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These notes follow the derivation in the text but provide some additional details and

alternate explanations. Comments are welcome.

For 33-234, you will not be responsible for the details of the derivations given here. We

have covered the material necessary to follow the derivations so these details are presented

for the ambitious and curious. All students should, however, be sure to understand the results

as displayed on page 6 and following as well as the basic commutation properties given on

this and the next page.

Classical angular momentum. The classical angular momentum of a point particle is
computed as

L = R× p, (1)

where R is the position, p is the linear momentum. For circular motion, this reduces to
L = Rp = Rmv = ωmR2 using v = 2πR

T
= ωR. In the absence of external torques, L

is a conserved quantity; in other words, it is constant in magnitude and direction. In the
presence of a torque, τ (a vector quantity), generated by a force, F, τ = R×F, the equation
of motion is dL

dt
= τ . In a composite system, the total angular momentum is computed as a

vector sum: LT =
∑

i Li.
We would like to determine the stationary states of angular momentum and determine

the “good” quantum numbers that describe these states. For a particle bound by some
potential in three dimensions, we want to know the set of physical quantities that can be
used to specify the stable states or eigenstates. We first make a quantum analog to (1)
and then look for sets of operators that commute with each other so that they can have
simultaneous eigenvalues.

Quantum operators and basic properties. The basic translation to quantum mechan-
ics is done by replacing the vector quantities in (1) with their operators; this then defines
the angular momentum operator as follows:

L̂ = R̂× p̂ (2)

L̂x = ŷp̂z − ẑp̂y (3)

L̂y = ẑp̂x − x̂p̂z (4)

L̂z = x̂p̂y − ŷp̂x, (5)

where equations 3 - 5 come from the evaluation of the cross product in (2). Note that the
order in which the position-momentum products are written does not matter since [rα, pβ] =
ih̄δαβ , with δαβ being the Kronecker delta function defined as δαβ = 0 for α 6= β and δαβ = 1
for α = β.
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Another operator of importance is the one yielding the magnitude of the angular mo-
mentum. We define

L̂2 = L̂2
x + L̂2

y + L̂2
z. (6)

It is much easier to deal with this operator than it’s square root. Fortunately, it is not
necessary at this point to write L̂2 out in terms of elementary Cartesian component operators.

Can we expect general states in which the angular momentum components each (or even
in pairs) take on precisely defined values? The answer is “no” as is shown by the non-zero
value of the commutators of different components (we will find one counter example). For
example,

[L̂x, L̂y] = [(ŷp̂z − ẑp̂y), (ẑp̂x − x̂p̂z)]. (7)

This expands into four commutators, but only the diagonal terms (first times first, second
times second) contain pairs of operators that do not commute; therefore, using the identities
[AB,C] = A[B,C] + [A,C]B and [A,BC] = B[A,C] + [A,B]C,

[L̂x, L̂y] = [ŷp̂z, ẑp̂x] + [ẑp̂y, x̂p̂z] (8)

= ŷ[p̂z, ẑp̂x] + [ŷ, ẑp̂x]p̂z + ẑ[p̂y, x̂p̂z] + [ẑ, x̂p̂z]p̂y (9)

= ŷ[p̂z, ẑp̂x] + 0 + 0 + [ẑ, x̂p̂z]p̂y (10)

= ŷ[p̂z, ẑ]p̂x + ŷẑ[p̂z, p̂x] + [ẑ, x̂]p̂zp̂y + x̂[ẑ, p̂z]p̂y (11)

= ŷ[p̂z, ẑ]p̂x + 0 + 0 + x̂[ẑ, p̂z]p̂y (12)

= ih̄(x̂p̂y − ŷp̂x) = ih̄L̂z. (13)

Working through the others yields

[L̂x, L̂y] = ih̄L̂z (14)

[L̂z, L̂x] = ih̄L̂y (15)

[L̂y, L̂z] = ih̄L̂x. (16)

In contrast to the above, the commutator [L̂2, L̂i] is zero, so the magnitude and one

component of L can be constant, precisely defined quantities. The proof is as follows for L̂z:

[L̂2, L̂z] = [L̂2
x, L̂z] + [L̂2

y, L̂z] + [L̂2
z, L̂z] (17)

= [L̂2
x, L̂z] + [L̂2

y, L̂z] + 0 (18)

= L̂x[L̂x, L̂z] + [L̂x, L̂z]L̂x + L̂y[L̂y, L̂z] + [L̂y, L̂z]L̂y (19)

= L̂x(−ih̄L̂y) + (−ih̄)L̂yL̂x + L̂y(ih̄L̂x) + (ih̄L̂x)L̂y (20)

= 0. (21)

We conclude that it is possible to have states in which the magnitude and one component
of the angular momentum are well-defined constants of the motion (in other words, in which
the corresponding operators satisfy eigenvalue equations with the wavefunction that describes
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the state).1 However, not more than one component will, in general, satisfy this property in
any given state. We will find functions that are eigenfunctions of L̂2 and L̂x or L̂2 and L̂y or

L̂2 and L̂z but these will not be eigenfunctions of, say, both L̂z and L̂x. This situation implies
that there exists more than one function with a given eigenvalue of L̂2. By convention, we
will choose the z axis as the one that has an eigenvalue for its component. This is strictly a
choice – no physical quantity should depend on our choice of coordinate system and, by the
same token, we are free to orient our axes to put z in the “chosen” direction.

Total angular momentum. Many systems have multiple “point masses” with each con-
tributing to a total angular momentum. In fact, there are two types of contributions, one the
classical orbital motion that we have just generalized to a quantum mechanical treatment,
the other an intrinsic angular momentum or “spin” associated with the particle itself. The
latter quantity has no classical analog but rather is a fundamental property of many types
of elementary particles. We call it a “spin” angular momentum in spite of the fact that it
cannot be explained in terms of a spinning sphere or any other classical picture.

We will refer to the two contributions as being orbital angular momentum, L, and
spin angular momentum, S. When both contributions are present, we denote the total as
J = L + S. Keep in mind that in multiparticle systems, there may be several contributions
to both L and S. It turns out (i.e., we guess and find out it’s correct) that J obeys the
same operator algebra as we derived above for L. For the rest of the derivation of quantum
mechanical properties of angular momentum, we replace the L’s by J’s. Clearly, the proof
of the appropriateness of this replacement is in experimental observations of the properties
of systems having multiple contributors to J. Examples are as elementary as the hydrogen
atom and as complex as magnetic and superconducting materials, stars,...

Note that a charged particle with orbital angular motion generates a magnetic dipole
moment, µ = q

2m
L; this is just the orbital current times the orbit area (as you can show for

circular motion with elementary algebra – see also, Chapter 8). For electrons, we can write
µ = −gµB(J/h̄) with µB = eh̄

2me

, with the factor g (called the g-factor, amazingly enough)
accounting for the addition of orbital and spin contributions. µB is the Bohr magneton which
sets the scale for magnetism generated by electrons (one can also define a nuclear magneton,
µn, which is about 2000 times smaller). Note that J/h̄ is a dimensionless quantity. The
orbital and spin angular momenta are intimately coupled to magnetic behavior and the
response of atoms and materials and stars to magnetic fields. It is through the interaction
of the magnetic moments with magnetic fields that most properties of the angular momenta
are observed. These elementary contributions, along with their interactions, yield all of

magnetism!

1We have not tested whether the angular momentum operators commute with the Hamiltonian. Can

states with well-defined L2, Lz be energy eigenfunctions? We will find that the answer is yes only in the case

of spherically symmetric potential energy functions – i.e., potentials that depend only or a radius, r, and

not on the direction to the particle. Such potentials supply no torque to the particle since any force will be

along the radial direction.
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Angular momentum quantization. From the commutation relations discussed above,
we conclude that we should be able to write

Ĵ2ψ = αψ (22)

Ĵzψ = βψ, (23)

that is, there should be a wavefunction or wavefunctions, ψ, that satisfy these equations
with particular eigenvalues, α and β. Note that these two eigenvalues do not have the same
units.

It turns out to be very convenient to define two non-Hermitian operators, Ĵ+ and Ĵ−,
called the raising and lowering operators – or, collectively, ladder operators (the terminology
will be justified by their properties):

Ĵ+ = Ĵx + iĴy (24)

Ĵ− = Ĵx − iĴy. (25)

These are mutually adjoint rather than self-adjoint:

(φ|Ĵ+ψ) = (φ|(Ĵx + iĴy)ψ) (26)

= (φ|Ĵxψ) + (φ|iĴyψ) (27)

= (Ĵxφ|ψ) + (−iĴyφ|ψ) (28)

= ((Ĵx − iĴy)φ|ψ) = (Ĵ−φ|ψ) (29)

So, Ĵ†
+ = Ĵ− and Ĵ†

− = Ĵ+. Since these operators are non-Hermitian, they cannot correspond
to a physically measurable quantity. However, they perform handy mathematical operations.

While the Ĵ± commute with Ĵ2, they do not commute with component operators such
as Ĵz. First,

[Ĵ2, J+] = [Ĵ2, Ĵx] + i[Ĵ2, Ĵy] = 0 (30)

[Ĵx, J+] = [Ĵx, Ĵx] + i[Ĵx, Ĵy] = −h̄Ĵz (31)

[Ĵy, J+] = [Ĵy, Ĵx] = −ih̄Ĵz (32)

[Ĵz, J+] = ih̄Ĵy + h̄Ĵx = h̄Ĵ+ (33)

Ĵ− yields the complex conjugates of these relations.
Ĵ+ and Ĵ− are useful because when they operate on an angular momentum eigenfunction,

they generate other ones (see Problem 5.10). For example, if Ĵ+ψ = φ, then by using the
commutation relation (30) and the definition of α (22),

Ĵ2φ = Ĵ2(Ĵ+ψ) = Ĵ+Ĵ
2ψ = Ĵ+αψ = αĴ+ψ = αφ. (34)

The new function, φ, has the same eigenvalue of Ĵ2. On the other hand, using (33) and (23),

Ĵzφ = Ĵz(Ĵ+ψ) = (h̄Ĵ+ + Ĵ+Ĵz)ψ = (h̄φ+ Ĵ+βψ) = (β + h̄)φ. (35)

So φ = Ĵ+ψ has an eigenvalue of Ĵz that is one unit of h̄ larger than that of ψ. Similar
calculations show that Ĵ− maintains the same eigenvalue of Ĵ2 but an eigenvalue of Ĵz
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that is decreased by h̄. These results justify the naming of these operators as “raising” and
“lowering” operators. Classically, they rotate the angular momentum vector (of fixed length)
so as to change the component that lies along the quantization axis, z.

Repeated operation with, say, Ĵ+ successively generates states with larger Jz but with
the same |J |. However, there is the classically reasonable constraint that α ≥ β2 (essentially
saying that the z-component cannot be larger than the length of the whole vector). This can
be seen more rigorously by calculating the expectation value of Ĵ2 and using (6). Bringing
the Jz term to the left side and using the Hermitian property of the component operators,

(ψ|Ĵ2ψ)− (ψ|Ĵ2
zψ) = (ψ|Ĵ2

xψ) + (ψ|Ĵ2
yψ) = (Ĵxψ|Ĵxψ) + (Ĵyψ|Ĵyψ) (36)

The right side involves integrals of positive (or zero) functions and is therefore positive (or
zero). The term (ψ|Ĵ2

zψ) is just β
2, so we have α− β2 ≥ 0 or α ≥ β2.

The result of the above paragraph implies that there must be some wavefunction, ψmax

that has the maximum possible eigenvalue, βmax, and that

Ĵ+ψmax = 0. (37)

Similarly, there must be a function, ψmin, with the property

Ĵ−ψmin = 0. (38)

Two additional operators that will be used below are the products, Ĵ−Ĵ+ and Ĵ+Ĵ−:

Ĵ−Ĵ+ = (Ĵx − iĴy)(Ĵx + iĴy) = Ĵ2
x + Ĵ2

y + i[Ĵx, Ĵy] = Ĵ2 − Ĵ2
z − h̄Ĵz (39)

or

Ĵ2 = Ĵ−Ĵ+ + Ĵ2
z + h̄Ĵz (40)

= Ĵ+Ĵ− + Ĵ2
z − h̄Ĵz (41)

Operating with Ĵ2 in the form of (40) on ψmax yields

Ĵ2ψmax = αψmax = 0 + β2
maxψmax + h̄βmaxψmax (42)

or
α = βmax(βmax + h̄). (43)

Using (41) on ψmin yields
α = βmin(βmin − h̄). (44)

Subtracting these two yields βmax(βmax + h̄) = βmin(βmin − h̄) which is satisfied by βmin =
−βmax.

Furthermore, if we start at βmin, we can write βmax = βmin + nh̄ for some integer, n.
Replacing βmin with −βmax leads to

2βmax = nh̄ (45)

or
βmax =

n

2
h̄. (46)
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This in turn leads to
α = βmax(βmax + h̄) =

n

2
(
n

2
+ 1)h̄2. (47)

Defining j = n
2
= 0, 1

2
, 1, 3

2
, 2, ..., leads to the condition that the set of possible eigenvalues of

Ĵ2 can be written as
J2 = j(j + 1)h̄2 with j = 0, 1

2
, 1, 3

2
, 2, ... (48)

and the eigenvalues of Ĵz, for a given j, must be one of these:

Jz = mjh̄, mj = −j, (−j + 1), ..., (j − 1), j. (49)

The language is that j is called the “angular momentum quantum number” and mj is the
“azimuthal quantum number.” j gives the magnitude (or length) of the vector J, and mj

gives the component of this vector along the z-axis. In all cases, the eigenvalues satisfy
J2 > J2

z . The classical limit is obtained as j → ∞ where the relative spacing between values
of J2 becomes negligible and the component values, Jz, become essentially continuous.

Final note: We have not written down any explicit wavefunctions in the above derivation.
While this makes the derivation rather abstract, it also emphasizes the generality of the
arguments: the results above are the properties of angular momentum that are allowed by
quantum mechanics – for any system! They are also the properties that are observed in
the real world. While the existence of spin angular momentum is a relativistic effect, the
behavior of all particles and collections of particles can be understood with the above results
plus some rules for how to add angular momenta in composite systems so as to preserve the
above behavior for the total angular momentum.

The following page shows drawings for two examples of the quantization rules we have
just derived: these are appropriate for orbital angular momenta with l1 = 1 and l2 = 5. The
scales are NOT the same for the two drawings; if they were, then the second circle would be

larger by a factor of

√
l2(l2+1)h̄√
l1(l1+1)h̄

=
√
30√
2
=

√
15 = 3.873 and the spacings between the marks

on the z-axis would be equal in the two pictures.
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Example 1: j = 1 allows mj = −1, 0,+1
z

y

mj = 1, Jz = h̄

mj = 0, Jz = 0

mj = −1, Jz = −h̄

Example 2: j = 5 allows mj = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5
z

y

mj Jz

5 5h̄

4 4h̄

3 3h̄

2 2h̄

1 1h̄

0 0h̄

−1 −1h̄

−2 −2h̄

−3 −3h̄

−4 −4h̄

−5 −5h̄
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Many elementary particles (electrons, muons, taus, neutrinos, quarks, lambdas...) as
well as protons and neutrons (which are composite particles) have spin quantum number
S = 1/2. These particles can have only two distinct projections onto a measurement axis.
Pions, Kons and the Higgs particle have spin zero so they carry no angular momentum. The
omega particle has spin 3/2.

Magnetic properties of materials are determined by the combined effects of orbital and
spin angular momenta of the atomic electrons. We will discuss this after solving the hydrogen
atom problem.

In conclusion, we find that only a discrete (but infinite) set of values are possible for
either the total angular momentum magnitude or for the component of angular momentum
along a particular direction. For a finite magnitude only a finite discrete set of components
occur. Classically, this corresponds to a finite set of angular momentum vector orientations
relative to some coordinate axis. Note that, as j → ∞, the set of possible components
becomes infinite and the quantum description becomes similar to the classical picture in
which all orientations are possible.

Again, so far, we have not tried to write down any wavefunctions other than symbolically
(i.e., ψ or φ). We will find that we can do this for the orbital motion of a particle in a
spherically symmetric potential but that we only obtain functions for integer values: l =
0, 1, 2, ... with corresponding integer azimuthal quantum numbers, ml (l and ml are used
here to explicitly show that these are components of orbital motion as distinct from the
intrinsic angular momentum of elementary particles). Elementary particles can have half-
integer quantum numbers for their “spin” angular momenta, s and ms. In this case, there
is no function of spatial variables that describes these properties; we will have to develop
another means to represent operators for these degrees of freedom. Nevertheless, the spin
eigenstates are described by the same rules we have just developed.

For particles with spin angular momentum undergoing orbital motion, we will have
to learn how to add the orbital and spin contributions to obtain total angular momenta
with quantum numbers, j and mj . Furthermore, collective properties of quantum parti-
cles differ profoundly depending on the spin quantum number: particles with integer spin
quantum number, s, called bosons, behave dramatically differently from half-integer spin
particles called Fermions. Bosons can undergo condensation into a single quantum state,
while Fermions obey the Pauli exclusion principle with no more than one being in a given
quantum state. This is a phenomenon with no classical limit or correspondence!

Strictly speaking, we have not derived anything but the results of applying Ĵ+ and Ĵ− to
the orbital angular momentum operators guessed from classical mechanics. You might say
that we have simply come up with a way to enumerate the quantum states associated with
angular momentum. The states we obtain here are, in fact, those that occur in nature; no
other states have ever been observed!
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