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ABSTRACT 

Advances in three-dimensional materials science are reviewed and examples of progress in 
characterization and evolution are given.  One example concerns the measurement of mean 
width or integrated mean curvature.  This quantity is attractive both because it is an additive, 
linear measure of size and because it is central to the theory of grain growth in three dimensions.  
A large Potts model of grain growth is used to provide data sets, from which the distributions of 
mean width form two bell curves, one for shrinking grains, and one for growing grains.  A 
second example is given of analysis of grain boundary motion characterized by a non-
destructive high-energy x-ray diffraction method.  A minority of grains exhibit motion whereas 
the majority remain stationary.  The 5-parameter grain boundary character distribution is 
compared for the mobile versus stationary boundaries. 

1. INTRODUCTION 

Microstructural evolution covers a wide range of phenomena.  In this instance we review recent 
developments at the mesoscopic scale that are relevant to grain growth and recrystallization, 
with a particular emphasis on dealing with three-dimensional microstructures.  The paper 
provides some information on a new aspect of materials characterization in 3D, along with an 
example of how to apply a detailed analysis of grain boundary motion in terms of all five 
degrees of freedom, i.e. misorientation and interface normal.  

The characterization of shapes in three-dimensional images has become important in many 
branches of science and engineering, including biomedicine, geophysics, astrophysics, robotics, 
and materials science (to name only a few). Negligible communication between these disparate 
research communities and the mathematicians who have made significant advances in this 
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domain over the past century has led to several re-discoveries of Minkowski functionals as the 
appropriate measures of geometric size. These re-discoveries have, in turn, spawned redundant 
efforts to estimate the Minkowski functionals over pixellated data sets.  Average grain size, for 
example, can be critical in determining macroscopic properties of materials. Many linear 
measures of size exist for three-dimensional objects, and an elaborate convention has been 
created to standardize this measure across the field. In the past, which linear measure to choose 
was not important to materials scientists due to the paucity of data. Recently, however, the 
advent of automated serial sectioning and synchrotron-based tomography and diffraction 
experiments, as well as statistical reconstructions of various kinds, have provided substantial 
amounts of data. In addition, there have been significant developments in methods for modeling 
microstructural evolution in 3D, including Monte Carlo, cellular automata, phase field and 
moving finite elements, to name only the most popular. Choosing the most appropriate linear 
measure of grain size with which to analyze and interpret the results of both experimental and 
computational efforts has therefore assumed greater importance. 

At the most fundamental level, computational models require an exact theory against which they 
can be verified.  For curvature-driven grain growth in 3D, MacPherson and Srolovitz have 
provided such a theory, and simulations show good agreement with the theory, Uyar et al. 
(2009).  Central to the theory is the quantity mean width or integrated mean curvature, which is 
the only additive linear measure of size and which has interesting characteristics such as nearly 
Gaussian distributions.  Such theories are limited, however, to uniform (isotropic) boundary 
conditions whereas real grain boundaries are strongly anisotropic.  Recent measurements of 
grain boundary networks have permitted comparisons that take account of all five macroscopic 
degrees of freedom.  For grain boundary energy in nickel, for example, the experimental and 
theoretical (from atomistic simulation) values show good agreement.  However, the (inverse) 
correlation between grain boundary population and theoretical energy turns out to be more 
robust. 

2. MEASUREMENTS ON IMAGES 

There are a great variety of measurements that can be made on images of polycrystalline 
structures.  The obvious measurement is that of volumes of grains since those can be obtained 
by simply counting the number of voxels associated with a given orientation.  In measured 
microstructures, however, there are many steps that have to be taken before it is appropriate to 
carry out this, or any other measurement.  There are always orientation gradients within grains, 
even in a well-annealed material, and some decisions are required to segment an image into 
distinct regions.  These issues have, however, been already been adequately addressed (Uchic et 
al. 2006; Rollett et al. 2009). Another measurement that can readily be made directly on the 
image is that of boundary areas, which can be accomplished by counting voxels that are adjacent 
to boundaries.  Partitioning voxels into bulk versus boundary-adjacent only requires inspection 
of nearest neighbor voxels.  Measuring the linear size of 3D objects is, however, less obvious in 
terms of choosing a measure.  Two traditional measures are to use the sphere-equivalent radius 
(or diameter) obtained from the volume measurement, or to use a linear intercept method.  The 
former suffers from the obvious defect that it is not an independent measurement and involves 
an assumption about shape.  Linear intercepts require further decisions when used on non-
convex objects.  Instead, a better choice may be that of integrated mean curvature, also known 
as mean width or mean breadth.  The reasons to use this are that it is independent of volume or 
area, it shares the property of additivity  (MacPherson and Srolovitz, 2008) and it is directly 
relevant to grain growth in 3D because it is one of the quantities needed to calculate the driving 
force for growth or shrinkage of grains. A crucial theorem due to Hadwiger (Klain and Rota, 
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1997, theorem 8.3.2) states that, up to an arbitrary multiplicative constant, for every dimension 
n, there exists one and only one continuous measure M(D) of an object D, of dimension n that 
satisfies the additivity rule: M(D1 � D2) = M(D1)+M(D2)−M(D1 ∩ D2).  In 3D, volume and area 
satisfy this rule almost intuitively, but it is not immediately obvious that there should be a linear 
measure that can do this. However, the linear Minkowski functional known as mean width does 
so and, we believe, should therefore be adopted in the materials science community as the 
fundamental linear measure of size for 3D objects. Mean width is most easily understood in the 
special case of convex bodies, for which it is equal to twice the mean caliper diameter. 

Mean width algorithm. For computationally feasible grid dimensions, the exact mean width of a 
voxellized object represented on a grid does not approximate the mean width of the original 
object very well.  The reason for this may be understood by considering the class of smooth 
objects.  The mean width of a smooth object is proportional to the mean curvature integrated 
over its surface, and clearly the additional edges and corners introduced by the voxellated data 
artificially augment the estimate.  To circumvent this difficulty, we focus on an algorithm 
developed by Ohser and Mücklich (1), which we briefly describe and generalize below. 

Assuming the object whose mean width is to be determined satisfies certain regularity con- 
ditions (realized in most realistic grain structures), Ohser and Mücklich use an integral 
expression for the mean width (Crofton’s formula) to derive an expression that specifies how the 
local neighborhood of any given voxel determines its contribution to the mean width. To use 
this expression for a given binary image, it is possible, as Ohser and Mücklich suggest, to 
construct a “histogram” that records a frequency count of neighborhoods over all voxels. The 
mean width is then computed by multiplying the contribution from every neighborhood type by 
the number of such neighborhoods in the grid and then summing over the entire histogram. 

We were not satisfied with initial tests of Ohser and Mücklich’s algorithm, and so we looked for 
ways to improve upon it. Their algorithm includes a discretization of an integral over the unit 
sphere. For reasons related to memory storage, Ohser and Mücklich integrate over a special set 
of directions (all low-index directions, up to and including <111>). In order to incorporate more 
directions, we chose to eliminate construction of the histogram. In this way, neighborhood 
information need not be stored, and so we can sample many more lattice directions. Moreover, 
intermediate histogram construction limits the application of the algorithm to binary image data, 
so that performance is linear in the number of grains. Neglecting this step also permits us to 
focus only on the non-zero grains in the neighborhood of any single datapoint. We are thus able 
to process thousands of grains in almost the same time it takes Ohser and Mücklich’s program to 
process a single grain. 

Fig. 1.  Geometry of lens-shaped objects. 

We wished to determine and compare the 
numerical errors inherent in both the original 
formulation of Ohser and Mücklich’s method 
and our slight generalization. To do so, we 
considered five families of test shapes, whose 
mean widths can be exactly computed: (1) 
regular polyhedra; (2) spheroids; (3) lemons (the 
arc of a circle, rotated about its chord); and (4) 
lenses (spherical cap, joined with its reflection).   
Figure 1 shows the geometry and notation 
associated with lens shapes.  Figure 2 shows 
images of the lens and lemon shapes.  These 
shapes allow us to separate errors due to curved 
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surfaces, nodes, and facets.   

 

 

Fig. 2. Illustrations of a lens-shaped object and a lemon shaped object, with their 
geometries. 

Analytical expressions for mean widths of both lenses and lemons are obtained by directly 
averaging the caliper diameter over all possible directions and multiplying by two. This requires 
integration over all directions   

r n =(sinθ cosφ, sinθ sinφ, cosθ), where θ is the angle between  
r n  

and the z-axis. Because the lemon and the lens are both convex, every direction   
r n  is associated 

with a single surface point. The z-axis is aligned with the symmetry axis in both cas s – cusp to 
cusp, for the lemon; and through the smallest diameter, for the lens. Denote by   

er 
d  the vector 

from the center to any su face point of either shape. The mean caliper diameter associated with 
this direction is then 2

r
 
r 
d ·  

r n .  Using the notation from the figure, the integrals we need to 
compute both have the form: 

 

(1) 

For the lemon it can be seen that α1 = A/2, α2 =(π−A)/2, β1 =0, and β2 =A/2.  From the figure we 
also have: 

 

(2) 

Similarly for the lens, α1 = 0, α2 = (π − A)/2, β1 = (π−A)/2, and β2 = π/2. Again from the figure: 
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(3) 

Evaluating the integrals in Eq. 1 for each shape leads to the analytical forms listed in Table 1. 
To compare analytical expressions with estimations on regular grids, we created characteristic 
functions centered on a single grid point. In order to investigate directional error, we rotated the 
z-axis and sampled the characteristic function at the transformed grid points. Average mean 
widths and standard deviations over many rotations for the shapes selected for this study are 
listed in Table 1. Note that two different algorithms were used to generate this table. Columns 
(3) and (4) represent output from the algorithm (O&M) given directly by Ohser and Mücklich, 
whereas columns (5) and (6) were generated by a generalized algorithm (MW211) that includes 
all low-index planes up to and including the (211) family of planes. All distances, volumes, and 
mean widths are given in voxels; for the regular polyhedra, S represents the edge length. 

The agreement between theory and computation at the resolutions listed in this table are 
exceptional for both algorithms and across all orientations. The low standard deviations indicate 
that there is virtually no directional anisotropy in the algorithm induced by the underlying grid. 
Though both algorithms perform very well, we note in passing that the standard deviations 
obtained from MW211 are significantly lower than O&M in most cases, and (except for the 
lemon) values obtained from MW211 are more accurate than from O&M. 

Table 1. Relative mean width errors for various resolutions. 

 

Because our simulated microstructures often contain grains much smaller than the resolution 
used to determine Table 1, a study of error with resolution is summarized in Fig. 3 for the 
polyhedral objects and in Fig. 4 for objects with curved surfaces.  Note that in this study, error 
could be categorized by morphology: faceted shapes lead to much larger error than shapes with 
curved surfaces. We find that a good estimate of the percent error involved for a faceted shape 
of mean width M voxels is simply equal to M/100. 
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Fig. 3.  Error in the measurement of mean width for various polyhedra as a function of 
size. 

 

Fig. 4. Error in the measurement of mean width for shapes with curved surfaces as a 
function of size.  Note the smaller values on the vertical scale for error as compared with 
the previous figure. 

Figure 5 summarizes a study of the error dependence for the special case of the lens. We studied 
the lens in more detail. We fix the base radius of the lens and vary the dihedral angle subtended 
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along the crease, allowing both convex and concave geometries (given by positive and negative 
dihedral angles, respectively). Two such lenses are depicted in this figure (with base radii 50 and 
60 voxels, respectively). Zero dihedral angle corresponds to the sphere, whereas the largest 
dihedral angle approaches a thin disk. Excellent agreement is obtained for all dihedral angles. 

 

Fig. 5. Comparison of the measured (points) versus the theoretical (continuous line) mean 
width values for lens-shaped objects with two different values of their base radii, namely 
radii 50 (lower curve) and 60 voxels (upper curve).   

Mean width distribution in Polycrystal:  In order to illustrate the capability of the mean width 
measurement algorithm, a standard isotropic Potts model was used to simulate grain growth on a 
grid of dimensions 1000 cubed using the parallel MMSP grid library [cite matforge] developed 
and maintained by Gruber. The large domain size was used to minimize mean width resolution 
error, as well as to permit adequate statistics following significant coarsening.  Due to the size of 
the grid, initial grain ids were assigned using a simple checkerboard tessellation consisting of 
cubes of edgelength 5 voxels, so that the initial microstructure was composed of nearly 8 million 
unique grains. During evolution, the mean width and the volume of all surviving grains were 
computed after back-to-back MC steps every 100 MC timesteps (e.g., after the 99th and 100th 
timesteps). 

The initial checkerboard tessellation required a significant relaxation period before the system 
attained a steady-state mean width distribution.  In Fig. 6, the average mean width is plotted as a 
function of time.  It is seen that the expected square root evolution only begins after 
approximately 1700 timesteps.  However, a better measure of whether steady state has been 
achieved is perhaps obtained by plotting the ratio of the number Ng of growing grains to the 
number Ns of shrinking grains, where growth rate is determined by any observed volume change 
between subsequent time steps.   The ratio Ns/Ng is plotted in Fig. 7, from which it can be seen 
that steady state is not attained until after roughly 2000 timesteps, at which point there are 
approximately 5 shrinking grains for every 3 growing grains in the system. 

The measured mean width distribution after 2500 MC steps is shown in Fig. 8, at which point 
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17,338 grains of average mean width 48.304 voxels remained in the domain.  We note that this 
distribution is clearly not lognormal. 

The MacPherson-Srolovitz relation relates the rate at which the volume of an individual grain 
changes directly to its mean width, and so it is of interest to consider the mean width 
distributions for the subsets of growing and shrinking grains separately.  These two histograms 
are depicted in Fig. 9.  The remarkable observation is that if negative mean widths are 
discounted both may be fit to an excellent approximation by normal distributions.   Each 
population is fit to the function f (x) = Ai exp(−(x − m)2 /2s2)

A1

, where m and s are measured 
directly from the data and listed in table 2, and Ai is the only adjustable parameter.  At t=3600, 
the population of growing grains are fit by = 161.705 ±1.56 and shrinking grains by 

. Note that, as a fraction of the total population mean, the means may be 
approximated by 4/π (for the growing distribution) and 4/5 (for the shrinking distribution).  
Also, the standard deviations for both distributions are both approximately equal to 1/3; the 
authors note that for this value the first inflection of the growing Gaussian occurs at the mean of 
the population as a whole.  Lastly, we remark that 

A2 = 262.794 ± 2.516

A2 / A1 = 1.625, in excellent agreement with 
Ns/Ng. 

Table 2. Measured values of the mean and standard deviation at t=3600. 

 Average mean width Standard deviation 

Total population <M> = 48.304 0.4014<M> 

Shrinking grain population 0.8246<M> 0.3324<M> 

Growing grain population 1.2853<M> 0.3347<M> 

 

Although the authors do not currently have any explanation for these observations, it is noted 
that the measured histograms reflect the probability that a grain with a given mean width is 
either shrinking or growing.  The MacPherson-Srolovitz relation shows that this is equivalent to 
the probability that the mean width of a grain is greater than (resp. less than) one-sixth of the 
summed length of all its triple junctions. This may suggest a theoretical approach to determining 
an analytical expression for the mean width distribution. 
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Fig. 6. A plot of the average mean width as a function of time in an isotropic Potts grain growth 
model (+). A fit to the expected square root dependence (solid line) is also plotted. 

 

Fig. 7. The measured ratio of the number of shrinking grains to growing grains is plotted as a 
function of time in an isotropic Potts grain growth model (+). The solid line approximates the 

steady state value (1.6245±0.0041). 



 Wilson, Hefferen, Li, Lind, Suter, Rollett 

 

Fig. 8. Histograms of the distribution of mean width values for grains in an isotropic Potts grain 
growth model.  

 

Fig. 9. Histograms of the distribution of mean width values for both growing grains and 
shrinking grains in an isotropic Potts grain growth model.  The two subsets of grains have mean 
width distributions close to bell curves, also shown.  The mean width distribution for the total 

population is outlined in the background. 
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Summary: Mean width algorithm:  O&M’s algorithm performs very well for all morphologies 
and orientations, given sufficient resolution. When much of the surface curvature is contained 
along a crease, the algorithm is limited by the ability to sufficiently resolve the dihedral angle 
defining the crease. Further increasing the accuracy of the spherical integration does not lead to 
great improvement, and can actually degrade the performance of the algorithm. Poor 
performance at low resolution is to be expected, but given the non-negligible population of very 
small grains in many realistic microstructures, it is important to address the issue of improving 
accuracy in this limit.  The modified algorithm, noted as MW211, offers improved speed and 
accuracy for most shapes. 

2. ANALYZING BOUNDARY MOTION IN 3D 

In papers by Lienert et al. (2010), in this same Symposium, and Hefferan et al. (2010, ibid.) and 
Suter et al. (2006), a High Energy Diffraction Microscopy (HEDM) method is described of 
using synchrotron radiation to probe microstructures non-destructively in 3D.  Given that all the 
pertinent details of the technique are described in this same volume, we will describe 
preliminary results of an experiment to measure grain boundary motion in 3D and the analysis 
of the character of the grain boundaries involved.  In brief, a high energy x-ray beam illuminates 
a layer of a cylindrical sample, which latter is rotated in front of the beam so that diffractograms 
at three different offsets from the sample can be measured on 0.5° intervals.  The resulting 
dataset is analyzed using a forward modeling method to assign an orientation to each point on a 
regular grid in the illuminated layer.  This process is repeated for each layer for as many layers 
as required in order to build up a 3D image.  Each point is indexed independently and so when 
compact regions are observed with similar orientations in an annealed polycrystal, it is clear that 
the grain structure is being correctly characterized.   

 

                                    (a)                                                                (b) 

Fig. 10. (a) Microstructure of Al wire before annealing and (b) microstructure after 
annealing.  Each point is colored according to the components of the Rodrigues vector that 
describes the orientation. 

A grain growth experiment was performed by first characterizing a polycrystalline aluminum 
wire sample using HEDM.  Eleven layers were measured and analyzed; the resolution is given 
below.  The grain size was of the order of 150 microns, in a cross section of order 600 microns 
diameter.  Each layer spans the entire cross-section of the wire.  The sample was then exposed to 
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elevated temperature in order to induce grain growth by annealing in increments of about 8oC 
for ten minutes, then allowing the microstructure to stabilize to room temperature. The final 
anneal put the sample at ~70 oC for about 15-20 minutes. A representative layer is shown both 
before and after the annealing in Fig. 10, which at first glance suggests that there was no change 
in the grain boundary network. 

That there was, in fact, boundary motion is most easily seen in Figure 11, which shows the 
difference in orientation (reduced to a rotation or misorientation angle), point by point, in the 
same slice through the structure.  Most points did not change orientation.  Those points that did 
change orientation are located next to a grain boundary, so grain boundary motion is clearly 
detectable from the orientation change in their wake.  Only about 20% of the boundaries in the 
measured volume exhibited appreciable motion. 

 

Fig. 11.  Differential plot of the microstructure of the Al wire in layer 10, before and after 
annealing.  Each point is colored according to the extent of orientation change during the 
annealing experiment.  Boundaries that have moved are evident from the orientation 
change in their wake. 

In order to analyze the grain boundary character, the image was analyzed with the help of the 
CGAL package (2010).  This computational geometry package has a variety of tools for analysis 
of images and generation of meshes.  Boundary points were interpolated between layers due to 
the anisotropic nature of the resolution, with 20 microns between layers versus 4 microns in-
plane resolution.  The resulting points were then smoothed using a 10 micron radius averaging 
filter, i.e., boundaries were re-sampled so that each sampled point is located at the average 
position of the nearest neighbors within a 10 micron radius.  The Point Set Processing tools were 
used to extract grain boundary normals directly from the image and sorted according to the 
extent of boundary motion, Pierre et al. (2010).  All boundary points moving more than 10 
microns across annealed states are considered to have non-zero boundary motion.  The 3D mesh 
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is generated by first converting our triangular grid of approximately 4 micron resolution into a 
rectangular grid of 2 microns.  The 3D Mesh Generation tool was used on the voxelized data set 
to generate a surface mesh that represents the grain boundary network, Rineau et al. (2010). No 
further clean up or smoothing was done to the boundaries of the 3D mesh.  The normal for each 
boundary was then transformed from the measurement frame to the local crystal frame for each 
side.  Figure 12 shows the distribution of normals for (a) the set of boundaries that did not move 
and (b) the set of boundaries that did exhibit measurable motion.  For this plot, lattice 
misorientation is not considered and, given the cubic crystal symmetry of aluminum, only one 
stereographic triangle is required to represent the normals.  The two distributions are similar but 
(close-packed) {111} planes are more represented in the sessile boundaries whereas {100} 
planes are favored by the mobile boundaries.   

 

 

  

Fig. 12(a).  Grain boundary normals for those 
boundaries that did not exhibit any measurable 
motion during grain growth. 

Fig. 12(b).  Grain boundary normals for those 
boundaries that moved during grain growth. 

We can also analyze grain boundary behavior in greater detail, according to the full five degrees 
of freedom of grain boundaries.  This topic been thoroughly explored in a number of different 
materials by first defining a suitable combination of the parameters.  We follow the previously 
established convention of first binning by lattice misorientation and plotting a stereogram for 
each misorientation that displays the population of boundaries or some property.  
Misorientations were binned in Euler space, using the cosine of the second angle to obtain 
constant volume cells and normals were binned in spherical angles, again using the cosine of the 
co-latitude angle for constant cell area.  A resolution of 10° in all five parameters was used and 
the units are multiples of a random (uniform) density.  Figure 13 shows two such sets of 
boundary populations for the Σ3, Σ5, Σ7, Σ9, Σ11, Σ13b, Σ19a, Σ27a, and Σ27b types, again 
divided into those that did not move, Fig. 13a and those that did exhibit motion, Fig. 13b.  The 
[100] direction points to the right (east) in each figure, [010] up (north) and [001] out of the 
page.  The misorientation axis is located near to [100], in the [100]-[110]-[111] triangle, such 
that pure twist boundaries have normals coincident with the misorientation axis and pure tilt 
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boundaries are perpendicular to the axis.  The Σ3 type is present above random in the sessile 
boundaries but less so for the boundaries that moved; the pattern in each stereogram is similar.  
For Σ5 boundaries, the two distributions are almost complementary with more tilt boundaries 
moving, and more twist boundaries sessile. Σ7 boundaries are more frequent in moving 
boundaries and are close to tilt configurations.  In the Σ9, Σ11, Σ19a and Σ27a types, there are 
more moving boundaries with {100} normals (hence, mixed tilt-twist) compared to the sessile 
boundaries; the Σ19a type shows additional normals in the moving boundaries approximately on 
a small circle between (100) and (010).  The distributions of the Σ13 boundaries is close to 
random in both cases although there is hint of a similar pattern to that observed for the Σ7 type.  
The distributions for the Σ27b type are non-random and similar for the moving and sessile 
boundaries. 

 

Fig. 13.  (a) Grain Boundary Character Distribution of the boundaries that did not move, 
for several different CSL boundary types.  From top left to bottom right, the 
misorientation types are Σ3, Σ5, Σ7, Σ9, Σ11, Σ13b, Σ19a, Σ27a, and Σ27b. 
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Fig. 13. (b) Grain Boundary Character Distribution of the boundaries that did move, for 
several different CSL boundary types.  From top left to bottom right, the misorientation 
types are Σ3, Σ5, Σ7, Σ9, Σ11, Σ13b, Σ19a, Σ27a, and Σ27b. 

3. SUMMARY 

This paper has reviewed some examples of recent developments in characterization and analysis 
of microstructures and microstructural evolution in three dimensions.  For analyzing the linear 
sizes of objects in images such as grains, the measurement of mean width has been described.  
For detailed examination of grain boundaries moving under the action of various driving forces, 
the application of five parameter grain boundary character distributions has been illustrated.  
Future work will aim to test the applicability of mean width measurement via use of the 
MacPherson-Srolovitz theory to quantitative modelling of grain growth.  The analysis of grain 
boundary motion observed in experiments will be compared to both experimental and 
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theoretical literature.  Olmsted et al. (2009) have, for example, published detailed results on 
grain boundary mobility in fcc metals using molecular dynamics. Especially at low 
temperatures, they found that some boundaries exhibited essentially negligible mobility.  The 
observation that only certain boundaries moved may, however, have other physical origins such 
as the presence of low angle boundaries in certain grains that implies residual stored energy. 
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