equivalent in S2
(Fig. 6.13). Finally, taking advantage of the high fidelity orientation maps, a spa-
tially resolved lattice rotation map is produced. This is the first ever spatially resolved
measurement of texture evolution of an in situ deformed sample.

6.5.1 Lattice Rotations
Evolution of [001] Inverse Pole Figure

Lattice rotation is expected during plastic deformation. Traditionally, measurement
of lattice rotations is limited to statistical measurements, represented by inverse pole
figures of the [001] axis obtained from analyzing measured X-ray diffraction data from
a statistical distribution of grains. Since we have measured orientations of grains in
the z16 layer, we can generate pole distributions for each state. The crystal axis,
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0.8

06

04

02

Figure 6.11: (a) - (c) Reconstructed orientation maps for the reference layer of states SO0,
S1, and S2. Changes in the grain boundaries can be attributed to deformation induced
microstructure evolution, but quantitative comparison of geometrical features is difficult
due to alignment issues. Texture evolution is observed by comparing the point-to-point
misorientation of these three reconstructed maps. (d) - (f) Confidence maps showing the
goodness-of-fit for the reconstructed orientations. Degradation of fit quality along the grain
boundaries is expected, but marked changes are seen between (e) and (f), resulting in a
“hole” in the orientation map. This hole indicates that the diffractions originating from
this region have unusually low signal-to-noise ratios.
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{100}

Figure 6.12: Distribution of [001] crystal axis in the sample frame for the layers correspond-
ing to z16 S1 across all three states. Color represents multiples of random, plotted in logig
scale.
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[001] in the sample frame, is projected onto a 2D plane, and its distribution is plotted
as densities for states SO, S1, and S2, as shown in Fig. 6.12. Lattice rotations
are deduced from changes between the different inverse pole figures. Note that the
relatively few sharp peaks are due to the small number of grains in the cross section
of the sample. As expected from our load curve (Fig. 6.1(d)), little change occurred
between the initial and first strain states. In contrast, the second strain state (S2)
shows marked differences from S1. A subtle increase of density towards the [110]
direction is noticeable, which is consistent with the Bishop and Hill model[11]. The
drawback of this pole figure analysis is that without directly tracking individual grains
as in the case of ref [39], it is difficult to see what specifically the lattice rotations
are, which is crucial for model comparisons.

Spatially Resolved Lattice Rotation

With the use of near-field HEDM, spatially resolved lattice rotations can be measured
across different strain states. This is achieved by first aligning orientation maps from
different strain states with each other, then performing a point-to-point misorientation
calculation. As before, all analysis is referenced against layer 16 of state S1 (z16S1).

Because noticeable sample movement occurred between different strain steps, ori-
entation maps measured at different states do not align exactly. In some cases,
measurement planes may not even be parallel to within our measurement precision.
Therefore an alignment procedure is necessary before carrying out a point-to-point
misorientation calculation. Assuming that not all grains within the sample would
rotate the same way, the basis of the alignment is simply to minimize the total mis-
orientation between two different maps. To improve the reliability of the alignment,
only voxels with confidence above a threshold, in this case C; = 0.4 are used for
the alignment. A zero temperature Monte Carlo method was used for the alignment
optimization. To ensure an optimal match, the alignment procedure was performed
on neighboring layers as well, but only the best matched layers are shown in this
analysis.

The point-to-point misorientation maps are seen in Fig. 6.13. Only voxels with
C > 0.4 are included, and misorientations above 15° are excluded in this plot, as
they indicate shifts in the grain boundaries. As expected, little or no change can be
observed between states SO and S1, but significant change is seen between S1 and
S2. We observe that the amount of rotation is non uniform across the cross section
and within each grain. The variations are typically slowly varying within a gain, but
discontinuous across grain boundaries. This is, presently, the first in situ observation
of such spatially resolved rotations.

The misorientations seen between S1 and S2 are much larger than systematic er-
rors of the reconstruction. Moreover, the variations in the angle of lattice rotation
seem to have spatial structures. One way to compare the difference in the amount
of lattice rotations between steps of SO to S1 and S1 to S2 is to look at the distri-
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Figure 6.13: (a), (b) Spatially resolved grain rotation across successive states (SO to S1,
and S1 to S2). The false color represents the magnitude of rotation from one state to the
other on a 5° scale. Both images are created first by registering two layers across the two
states through minimization of total misorientation. Because the sample both stretched and
moved across different states, exact registration is impossible. Only lattice rotation below
5° is shown here to remove misorientation due to boundary shifts between different states.
(c), (d) A distribution symmetrizing the projection of the rotation axis from (a) and (b)
to the x — y plane of the sample frame, measured in multiples of random. The number of
rotation axes along the [001] sample direction (the tensile axis, out of the page) is markedly
less than along any other directions.
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bution of rotation angles. Here, the misorientation is represented by the axis-angle
parameterization (n,6), and the distribution of the angle # is shown in Fig. 6.14.
The point-to-point misorientation for maps from S1 to S2 with only spatial align-
ment is also shown (unoptimized). Since no minimization of total misorientation was
done in the “unoptimized” case, the distribution of rotation angle is shifted to the
right from the optimized version as expected, and thus can be considered as an upper
bound. Even in the optimized case, the lattice rotation is significant; its distribution
of rotation angle shifted drastically from that of strain step SO to S1. Note that the
majority of the lattice rotations between states SO and S1 are close to the limit of our
detection resolution.

A small population of voxels were rotated by 60° between each pair of strain
states. This could correspond to twin formation during plastic deformation, which is
known to occur in copper [123, 53, 17]. The population is relatively small, and since
a significant amount of twin related grain boundaries already exist in the original
microstructure, a good portion of this signal may be due to boundary movement

contamination.

To better quantify the character of the lattice rotations, an inverse pole figure of
the rotation axis that each voxel is rotated about is plotted in Fig. 6.13(c) and 6.13(d).
This is done by representing the misorientation measured in axis-angle pairs, (6,7),
and rotating the axis into the initial sample frame. The distributions are plotted in
log,, scale of multiples of random to better visualize the structure. Because little has
happened between state SO and S1, most of what is seen in the pole figure is likely to
be noise dominated artifacts. From states S1 to S2, the distribution of the rotation
axis is clearly shifted away from the [001], or the tensile axis direction (center of
pole figure). This is consistent with the fact that torque around the tensile direction
should be close to zero. Geometrical alignment between orientation maps of different
states also supports this observation.

The movement of the tensile axis (2) in the crystal frame seen in Fig. 6.12 can
be quantified as the difference vector 62 = O1(%)z — Og(Z) 2, where O1(Z) and O2 (%)
are the orientations of the states located at & in the crystal frame. Projection of
this vector into the z — y plane is shown in Fig. 6.15(a). The Taylor-Bishop-Hill
model suggests the migration of the tensile axis away from the [110] and towards the
[001] and [111] directions [11], as is seen in the figure. Some small number of grains
deviating from this trend are also observed. This is not entirely surprising, as the
tensile load direction is not uniform due to our sample shape (6.1(c)), and the applied
stress is far from uni-axial across the thin wire sample.

It should be noted here that in contrast to the studies done in [89], each point
in Fig. 6.15(a) is a separate voxel rather than averaged motion of a grain. In gen-
eral, grain neighborhood and location information are crucial to the understanding of
deformation evolution; hence measurements of statistical texture evolution will not
suffice. However, because of HEDM’s unique ability to spatially resolve orientation
points, lattice rotations can be spatially resolved on an intra-granular scale, as shown
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Figure 6.14: Distribution of the magnitude of lattice rotation between the different strain
states at different bin sizes. Marked difference can be observed in the angle distribution
between states. (a) and (b) show the same data sets on different horizontal scales. To
demonstrate the effects of registration by minimization of misorientation, the unoptimized
lattice rotation distribution is also plotted.
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in Fig. 6.15(b). While generally speaking, lattice rotations in the same grain (in-
dicated by connected regions of similar colors in Fig. 6.11) tend to follow the same
direction, exceptions are observed in at least one of the grains (green in Fig. 6.11).
Here, it can be seen that lattice rotation directions are almost perpendicular to each
other. While there could still be systematic errors in the sample alignment unac-
counted for by the current optimization algorithm, it would be difficult to produce a
lattice rotation variation as seen in this grain.

6.6 Conclusions

We have demonstrated the capability of near-field HEDM to measure damage accu-
mulation in a high purity copper wire. We have shown that the forward modeling
reconstruction method is capable of tracking diffraction peaks even from grains with
significant moasicity. Even without the explicit use of intensity in the reconstruction,
reasonably good agreement between simulated and experimental diffraction patterns
is still obtained. From our systematic study, we have shown empirically that the
forward modeling method is stable, in that small variations in reconstruction pa-
rameters do not lead to catastrophic failure in the resulting output. Moreover, fitted
orientation maps are shown to converge with increasing reconstruction spatial and ori-
entation resolutions. This convergence behavior is evidenced by reduced orientation
noise and aliasing artifacts.

With the help of a sample alignment optimization procedure, we have been able
to measure microstructure evolution across three strain states. The microstructure
evolution is observed to be similar within most of the grains, as evidenced by the
similar lattice rotations. However, an exceptional grain has contrasting orientation
evolution. This is not entirely surprising considering the non-uniform load condition
resulting from the non-trivial sample shape. To the best of the author’s knowledge,
this is the first nondestructive, spatially resolved orientation evolution measurement
done in a bulk sample.

6.7 On-going and future work

Analysis covered in this chapter currently does not take advantage of the three-
dimensional nature of the volumetric orientation maps. To address this problem, on-
going effort is placed on both analysis and alignment software development. While it
is relatively easy to produce volumetric orientation maps for the earlier strain states,
the quality of reconstructed maps deteriorates drastically as the sample approaches
ductile failure, and as layers close to the center of the neck are considered. This is due
both to the rapidly decreasing grain size, which leads to extremely low signal to noise
ratio, as well as increasingly long computation time for reconstructions. Current
developments of intensity and strain fitting capabilities will certainly help address
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Figure 6.15: (a) Lattice rotation of random points selected from the point-to-point mis-
orientation. Here, the lattice rotation is represented by the movement of the tensile axis in
the crystal frame, plotted in the usual stereological triangle. (b) Spatially resolved lattice
rotation showing the tensile axis movement at each point in the sample space.
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some of the worries regarding the uncertainties in the reconstructed orientations.
Improvements in signal extraction from raw diffraction images will help remove the w
varying diffuse background from the Macor sample housing. At this point, sensitivity
studies are tedious, and it will remain so until more robust theoretical understanding
of the reconstruction is achieved.

Coupled with tomographic reconstructions, it is in principle possible to track the
origin of void nucleation observed in the experiment (not shown). This would require
better alignment optimization to help pinpoint the subvolume of orientation image
map surrounding the void position from the earlier strain states. This turns out to
be surprisingly difficult, as the deformation rate for the specimen is not uniform.
Computational simulations, such as finite element models, may be necessary even for
this alignment exercise.

Because we have essentially the same volume of data across multiple strain states,
it would be extremely interesting to use this data for calibration and validation of
computational models. As the simplest case, the initial state (SO) may be applied
as the input to different computational models, which then could be evolved and
compared against the experimental results. Such comparisons have been historically
difficult due to the very limited access to spatially resolved orientation maps. On-
going effort has been focused on the application of a viscoplasticity model [58] on the
current data set, and interesting qualitative initial results are already being generated.
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Appendix A

Examples of Reconstructed
Orientation Maps

Some of examples of reconstructed orientation maps are presented here to demonstrate
a recent experiment in applying HEDM to the in situ measurement of the structural
phase transition in a magneto-caloric material (NiMnGa).

Post Thermal Cycle

Initial

(a) (b)

Figure A.1: Reconstructed orientation maps for the same layer of NiMnGa before (a) and
after (b) thermal cycling. Distance is measured in unit of millimeters. False color indicates
orientations in the tetragonal fundamental zone. Very minute changes are detected between
the two maps. This is attributed to the disconnectedness of each grain as shown in Fig.
A4
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(a)

Figure A.2: Confidence map for the two layers shown in Fig. A.l.

05

Post Thermal Cycle

The region of low

confidence is confirmed to be void by the tomographic reconstruction seen in Fig. A.4.
Hints of crack formation after thermal-cycling is seen by comparing the bottom right of (a)
and (b), but confirmation requires a full three-dimensional map (not currently available).
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Figure A.3: Kernel averaged misorientation (KAM) for each of the maps in Fig. A.l.
Deformation is expected to scale with local misorientation, thus resulting in higher KAM.
The relatively higher KAM and more concentrated KAM values seen here suggest that local
deformations is manifested as mosaicity in the orientation of each grain.
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Figure A.4: Reconstruction from X-ray transmission tomography. Scale is shown here as
pixels (1.48um side length). Lighter color is used to indicate regions of high density. The

black curves indicate that the sample contains grains that are not in contact at the layers
we have imaged.
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Appendix B

Reconstructed Surface Meshes

Some reconstructed grain boundary meshes are shown here, and they serve to demon-
strate the capabilities of the methods developed in Chapter 4. The orientation maps
used for these boundary reconstructions are the same as the ones in the analysis of
Chapter 5. Boundary motion analysis from these surface meshes is used for boundary
motion estimates.

Misorientation
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Figure B.1: Grain boundary surface mesh for the initial state of the nickel sample described
in Chapter 5. Boundary colors correspond to misorientation in degrees. A corner of the
surface mesh is cut away to better show the smoothness of the boundaries.
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Figure B.2: Grain boundary surface mesh for the first anneal state. Little or no changes
is noticeable between the meshes shown here and Fig. B.1, as evidenced by the analysis in

Chapter 5.
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Appendix C

Volumetric Map Examples

The methods described in Chapter 4 and [3] simultaneously produce a surface and a
volumetric mesh, and some of the results are shown here. Recall that the volumes
shown are the measurements of the same region of the nickel sample at different anneal
states. Grain volume estimates are done by counting the number of tetrahedra in each
of the grain. The mean-width calculation also takes advantage of the volume mesh
to decide the sign of the surface patch normals. While the volumes shown ( Fig. C.1,
Fig. C.2, Fig. C.3, Fig. C.4 ) are not aligned, it is seen that the grain sizes are
generally increasing with the later anneals. Sharp “edges” can be found along some
of the grains, and these features extend vertically in the direction perpendicular to
measurement slices (z). This is a good indication of the consistency in the HEDM
technique.
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Figure C.1: Initial state of the high purity nickel volume. Each grain ID is associated with
a false color (RGB) value.

Figure C.2: First anneal state. No noticeable changes can be seen. (Recall that the volumes
presented are not yet aligned.)
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Figure C.3: Second anneal. Grains can be seen to be markedly smoother.

Figure C.4: Third anneal state. Some number of annealing twins can be seen as thin,
plate-like grains in the volume (red on the left, blue near the middle inside a grain).
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Figure C.5: Three-dimensional grain map of a piece of copper, used as an initial state for
an upcoming deformation experiment in collaboration with Los Alamos National Lab. The
imaged section of the specimen is ). 1.1lmm in diameter and 0.760mm in height. A total of
11999 grains were identified.

Figure C.6: Progression of a piece of copper wire under uni-axial tension (data from Chapter
6). Starting from left to right, the true strain reads 0%, 0% (to within sensitivity), 6.2%, and
26.9%. False color again indicates identified grains (IDs are not related between different
states). We caution that this is result from the preliminary analysis, and it is presented
here to show some of the cutting-edge applications of HEDM.
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