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Abstract

We present experimental validation of a method for estimating three-dimensional (3-D) relative numerical populations of grain
boundaries from measurements of individual two-dimensional (2-D) cross-sections. Such numerical populations are relevant to network
topology and the modeling of intergranular failure modes in grain boundary engineered materials, and are distinct from geometrical pop-
ulation measures such as area per volume. We examine 3-D reconstructions of stainless steel and copper, with varying populations of
twin-related boundaries, generated by serial-section electron backscatter diffraction and high-energy X-ray diffraction microscopy. We
show that 2-D length fractions, 2-D number fractions and 3-D number fractions are all distinct quantities when grain boundary type
is correlated with grain boundary size. We also demonstrate that the last quantity may be reliably inferred from the first two, provided
the experimental spatial resolution is much finer than the grain size, eliminating the need to use 3-D experimental methods to access at
least some information about 3-D network properties. Many of the R3 boundaries are extremely complex, with highly re-entrant shapes
that can intersect a sample plane many times, giving a false impression of multiple separate boundaries.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Materials science is greatly concerned with statistical
measurements of microstructure, be it the distributions of
grain sizes and shapes, crystal orientations, dislocations or
minority-phase inclusions. Recently, microstructural stud-
ies have been pushing more and more into three dimensions,
based on the recognition that two-dimensional (2-D) mod-
els can miss a great deal of physically important structure
and behavior. Efforts to push into three dimensions have
been facilitated by developments in experimental equipment
and technique (e.g. serial-section electron backscatter dif-
fraction (EBSD) [1–6] and three-dimensional (3-D) X-ray
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techniques [7–9]), as well as improvements in computation,
including direct comparison to experiments and/or analysis
of experimental data [10–12].

The third dimension often reveals structural information
that is difficult or impossible to glean from 2-D measure-
ments or simulations. This is particularly important for
behavior dependent on topological connectivity or percola-
tion properties, which can behave markedly differently in
different dimensionalities. For example, the notion of a
twin-limited microstructure, with a maximal number frac-
tion of R3 boundaries separating islands of R9 boundaries
in a cubic polycrystal, is only a meaningful concept in two
dimensions [13]. Historically, the problem of measuring
3-D properties from 2-D samples led to the long-estab-
lished field of stereology [14–16]. Certain quantities, such
as the volume fraction of a given phase, can be reliably
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estimated from certain experimentally accessible quantities,
such as the fraction of points randomly chosen on a sample
plane that happen to land in that phase. Classical stereol-
ogy accumulated many such rules, with the virtue of extre-
mely broad applicability and negligible bias, assuming a
properly selected sample. Classical stereology forms a start-
ing point for modern efforts to develop 3-D microstructural
models that are consistent with statistical measurements
[17–20].

Unfortunately, many quantities lack an unbiased classi-
cal stereological estimator. This is especially true for quan-
tities that are more topological than geometrical, such as
the number density of extended objects with complex
shapes, or the sizes of connected grain boundary clusters
of certain crystallographic types. While the number density
per volume (NV) of compact shapes may be estimated using
the dissector technique [21], this method is not always con-
veniently available, nor does it apply in a straightforward
way when complex, nonconvex shapes are involved. Two
objects that appear to be distinct on a pair of nearby planes
may be parts of a single, larger object.

The connectivity of specific types of grain boundaries is
difficult to measure, lacking even a rough classical stereol-
ogical analogue. Yet such connectivity significantly affects
a material’s ability to withstand grain-boundary-related
failure and degradation, including thermal coarsening,
stress-corrosion cracking and impurity diffusion [22–26].
Theories that describe this behavior [27–30] are based on
the number fractions of certain grain boundary types.
Number fractions are distinct from the more commonly
cited area fractions. When counting number fractions, a
single contiguous surface separating two grains counts as
one unit, regardless of its area or shape. Thus the number
fraction is concerned with relative values of NV for different
boundary types, while the area fraction is concerned with
area per volume (AV), irrespective of how many individual
boundaries are involved.

Unfortunately, while AV is easily derived from the length
per area LA using classical stereology [14,16], NV is more
problematic and cannot be directly estimated from the
number per area NA without independent information
about the mean caliper diameter D, which is difficult to
determine without making assumptions about the shapes
of the objects being measured. Lacking a dissector, one is
left with rough estimates using formulae like NV ¼ kN 2

A=
NL (NL being number of intersections per length for a
one-dimensional (1-D) sample taken from the 2-D cross-
section) [14]. Unfortunately, both D and the dimensionless
coefficient k in this relation depends on the a priori
unknown shape of the object being sampled. Values for D
and k are tabulated for some simple, compact shapes
[14,16], but for complex, re-entrant shapes this method is
generally not applied because its biases are too poorly
understood.

Such difficulties partly explain why most stereology and
3-D modeling efforts concentrate on more geometrical
quantities such as grain size distributions, dislocation den-
sity measured in number per area and AV for different crys-
tallographic grain boundary types. In this last case, it
makes sense to define grain boundary types in terms of
the full five macroscopic degrees of freedom, with three
defining the misorientation and two describing the local
boundary plane normal. Thus the quantities derived in
these studies are usually area per volume per differential
element in five-dimensional space [31]. Such geometrical
quantities are important in understanding, for example,
the strength of a material since they are related to the prob-
ability that a dislocation will encounter an obstruction
when it travels a given distance. The success of the empir-
ical Hall–Petch relation [32] is testament to the value of
such analysis.

However, not all material failure and degradation mech-
anisms are so directly linked to purely geometrical quanti-
ties; sometimes topological properties are at least as
important. Consider intergranular stress corrosion crack-
ing, a failure mechanism that propagates essentially entirely
through grain boundaries as it progresses toward breaking
a material in two. If this propagating crack encounters a
single boundary, or even a single region within a single
boundary, that is exceptionally resistant to cracking (e.g.
because it has a crystallographically coherent coincident-
site-lattice (CSL) structure), then the entire process can be
slowed.

If the material has no spanning 2-D manifold of suscep-
tible boundary area, then the crack must break at least one
of the highly resistant boundaries if it is to split the material
into two pieces. In this simplified model, each boundary is
as strong as its strongest link, and we term a boundary “spe-
cial” if its misorientation allows such a strong link to exist at
some point along its surface. Our results below suggest that
such special boundaries may very often contain significant
coherent area, despite the convoluted appearance of some
of the 2-D cross-sections of the boundary. This definition
is convenient for our purposes and is specifically relevant
to the class of materials we have considered, which feature
complex high-order twinning and highly non-planar bound-
aries. It allows us to classify boundaries according to their
easily measured misorientation, which is roughly constant
over the area of the boundary. The other two degrees of
freedom (the boundary plane normal) may vary wildly over
the same area and may even be discontinuous in the case of
a faceted boundary. Our definition of “special” is thus
appropriate to a topological description of grain boundary
networks. By this we mean that our classification scheme
relies on the characteristics that are essentially constant
over the entire area of a topologically defined boundary
and do not change when the shape of the boundary is con-
tinuously varied.

Our approach is distinct from the five-degrees-of-free-
dom definitions used in more geometrical descriptions
[18,31,33–35]. For materials such that most of the bound-
aries (even those with “special” misorientations) are rather
flat, the five-degrees-of-freedom description is likely more
appropriate. Of course, both descriptions may be used in
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the study of a single material, depending on whether one is
interested more in the topological network structure or in
the detailed geometrical statistics. A complete understand-
ing of the efficacy of grain boundary engineering likely
requires both approaches.

Our rationale for classifying boundaries by their misori-
entations is based on a mathematical idealization of the rel-
evant failure processes; real crack propagation is not so
simple. Once all the nearby boundary area is degraded,
stress concentration will ensure that even the most resistant
boundary element will eventually fail. Yet this notion of
boundary connectivity does seem to bear directly on the
stress-corrosion process. Previously [36], we reported that
two versions of the same nickel alloy, differing only in grain
boundary content and network connectivity, showed both
qualitative and quantitative differences in their response
to intergranular stress corrosion cracking.

Thus the determination of 3-D topological properties of
grain boundary networks is both challenging and impor-
tant. The first step in such characterization is to determine
the 3-D number density NV of the various boundary types,
the relative populations of which are essential to mathe-
matical models of the network connectivity [27–30]. In past
work [37] we introduced a method to estimate NV from a
single 2-D cross-section by counting in such a way that
two similarly scaling biases roughly canceled each other
out. The probability of a boundary intersecting a sample
plane is proportional to the square root of its area, as is
the mean length hLi of the resulting intercept trace, assum-
ing that the boundary is observed. Should some types of
boundaries be, on average, much larger than others, then
this introduces a bias which can be approximately cor-
rected by asserting NV = k0NA/hLi, k0 being a dimension-
less shape-dependent factor.

The method’s validity rests on some assumptions about
the 3-D shapes of the boundaries. We assumed that k0 is
nearly the same for different types of boundaries – or, at
least, that its variations are small enough that our method
produces a better estimate than applying no correction at
all and assuming NV / NA. Even if k0 is not known pre-
cisely, if its dependence on grain boundary type is weak,
then the residual systematic error for ratios of two NV val-
ues could still be quite low. Our previous work [37] explic-
itly calculated the relevant shape-dependent constants for
elliptical and rectangular shapes, and demonstrated that
the variation was relatively small over a reasonably wide
range of aspect ratios. The validity for more general shapes,
including complex re-entrant shapes that may intersect a
sample plane in two or more distinct places, was left as an
open question.

Now we present experimental 3-D reconstructions of
boundary networks in materials with relatively high densi-
ties of special boundaries. Our results show that our bias
correction works surprisingly well at estimating the relative
NV of the different boundary types, despite the fact that
many of the special boundaries have bizarre, convoluted,
re-entrant shapes that seem to violate the assumptions in
the derivation. Confirming our original estimates [37], we
find that the 3-D number fractions are very different from
the 2-D number fractions, such that a R3:R9 ratio close to
3:1 in two dimensions is often closer to 2:1 or even 1:1 in
three dimensions, affirming the topological importance of
R9s in a 3-D network with a high incidence of complex
twinning [13,38]. The method seems to work especially well
when the grains are much larger than the scan resolution,
suggesting that residual systematic errors are more related
to experimental limitations than to the algorithm itself.

2. Methods

Two distinct data sets were analyzed. The first was a
serial-section EBSD measurement of stainless steel, with a
moderate density of complex twinning yielding R9 and
R27 boundaries (detailed results in Section 3). The second
used non-destructive high-energy diffraction microscopy
(HEDM) to reconstruct samples of copper using synchro-
tron X-ray methods [8,9]. Two copper samples were used
– one with a conventional moderately twinned microstruc-
ture (the “single-step” processed material from Ref. [39]),
and one processed using grain-boundary-engineering tech-
niques (“four-step” processed material [39]) to produce
large populations of highly interconnected R3n boundaries.
Sample 2-D slices are shown in Figs. 1 and 2. The copper
was back-extruded into conical shapes as described previ-
ously [39], either in a single step with 60% equivalent plastic
strain (conventional) or in four steps with 20% equivalent
plastic strain each (engineered). Anneals of 500 �C for
30 min were performed after each step. The conventional
and engineered materials had grain sizes of 16 and 28 lm,
respectively (counting R3 boundaries as grain boundaries),
and CSL boundary length fractions of 48 and 66%, respec-
tively, as measured by EBSD. Both had nearly random tex-
tures. The two copper samples differed markedly in the
degree of development of their twin-related domains
(TRDs), in a manner typical of the differences between con-
ventional and grain boundary engineered material
[30,36,40]. The TRDs in the conventional copper often were
either singleton untwinned grains or exhibited a simple
back-and-forth twinning pattern. TRDs in the engineered
copper frequently exhibited much more complex twinning
patterns, yielding convoluted R3 grain boundaries and
much larger populations of R9 and R27 boundaries.

The stainless steel (304SS) samples were prepared and
analyzed as described in detail in Ref. [41]. The material
was heat treated (982 �C for 23.5 h, followed by 675 �C
for 8 h), in part to coarsen the grains to improve the ability
of scanning EBSD to resolve the grains. Nanoindentations
were made at the corners of a 2 mm square to allow coarse
registration of each scan. After each 2.3 mm � 2.3 mm
EBSD scan at 5 lm resolution, the sample was polished
with colloidal silica for �5 h at 20 rpm to remove 6.5 ±
2.2 lm of material, as measured by the change in depth of
the nanoindentations. The nanoindentations were renewed
for each iteration. Once the procedure was established, 41



Fig. 1. (a) Wide-area view of a typical slice from the EBSD measurement of steel. Red lines are R3 grain boundaries, black lines are random boundaries
and other colors code for other CSL boundaries. Background color is grain orientation represented as a linear map from the imaginary parts of the
minimum-angle quaternion to (r,g,b) color. This color mapping is one-to-one but discontinuous, accounting for the small number of apparently speckled
grains. (b) Close-up of raw data showing small, apparently disconnected twin grains and single-pixel noise at grain boundaries. (c) The same area after
recursive small-grain cleanup. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Typical slices from HEDM of the two copper samples. (a) Grain boundary engineered. (b) Conventionally processed.
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such etches were performed, yielding 42 EBSD scans, span-
ning a depth of 267 lm. The actual measured interlayer
spacings were used in the 3-D reconstruction rather than
the average interlayer spacing of 6.5 lm. For the data pre-
sented herein, this only has a small effect on the 3-D perspec-
tive view shown in Fig. 5e and the scatter plots in Fig. 6,
while all other results are completely unaffected. The mean
interlayer spacing is only slightly larger than the scan spac-
ing of 5 lm; therefore, the probability of failing to see grains
that fell between sample layers is not much more than the
probability of missing grains between EBSD scan lines.
The characteristic sizes of grains and grain boundaries were
much larger than the resolution, an average grain boundary
trace being 77 lm in length.

The EBSD data sets were filtered to remove single-pixel
noise and apparently disconnected twins appearing at the
resolution limit of the scan (Fig. 1b and c), using a recur-
sive small-grain-removal algorithm. Grains with apparent
areas of 7 pixels (175 lm2) or less were eliminated, the ori-
entations of all of their pixels being overwritten with those
of a representative orientation of the largest neighboring
grain. In rare cases, none of the neighboring grains was lar-
ger than 7 pixels. In such cases the grain was left untouched
and the process was iterated until no sub-threshold grains
remained. The cleanup algorithm will likely alter the statis-
tics significantly on a scale below �(175 lm2)1/2 = 13 lm,
but should have little effect at larger sizes. The vast major-
ity of the area was dominated by grains much larger than
this.

Interlayer registration was performed in two steps, the
first using easily identified triple junctions seen in the
EBSD scans. We identified 17–20 corresponding triple
junctions in each adjacent pair of images, yielding an
approximate point-to-point mapping function represented
by an ordered pair of second-order polynomials in x and
y. v2 analysis (Table 1) revealed that an affine transforma-
tion was significantly less precise than a second-order
transformation, while increasing beyond second order
had no significant effect on the residual error, which was
reduced to 1.14 pixels RMS across the entire scan area,
some of which is surely due to the tilts of the triple junction
lines. The inadequacy of the affine transformation suggests
that distortions arising, for example, from perspective dis-
tortions or nonlinearities in the SEM scanning coils are
small yet significant when single-pixel precision is desired.

The scan registration was further refined through a Nel-
der–Mead simplex direct search using custom code written
in MATLAB, varying the 12 fit coefficients of the second-
order polynomial to maximize the fraction of overlapping
area such that corresponding pixels had nearly matching



Table 1
Justification of the second-order polynomial fit and estimated residual local distortions.

Polynomial degree 1 2 3 4

Mean squared error per DOF (pixels) 1.99 ± 0.16 1.30 ± 0.09 1.23 ± 0.08 1.20 ± 0.08
RMS error (lm) 7.0 5.7 5.6 5.5

For each of the 41 pairs of adjacent layers, 17–20 corresponding pairs of (x,y) locations were hand-chosen from easily recognizable triple junctions. Two-
dimensional polynomials of degrees ranging from 1 to 4 were curve fit to this measured distortion. We report the mean squared error per degree of freedom
(DOF), including the standard error of the mean, along with the root-mean-square (RMS) residual distortion. Improvements beyond the quadratic model
were insignificant.
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orientations. After optimization, this fraction was typically
about 90%. The mean interlayer misorientation was com-
puted from these points, allowing us to correct the crystal-
lographic reference frame mismatch between the two
layers. The accumulated pairwise reference frame shifts
(including the polynomial shifts in the scan reference
frames and the rotations of the crystallographic reference
frames) were collected into a single data structure, such
that all 42 layers were represented in a consistent 3-D ref-
erence frame with interlayer registration errors of �1 pixel
despite slight nonlinear distortions of the images (Video 1,
online).

We had difficulty with the wide range of length scales in
the steel’s microstructure. While many twin grains were
many pixels in width, some were much smaller, comparable
to the 5 lm scan resolution. The smallest twins were often
disconnected in the discrete scan (Fig. 1b) and, worse yet,
were often parallel to similar-sized twins only a few pixels
away. Topologically segmenting such a data set can be
extremely challenging. Before the small-grain cleanup algo-
rithm, the number fractions were dominated by these small
Table 2
Grain boundary populations and lengths in 2-D and 3-D for the stainless steel d
fractions from purely 2-D data.

Random R3 R9

Traces 27,654 ± 166 30,939 ± 176 8982 ± 95
Boundaries 4211 ± 65 2025 ± 45 1768 ± 42
hLi (lm) 42.3 ± 0.3 129.2 ± 0.7 35.2 ± 0.4
hLi/hLRandomi 1 3.06 ± 0.03 0.83 ± 0.0
2-D%L/Ltotal 19.90 ± 0.04 68.05 ± 0.04 5.38 ± 0.0
2-D%N/Ntotal 36.3 ± 0.2 40.6 ± 0.2 11.8 ± 0.1
Actual 3-D%N/Ntotal 42.2 ± 0.5 20.3 ± 0.4 17.7 ± 0.4
Estimated 3-D%N/Ntotal 48.6 ± 0.6 17.8 ± 0.2 19.0 ± 0.4

Table 3
As Table 2, for the grain boundary engineered copper.

Random R3 R9

Traces 58,483 ± 242 44,454 ± 211 19,357 ± 139
Boundaries 19,775 ± 141 8407 ± 92 6159 ± 78
hLi (lm) 19.29 ± 0.09 35.34 ± 0.16 20.69 ± 0.16
hLi/hLRandomi 1 1.832 ± 0.015 1.073 ± 0.01
2-D%L/Ltotal 32.28 ± 0.04 44.95 ± 0.04 11.46 ± 0.03
2-D%N/Ntotal 41.22 ± 0.13 31.33 ± 0.12 13.64 ± 0.09
Actual 3-D%N/Ntotal 48.32 ± 0.25 20.54 ± 0.20 15.05 ± 0.18
Estimated 3-D%N/Ntotal 48.91 ± 0.41 20.30 ± 0.19 15.09 ± 0.22
fictitiously disconnected boundaries. In three dimensions,
the imperfect registration and the fact that many of the
twin planes were close to the sampling plane created a dan-
ger of misidentification of one twin with its neighbor. Thus,
a simple stitching together of similarly oriented neighbor-
ing voxels into 3-D grains did not work well on this data
set.

We solved this problem by (i) setting the size cutoff in
the recursive small-grain cleanup algorithm to eliminate
the vast majority of the fictitiously disconnected bound-
aries and (ii) developing an anisotropic thresholding
method for identifying when two grain boundary traces
from neighboring layers should be identified as belonging
to the same boundary. This procedure and its associated
parameters were developed through trial and error as we
watched the performance on common problematic situa-
tions. The aim was to develop a simple algorithm that ade-
quately avoided both false positives and false negatives.
There are, no doubt, many minor variations on our algo-
rithm that would produce essentially equivalent results.
The size, number and aspect ratios of the windows can
ata, including in the last row the stereological estimate of the 3-D number

R27 R1 Other CSL Total

2739 ± 52 2723 ± 52 3241 ± 57 76,278 ± 276
544 ± 23 785 ± 28 642 ± 25 9975 ± 100

37.4 ± 0.8 47.2 ± 1.0 49.7 ± 0.9 77.0 ± 0.3
1 0.89 ± 0.02 1.12 ± 0.03 1.18 ± 0.02 1.82 ± 0.01
2 1.75 ± 0.01 2.19 ± 0.01 2.74 ± 0.02 100

3.6 ± 0.1 3.6 ± 0.1 4.2 ± 0.1 100
5.5 ± 0.2 7.9 ± 0.3 6.4 ± 0.2 100
5.4 ± 0.2 4.3 ± 0.2 4.8 ± 0.2 100

R27 R1 Other CSL Total

11,968 ± 109 3011 ± 55 4626 ± 68 141,899 ± 377
4111 ± 64 944 ± 31 1532 ± 39 40,928 ± 202

19.85 ± 0.19 21.2 ± 0.4 20.3 ± 0.3 24.63 ± 0.07
1 1.029 ± 0.012 1.10 ± 0.02 1.052 ± 0.017 1.277 ± 0.010

6.80 ± 0.02 1.82 ± 0.01 2.69 ± 0.01 100
8.43 ± 0.07 2.12 ± 0.04 3.26 ± 0.05 100

10.04 ± 0.15 2.31 ± 0.07 3.74 ± 0.09 100
9.73 ± 0.18 2.29 ± 0.08 3.68 ± 0.11 100



Table 4
As Table 2, for the conventionally processed copper.

Random R3 R9 R27 R1 Other CSL Total

Traces 306,727 ± 554 90,379 ± 301 33,749 ± 184 20,768 ± 144 15,225 ± 123 27,326 ± 165 494,174 ± 703
Boundaries 167,887 ± 410 37,551 ± 194 18,660 ± 137 11,938 ± 109 7634 ± 87 15,097 ± 123 258,767 ± 509
hLi(lm) 13.06 ± 0.03 19.20 ± 0.07 13.39 ± 0.08 12.54 ± 0.10 14.66 ± 0.13 13.22 ± 0.09 14.24 ± 0.02
hLi/hLRandomi 1 1.470 ± 0.012 1.026 ± 0.010 0.961 ± 0.010 1.123 ± 0.013 1.013 ± 0.010 1.090 ± 0.008
2-D%L/Ltotal 56.91 ± 0.03 24.66 ± 0.03 6.42 ± 0.02 3.70 ± 0.01 3.17 ± 0.01 5.13 ± 0.01 100
2-D%N/Ntotal 62.07 ± 0.07 18.29 ± 0.05 6.83 ± 0.04 4.20 ± 0.03 3.08 ± 0.02 5.53 ± 0.03 100
Actual 3-D%N/Ntotal 64.88 ± 0.09 14.51 ± 0.07 7.21 ± 0.05 4.61 ± 0.04 2.95 ± 0.03 5.83 ± 0.05 100
Estimated 3-D%N/Ntotal 66.21 ± 0.25 13.27 ± 0.09 7.10 ± 0.08 4.67 ± 0.07 2.93 ± 0.05 5.82 ± 0.07 100
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be altered, for example. Fortunately, the most important
statistical results (e.g. those to be presented in Tables 2–
4) seem to depend little on such details.

Fig. 3 illustrates some of the problematic situations.
Each 2-D layer has contiguous paths separating two essen-
tially constant crystal orientations; we will call these paths
boundary traces, and they correspond to the intersection of
part of a grain boundary with the sample plane. In
Fig. 3(a), we see four R3 boundaries intersecting two suc-
cessive sample planes at boundary traces 1, 2, 3 and 4,
and 10, 20, 30 and 40. The interlayer matching algorithm
should identify 1 with 10, 2 with 20, etc. To avoid misiden-
tifying 1 with 20, the algorithm must have a sense of direc-
tion; it must know that trace 1 has the grain orientation
represented as white to its left, with gray to its right, while
20 has the order reversed. To allow for slight interlayer ref-
erence frame errors, we identify orientations from adjacent
layers as being equivalent if they are within 5� of one
another. This allowed for local grain reference frame orien-
tation distortions while still being quite selective: the prob-
ability of two random misorientations both being less than
5� in a cubic crystal is less than 10�6.

The algorithm must have some sense of relative proxim-
ity, with nearer traces identified preferentially, so that 1 will
be correctly identified with 10 and not 30. The algorithm
must also be able to handle cases such as in Fig. 3b, with
boundaries tilted at a shallow angle with respect to the
sample plane. Thus, if there are no compatible traces very
close by, the algorithm looks for traces further away. In the
case of extremely closely spaced, highly tilted boundaries,
the distance from trace 1 to trace 30 in Fig. 3a may be less
than that from trace 1 to trace 10. Our algorithm, and vir-
Fig. 3. Illustrating some of the situations encountered by the algorithm that d
the same 3-D boundary. (a) Closely space parallel twins. (b) Twin boundaries t
which two 2-D boundary traces are revealed to be part of the same boundary
tually any simple modification thereof, will misidentify the
boundaries in this case. Fortunately, the spacing between
sample planes is much less than the typical twin bilayer
thickness (e.g. the distance from trace 1 to trace 3), so we
expect that this case is rare. Fig. 3c shows a schematic of
a common situation in which another sample plane reveals
that two apparently distinct boundaries are actually joined
in three dimensions. In this case, traces 1 and 2 are part of
the same boundary, as revealed by the U-shaped trace in
the next layer. The algorithm will label all traces contigu-
ous with either trace 1 or trace 2 as belonging to a single
3-D boundary. Applied to the whole data set, this reveals
that many closely spaced parallel twin boundaries appear-
ing in a cross-section, as in Fig. 3a, are in fact parts of a
single R3 boundary with a very complex 3-D shape, sepa-
rating two grains interlaced like the fingers of clasped
hands.

Boundary traces that satisfy the two criteria (being
nearly parallel (not antiparallel) and having compatible
grain orientations) must also be spatially near each other
in order to be counted as being parts of the same boundary.
As illustrated in Fig. 4, we used a hierarchical anisotropic
measure of spatial proximity. Centered on each pixel-edge
segment of each boundary trace, we placed a rectangular
window specifying the maximum range allowed for the cen-
ter of a similar segment from an adjacent layer. If no com-
patible segment was found with the smallest window size,
the size was increased through a series of three window
sizes, allowing more distant segments to be included. In
the example, the highlighted segment (solid arrow) has no
segments from the next layer (dashed lines) within its first
window, but two segments (shown by dashed arrows)
etermines when boundary traces in various 2-D cross-sections are parts of
ilted at a very shallow angle with respect to the sample planes. (c) A case in

in 3-D.



Fig. 4. Schematic of the hierarchical anisotropic thresholding algorithm
designed to minimize misidentifications while handling the cases shown in
Fig. 3.
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within its second window. This was repeated through three
successive windows of sizes 20 lm � 10 lm, 30 lm � 10 lm
Fig. 5. (a–d) A series of four aligned EBSD images from the steel sample, showi
2), despite the appearance of several of the cross-sections. (e) A perspective vi

Fig. 6. Scatter plots of total boundary area and nmax (the maximum number of
grain boundaries, as determined from the 3-D reconstruction of the steel sam
and 45 lm � 15 lm. The purpose was to allow identifica-
tion of boundaries that happened to be tilted at glancing
angles while avoiding misidentification of closely spaced
parallel twins as drawn in Fig. 3a. The window was aniso-
tropic because we wanted to minimize the window area
(in order to minimize random false positives) while still cap-
turing the case in Fig. 3b, in which the corresponding traces
are separated by fairly large distances in the direction per-
pendicular to the traces.

Finally, the 3-D boundaries were constructed out of the
2-D boundary traces identified in each layer. If, using the
procedure from Fig. 4, any segment from a boundary trace
was matched to a segment from a boundary trace in an
adjacent layer, then those two boundary traces were deemed
ng a single R3 boundary (arrows) separating only two grains (labeled 1 and
ew of the identified boundary traces defining this single R3 boundary.

appearances of a boundary on a single sample plane) for the six classes of
ple. Numbers indicate histograms of nmax.
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to be parts of the same 3-D boundary. Once all such pair-
wise matches were collected, we constructed the minimal
equivalence classes, with each 3-D boundary represented
as a set of 2-D boundary traces from a number of different
layers.

Because of the situation represented in Fig. 3c, it was
very common for single 3-D boundaries to include multiple
traces on various single layers. Fig. 5 shows a particularly
striking example of this. Fig. 5a highlights (with an arrow)
a R3 boundary trace separating two grains (regions labeled
1 and 2). In the very next layer (Fig. 5b), the same bound-
ary appears as two boundary traces separating three grains,
while in the next layer (Fig. 5c), there are three boundary
traces separating what look like four grains, including a
twin grain that looks like it is isolated inside the parent
grain. In yet another layer (Fig. 5d), this “isolated” grain
joins with another, differently oriented twin grain to create
a R9 boundary (in green). However, a comparison of all
four images shows that all of the highlighted boundary
traces are parts of a single R3 boundary separating just
two grains – a medium-sized twin embedded in a much lar-
ger grain. Fig. 5e shows a perspective rendering of all of the
measured boundary traces from this same boundary,
revealing a remarkably complex, highly nonconvex shape
with freely mixed coherent (i.e. flat and parallel to the
twin’s (111) natural plane) and incoherent areas and
regions of positive and negative Gaussian curvature, as
well as gaps where the twin grain is bounded by R9 and
other boundaries. We reiterate that this is a single grain
boundary. It is not even the entire boundary (it happened
to intersect the first layer in the sampled volume), nor is
it the only grain boundary to have such a bizarre appear-
ance. We include an animation of the reconstruction
(Video 1), in which it is quite easy to find R3 boundaries
with very unusual shapes by looking closely at various
regions and single-stepping forward and backward through
the frames.

We also performed 3-D HEDM X-ray reconstructions
on 0.9 mm diameter by 0.36 mm cylindrical samples of both
copper materials. This produced maps of the crystal orien-
tation at every point in a 3-D volume, with a resolution of
2.8 lm in the x and y directions and 4 lm in the z direction.
HEDM is a rotating crystal method applied to polycrystal-
line materials. It takes advantage of the high-brilliance
X-ray source at the Advanced Photon Source. The measure-
ments are done by recording the diffraction patterns pro-
duced by a planar, monochromatic X-ray beam incident
on a polycrystalline sample rotating on an axis perpendicu-
lar to the beam [8]. Conceptually, this is equivalent to per-
forming thousands of rotating single-crystal experiments
simultaneously. Different regions in the sample satisfy the
Bragg condition at different rotation angles, which, com-
bined with the location of the diffraction spots, defines the
crystallographic orientation for each region. The forward
modeling method [9] is applied to resolve the crystallo-
graphic orientation in each region. The sample space is tes-
sellated into small triangles, assumed to be single crystals or
to have constant orientation. Physically and geometrically
compatible diffraction spots are computationally generated
for a set of sampled orientations in SO(3) and compared to
the experiment. The orientation showing the most similarity
between simulated and experimental diffraction patterns is
considered the best match. The similarity metric has been
the amount of overlap between the simulated and the exper-
imental peaks.

For the HEDM measurements, much of the difficulties
encountered with the stainless steel data set did not arise,
for two reasons. First, the material itself lacked extremely
high-aspect-ratio twin grains �1 pixel in thickness, so the
size-filtering and anisotropic grain boundary segment
matching algorithms were not nearly so critical. Second,
by the very nature of the measurement and reconstruction,
all of the layers and crystallographic reference frames were
already aligned in three dimensions, so the more difficult
steps did not need to be performed and the thresholds for
proximity and misorientation could be tightened. The iden-
tification of 3-D grain boundaries used essentially the same
methods as in the steel sample, with a few exceptions. First,
all data more than 0.44 mm from the central axis were cut
out, owing to the very rapid drop in orientation confidence
beyond that radius. This eliminated essentially all of the
voxels with unacceptably low confidence and also removed
all of the data for surface material that could have been
damaged by the sample preparation. Second, the threshold
for removing small grains was reduced to a maximum of 3
pixels (or an area of 10.3 lm2) since the cleanup algorithm
was only needed to remove very small ambiguous regions
at grain boundaries. Third, since each layer was repre-
sented on an equilateral-triangular mesh, the anisotropic
edge-matching algorithm needed three distinct edge orien-
tations rather than two (as was the case for the square
EBSD scan). Finally, because of the tight tolerances on
interlayer registration and the consistently small interlayer
spacing, the anisotropic windows were only 1 lm � 1 lm,
5 lm � 5 lm and 20 lm � 10 lm, while the interlayer mis-
orientation threshold was set to 1� instead of the 5� thresh-
old used for the EBSD reconstruction.

3. Results

The boundaries were categorized according to the CSL
model, using Brandon’s criterion [42] for the maximum
angular deviation from exact coincidence. While the general
relevance of the CSL model has been debated [30,43,44],
there are undoubtedly some CSL misorientations relevant
for the structure and properties of face-centered cubic mate-
rials. Our ignoring of the unit normal in categorizing the
boundaries is consistent with the goals of our general
approach, as discussed in the introduction.

The categories we used were: Low-angle boundaries (R1,
tolerance 15�) (coded yellow in all graphics); R3 boundaries,
corresponding to the misorientation of a twin, and
undoubtedly of high physical importance in these materials
(red); R9 boundaries, which may or may not have enhanced
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properties relative to a random boundary but which are
essential for the incorporation of a high R3 population into
a complex, crystallographically consistent network (green);
other CSL boundaries from R5 through R29, a small popu-
lation of boundaries, some of which may be somewhat spe-
cial [41] but most of which probably have rather ordinary
physical properties (we tracked these to see if there was
any hint of specialness in the populations and size distribu-
tions) (blue); and all other boundaries, which we term
“random” (black). While some non-CSL boundaries have
been identified as having unusual physical properties, we
did not consider these in our analysis.

Judging by the observed resistance to corrosion [41],
boundaries likely to be “special” in the steel sample
include coherent (but not incoherent) R3 boundaries,
low-angle boundaries with misorientations well below
15�, some R5, R9 and R11 boundaries, and some non-
CSL boundaries with no obvious distinguishing crystallo-
graphic features.

Statistics describing the results are shown in Tables 2–4.
We define a trace as a 1-D intersection of a grain boundary
with one of the cross-sections, while a boundary is a set of
traces identified as being contiguous in three dimensions.
Traces that intersected the edge of the scan region were
not counted, nor were boundaries that either intersected
the edge of any of the scan regions or were present on
the bottom layer. The practice of eliminating boundaries
that intersected the bottom layer but allowing those that
intersected the top layer is consistent with the rationale
behind the dissector method: we want to count the volu-
metric number density of boundaries, and in essence we
are taking the lowest point in each boundary to represent
it. If that representative point is in the sample volume, then
the boundary is counted. Two-dimensional number frac-
tions for each class of boundaries are defined as the corre-
sponding fraction of the total number of traces, while 2-D
length fractions are calculated from the total lengths of all
traces, irrespective of how many individual traces are
involved. All quoted errors in the tables are derived entirely
from N1/2 counting statistics.

The differences between the number and length fractions
show a correlation between grain boundary size and grain
boundary type, i.e. the mean intercept length hLi is quite dif-
ferent for different types of boundaries. Thus we estimate
the relative 3-D boundary populations by applying the
approximate formula NV / NA/hLi, assuming the shape-
dependent k0 factors are roughly independent of boundary
type. The last row in each table shows the resulting estimate
of NV for each boundary type, scaled to sum to 100%. This
thus provides an estimate of the 3-D number fractions but
only uses information present in one 2-D cross-section at
a time. Comparison with the next-to-last row (which shows
the actual populations as counted in the full 3-D reconstruc-
tion) shows favorable results in all three cases – the esti-
mated 3-D populations are, within the error bars, as good
or better estimates of the actual 3-D populations than are
the 2-D number populations.
For the grain boundary engineered copper sample (Table
3), the agreement is extremely close, with practically all of
the residual discrepancy being explainable by the random
sampling error. This is also the sample with the largest
grains relative to the scan resolution, so that this is the data
set that should be least tainted by biases associated with the
small-grain-removal algorithm. Thus we suspect that the
biases inherent to the NV / NA/hLi estimate are very small,
validating our original assertion [37]. This interpretation is
supported by the fact that the two data sets with smaller
grains (Tables 2 and 4) show similar patterns of residual
biases: the last row in each table significantly overestimates
the random boundary population and underestimates the
R3 population, while the other boundary types tend to be
overestimated if hLi/hLRandomi is small (with a threshold
of about 0.9, with some variability from counting statistics)
and underestimated if hLi/hLRandomi is large. If our inter-
pretation is correct, then this pattern is created primarily
by the limited scan resolution and the small-grain cleanup
algorithm.

The results consistently show large R3/R9 ratios exceed-
ing 2.6:1 or even 3:1 in the 2-D numerical populations. After
correction, in all cases the random boundary population is
much higher, and the R3 population and R3/R9 ratio much
lower (1.1:1, 1.4:1 and 2.0:1), than would be obtained from
the 2-D number fractions. Statistical models of the connec-
tivity of highly twinned grain boundary networks [27–30]
show strong sensitivity to these population ratios, so it is
essential to understand and correct for this bias if we are
to understand 3-D network connectivity. Fortunately, the
results show that it is not necessary to perform complex 3-
D reconstructions to obtain good estimates of these popula-
tion ratios.

The magnitude of the bias on each boundary type is
given by the hLi/hLRandomi rows in Tables 2–4. For the
R3 boundaries, this quantity is invariably significantly
greater than 1, and it is the correction associated with
the large R3 boundaries that dominates the corrections to
the data. Low-angle (R1) boundaries are also significantly
larger than random boundaries, but the correction associ-
ated with this bias is much less dramatic, in part because
the R1 boundaries are much less plentiful than the R3s.
For the other classes (R9, R27 and other CSL boundaries),
the story is mixed: sometimes these boundaries are signifi-
cantly smaller than random boundaries, sometimes they
are significantly larger and sometimes the difference is
immeasurably small. Thus, if we were to suppose that spe-
cial boundaries tend to have low interface energies and, as
a result, larger areas than random boundaries, then we
would have to conclude that this analysis of the data
reveals little or no evidence that any of these boundaries
are special. Yet, at least for the steel samples, corrosion
tests indicated that some of the R5, R9 and R11 boundaries
were unusually resistant to degradation [41]. Thus statisti-
cal tests of specialness through such means as we are pre-
senting should be viewed with some skepticism. R5 and
R11 boundaries are so rare that such effects could very eas-
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ily be lost in the statistics. A more interesting open ques-
tion is whether these rare sometimes-special boundaries
may still play important roles in network connectivity
and material performance.

Finally, we consider the correlation between boundary
type and boundary shape, which enters into our stereologi-
cal correction method via the assumption that the average
shape-dependent factor k0 is roughly independent of bound-
ary type. Fig. 6 shows, for each class of boundaries, the rela-
tionship between its estimated area and its tendency to
appear multiple times in a single cross-section, using the
steel data for this example. We define nmax as the maximum
number of appearances a specific boundary makes with any
sampling plane. For example, a simple non-re-entrant shape
that only appears in a single contiguous trace in any single
layer will have nmax = 1, while a boundary that goes up
through the layers and reverses direction once to come back
down through some of the same layers, so that on some lay-
ers it appears in two distinct traces, will have nmax = 2.
Numbers printed on the graph give the histograms of nmax.
For this graphic we included all of the boundaries, including
those that intersected the edges and/or the top and bottom
surfaces, so that the largest boundaries would appear. Thus
some of the boundary areas and nmax values will be under-
estimates. The boundary areas encompass over four orders
of magnitude and are significantly correlated with nmax. But
more interesting is the variation in the distribution of nmax

with boundary type. The vast majority of the highly re-
entrant boundaries are R3s, including one outstanding
example that makes no less than 14 distinct appearances
on a single layer. This supports our claim that highly convo-
luted R3 boundaries are quite common in this data set, and
that the boundary shown in Fig. 5, far from being a lone
outlier, is just one of dozens of boundaries that are at least
as complex. It is quite common, as we have said, for closely
spaced parallel twin boundaries (shown schematically in
Fig. 3a) to in fact be parts of the same 3-D boundary, being
demonstrably connected in one or more layers. For the non-
R3 boundary types, typically only �1–2% (or close to 3%
for the low-angle boundaries) of the boundaries even have
an nmax of 3 or more, compared to 6.8% of the R3 bound-
aries. Even though 78% of the R3 boundaries have nmax = 1
and thus have relatively simple 3-D shapes, as the boundary
area exceeds a few thousand square micrometers, these
“simple” boundaries become less and less representative,
and the complex re-entrant shapes take over entirely for
boundaries larger than �105 lm2.

This has some interesting implications. First, it is clear
that simple models based on (for example) Voronoi-tessela-
tion initial conditions and/or purely curvature-driven
boundary evolution would have an extremely hard time
accounting for such boundary shapes. It is hard to envision
how boundaries like those shown in Fig. 5 could represent
free energy minima except in a very local sense, and
accounting for their shapes would have to incorporate some
fairly complex physics (e.g. pinning sites or extreme defect
density or stress gradients that cannot be easily seen by
the EBSD or HEDM methods, or dominance by kinetic fac-
tors such as the extremely low mobility of coherent sections
of a R3 boundary, such that all such boundaries are essen-
tially frozen in metastable states). This provides a caution-
ary tale for efforts to derive grain boundary energies from
boundary area populations or triple-junction angular distri-
butions. While such approaches undoubtedly have much
validity and have produced very good results [45,46], there
may be some materials and some boundary types that will
prove problematic. To address the question, we are devel-
oping studies of dihedral angle distributions, and their evo-
lution under annealing, for different triple junction types.

Second, our samples clearly violate one of the assump-
tions in the derivation of our stereological correction
method. Boundary shape is definitely correlated with
boundary type. So why does the correction work as well
as it does? Our original derivation [37] included this assump-
tion as a sufficient condition, but we have never addressed
the conditions necessary for our algorithm to produce good
estimates of the 3-D number fractions. Perhaps the fact that
over 93% of the R3 boundaries have nmax values of only 1 or
2 is responsible? While the highly complex, multiply re-
entrant boundaries are very striking, they are not very plen-
tiful in comparison to the entire sample size. Or perhaps the
method is more robust than we had first envisioned, for a
boundary that appears multiple times on one layer, and
would thereby be overcounted in a 2-D survey of numerical
populations in which it appears, is also less likely to intersect
a random sample plane than would be a flat boundary of the
same area – which would introduce an undercounting bias
of similar magnitude. This concept could be tested with
Monte Carlo calculations involving a variety of complex
boundary shapes.

4. Conclusions

We have presented reconstructions of two distinct mate-
rial compositions (stainless steel and copper), one with two
different processing histories (conventional and grain
boundary engineered), using two different experimental
methods (serial-section EBSD and HEDM). We have intro-
duced an algorithm designed for robust identification of
boundary traces between sample planes in the face of such
difficulties as nonlinear distortions, closely spaced parallel
twins and grains with widths comparable to the scan resolu-
tion. The resulting reconstructions reveal complex networks
of grain boundaries, including some grain boundaries (espe-
cially R3s) with extremely complicated 3-D shapes. These
boundaries dramatically violate some common assump-
tions – that grains are generally convex, roughly equiaxed
and simply connected, that individual grain boundaries
are simply connected and nearly planar, and that boundary
traces seen in 2-D cross-sections usually represent distinct
boundaries. While such anomalous boundaries are numeri-
cally not very common, they are typically so large that they
still represent quite a substantial fraction of the total grain
boundary area.



B.W. Reed et al. / Acta Materialia 60 (2012) 2999–3010 3009
We also find that numerical boundary populations taken
from 2-D cross-sections can be very different from the
actual 3-D populations. Fortunately, a simple algorithm
[37] can correct the great majority of this bias, and the
results suggest that the residual bias owes more to small-
grain cleanup algorithms than to biases in the algorithm
itself. The correction has very significant effects on the spe-
cial boundary fraction, as well as on the R3/R9 ratio, both
of which are important parameters in the statistical model-
ing of grain boundary engineered networks [27–30]. Now
that our stereological algorithm is validated against 3-D
data, it can now be used to improve our understanding of
3-D network statistics in grain boundary engineered materi-
als, taking advantage of the enormous amount of relevant
2-D data (EBSD and otherwise) accumulated over the past
decade. For some statistical applications, 3-D experimental
methods are not necessary.

Yet the results also suggest network analysis methods
that fundamentally cannot be done using isolated 2-D
cross-sections and require fully 3-D methods. The scatter
plots in Fig. 6, for example, could not have been produced
from 2-D data. More generally, the relative NV populations
yielded by the stereological algorithm tell us little about the
connectivity of the network, apart from the role that these
values play in statistical theories. The 3-D number densities
and length distributions of particular kinds of triple junc-
tion lines, for example R3–R3–R9, may be very important,
as may be the distributions of contiguous clusters of special
and random boundaries. Fully 3-D data sets such as ours
can be used to analyze such properties while revealing the
true structure of grain boundary networks within twin-
related domains [47], clarifying the role of complex twin-
ning in producing the well developed networks of R3n

boundaries that seem to be essential for the performance
of grain boundary engineered materials. Such analysis on
our existing data would go well beyond the scope of the
present paper and will be left to future publications.

Three-dimensional data can also reveal the spatial corre-
lations of different boundary types and the degree of com-
plexity of the interconnections among special boundaries.
The R3 boundary shown in Fig. 5 freely intermixes coher-
ent and incoherent regions in the same boundary and
shares triple junctions with at least seven distinct R9
boundaries (and probably more; as we noted, the boundary
continues beyond the end of the sampled region). Theoret-
ical models of grain boundary engineered networks have
generally been simplified to the point where such bound-
aries are simply not considered. Now, with experimental
data showing what the boundary networks really look like
in 3-D, the modeling community has the empirical justifica-
tion needed to push the models to much higher levels of
complexity and realism.
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