
Accelerated Circuit Simulation: Harmonic
Balance and Logic Partitioning

A Dissertation

Submitted in partial fulfillment of the requirements

for the degree of

Bachelor and Master of Technology

by

Shashank Vijayakumar Obla

(Roll No. 14D070021)

Under the guidance of

Prof. Sachin B. Patkar

Department of Electrical Engineering

Indian Institute of Technology Bombay

May 2019

Dissertation Approval

This Dissertation entitled “Accelerated Circuit Simulation: Harmonic Balance and Logic

Partitioning” by Shashank Vijayakumar Obla is approved for the degree of Dual Degree

in Electrical Engineering with Specialization in Microelectronics.

Examiners

Supervisor (s)

Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the

original sources. I declare that I have properly and accurately acknowledged all sources

used in the production of this report. I also declare that I have adhered to all principles

of academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea/data/fact/source in my submission. I understand that any violation of the

above will be a cause for disciplinary action by the Institute and can also evoke penal

action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

Shashank Vijayakumar Obla

Date: June 26, 2019 (14D070021)

ii

Abstract

The tremendous technology scaling over the past decade has allowed chip designers to ac-

complish ultra-large scale integration and develop multi-functional chips using the same

die area. Along with the opportunity to build more complex designs, this also increases

pressure on the supporting software and CAD tools used in the simulation and testing of

these circuits.

This work mainly focuses on the Harmonic Balance algorithm for Periodic Steady State

simulations which are mainly used in Microwave and RF circuits analysis which are dom-

inated by non-linear devices such as MOSFETs. Though commercial tools implement

the algorithm, to our knowledge no tool implements the algorithm in the public-domain,

which inhibits research from focusing on acceleration. This work contributes a fully au-

tomated harmonic balance simulator which is able to simulate a circuit supplied in a

format similar to a SPICE netlist, with optimizations for parallelization of the sparse

matrix solution, and analysis of causes of numerical instabilities. This thesis also pro-

poses an acceleration the algorithm on Intel’s Many-core architecture: Xeon Phi Knights

Landing edition, and an analysis on feasibility of its implementation on an FPGA as an

accelerator, which span low-level architecture-aware optimizations to high-level integra-

tion with tools such as SPICE.

Different techniques of logic partitioning of distributed logic simulation of large digital

circuits have also been explored. Methods involving combinatorial optimization using

Sub-modular function optimization as a dual to convex optimization, and eigenvalue

based Spectral Partitioning graph algorithm have been implemented and their efficacy

compared based on several metrics: Replication, Communication and Balance among

partitions.

iii

Contents

Abstract iii

List of Figures vii

List of Tables ix

I A Harmonic Balance Simulator 1

1 Introduction 2

2 Previous Work and Motivation 3

3 The Harmonic Balance Formulation 4

3.1 Charge-Oriented Modified Nodal Analysis 4

3.2 Discrete Fourier Transformation . 5

3.3 Harmonic Balance for Non-Linear Circuits 5

3.3.1 Newton-Raphson Interations . 6

4 Non-Linear Function Evaluation 9

4.1 Model Requirements . 9

4.2 ngspice Shared Library [1] . 10

4.3 Simple Square-Law Model . 10

4.3.1 Discontinuity in the Model . 12

4.4 Implementation . 13

5 Block-Aware Sparse LU Decomposition 15

5.1 Left-Looking LU Decomposition . 15

5.2 Sparse Matrix Storage Schemes . 17

5.3 Symbolic LU Decomposition . 18

5.3.1 Fill - In . 19

5.3.2 Row Pivoting . 20

5.3.3 Column Dependency Analysis . 21

iv

5.4 Dense LU Decomposition . 23

6 Automatic Circuit Parser 24

6.1 Matrix Construction . 24

6.2 Syntax . 25

6.3 Example . 26

7 Custom Hardware Implementation 27

7.1 HLS Hardware Optimization . 28

7.1.1 Function Instantiate . 28

7.1.2 Array Partitioning . 28

7.1.3 Pipelining . 30

7.2 Data Movement Optimizations . 31

7.2.1 Data Zero Copy . 31

7.2.2 Data Access Pattern - Sequential 31

8 Results and Discussions 32

8.1 Fill - In Reduction . 32

8.2 Numerical Instability . 32

8.3 Simulation Setup . 33

8.3.1 Intel Xeon Phi: Knights Landing Edition 33

8.3.2 Xilinx ZedBoard: Zynq-7000 SoC 35

8.4 Dense LU Decomposition . 35

8.5 FPGA Implementation . 36

8.5.1 Performance Comparison . 36

8.5.2 Timing Closure . 37

8.6 Simulation Results . 38

8.6.1 Example: Operational Transconductance Amplifier 38

8.6.2 Output . 39

8.6.3 Performance Analysis . 39

9 Future Work 42

II Circuit Partitioning for Distributed Logic Simulation 43

10 Introduction 44

11 Previous Work and Motivation 45

v

12 Sub-Modular Function based Minimization 47

12.1 Sub-Modular Set Functions . 47

12.2 Matlab SFO Toolbox [2] . 47

12.2.1 Queyranne’s Algorithm . 48

12.2.2 The Oracle Function . 48

13 Ratio-Cut using Spectral Partitioning 49

13.1 Spectral Graph Theory . 49

13.2 Circuit Conditioning . 51

13.2.1 Replication . 51

13.2.2 Communication . 51

13.2.3 Combining the Costs . 52

14 Results and Discussion 53

14.1 MATLAB interface with C++ . 53

14.2 Greedy Splitting using SFO Toolbox . 54

14.3 Spectral Partitioning . 54

14.4 Spectral Partitioning with Communication 56

15 Future Work 57

III Appendix 58

I Harmonic Balance C++ Codes 59

I.1 Sparse Matrix Storage . 59

I.1.1 sparseCOO.h . 59

I.1.2 sparseCSC.h . 60

I.1.3 sparseBCCS.h . 60

I.2 Circuit Parser and Evaluation . 61

I.2.1 ngspice.h . 61

I.2.2 device.h . 62

I.2.3 circuit.h . 66

I.3 Extracting Column Parallelism . 68

I.3.1 Plotting Column Dependency Graph 68

I.3.2 Get Next Column . 69

II Circuit Partitioning C++ Codes 70

II.1 dcircuit.h . 70

IIIBSIM4 Model 73

vi

List of Figures

3.1 Block Diagram [3] of the required steps to compute F (X) 7

3.2 Harmonic Balance Jacobian matrix structure [4] 8

4.1 Output current waveform showing glitch due to discontinuity in the model 12

4.2 Flowchart showing usage of ngSPICE shared library 13

5.1 Block Matrix structure when computing Block Column j [5] 15

5.2 Tri-Diagonal Banded Matrix . 18

5.3 Example Symbolic Decomposition . 19

5.4 Example Circuit matrix showing extensive Fill-In after LU Decomposition 20

5.5 Matrices showing effect of COLAMD and Pivoting on diagonal elements . 20

5.6 Example Matrix and its U factor . 21

5.7 Column Dependency Graph for Matrix in Figure 5.6 22

6.1 J Matrix of the OTA with parasitics generated from the Circuit Parser . 26

7.1 Types of Array Partitioning . 29

7.2 Matrix Multiplication showing computation of a single element of Matrix C 29

7.3 Example program showing effects and benefits of pipelining the program [6] 30

8.1 Intel Xeon Phi: Knights Landing Architecture [7] 34

8.2 Dense Tiled LU Decomposition Comparison 36

8.3 Speedup of the BLAS algorithms on the FPGA over CPU 36

8.4 Speedup of the LAPACK algorithms on the FPGA with block size of 64 . 37

8.5 Operational Transconductance Amplifier Schematic 38

8.6 Output waveforms of the OTA for different input voltage amplitudes . . 39

8.7 Speedup of extracting Column-Level Parallelism normalized to serial case 40

8.8 Performance degradation with increasing harmonics normalized to 20 Har-

monics . 40

8.9 Performance degradation with using ngSPICE calls for Model Evaluation 41

8.10 Performance Profiling results with the two different Model Evaluations . 41

11.1 Example of Partitioning and Minimization Problem 46

vii

11.2 Example of Partitioning and Communication Problem 46

13.1 Modes of a Vibrating String [8] . 50

13.2 Example Graph of s526 circuit from ISCAS’85 benchmarks representing

input to Spectral Partitioning embedding Replication metric information 51

13.3 Example Graph of s713 circuit from ISCAS’85 benchmarks representing

input to Spectral Partitioning embedding Communication metric information 52

14.1 Example Circuit c432 showing lack of good Balanced Partitions 55

viii

List of Tables

5.1 Levelized List of nodes based on the Example Matrix 22

6.1 Device description and synatx for Circuit Parser 25

8.1 Fill-In w/ and w/o COLAMD column permutations for Sparse Matrices . 32

8.2 Xilinx ZedBoard Frequency Specifications 35

8.3 Matrix sizes and No. of Non-Linear Elements in circuits used to analyze

performance . 39

14.1 Comparison of replication metric of Partitioning Algorithms on ISCAS

Combinational Benchmarks . 54

14.2 Comparison of Replication and Balance metric of Partitioning Algorithms

on ISCAS Combinational Benchmarks 55

14.3 Comparison of All metrics of the Spectral Partitioning Algorithm on IS-

CAS Sequential Benchmarks . 56

III.1 Operating Point Parameters available in BSIM4 Models 73

ix

Part I

A Harmonic Balance Simulator

Chapter 1

Introduction

Though the aggressive technology scaling has been fueled by the increasing demands of

digital circuit design, CMOS analog circuits have also seen a huge growth with the ad-

vent of SoC design. This also brings new challenges such as mixed-mode simulation, fast

simulation of circuits with large number of non-linear components and simulation of post-

layout extracted circuits which are performance and memory demanding applications.

In Microwave and RF Circuits, there is often a requirement for steady-state analysis

for periodic circuits such as mixers. But, these circuits have a large number of non-linear

components, which makes traditional periodic steady-state simulation less feasible. In the

Harmonic Balance (HB) method, the circuit equations are formulated in the frequency

domain using fourier coefficients. For non-linear circuits, the matrices are formed by eval-

uation of the non-linear function in the time-domain followed by Fourier transforms. This

method produces the Jacobian matrices of size very much dependent on the number of

non-linear elements and which are strongly Block Sparse in nature making Block Sparse

matrix solution ideal for the LU decomposition step.

On another note, Intel Xeon Phi Knights Landing (KNL) is a new Many-Integrated

Core (MIC) architecture from Intel, which is becoming more popular in present-day High-

Performance systems. It is a 64 core system which features SIMD instruction execution

capability of 512 Bits using the Advanced Vector Extensions (AVX) of Intel. It also has

the ability for fast all-to-all communication based on a mesh routed Network-on-Chip and

being a full-fledged processor, has definite advantages over GPUs and other co-processor

based systems by bridging the data transfer and synchronization barrier.

2

Chapter 2

Previous Work and Motivation

The general harmonic balance algorithm which is a mathematical technique and has a

wide variety of applications has been worked out in literature such as [9]. Other work

such as [3][10] show implementation of the matrix solution part of the algorithm on plat-

forms such as GPUs. They discuss the Harmonic Balance for non-linear circuits and

also for multi-tone excitation (with multiple input frequencies which are not harmonics

of each other). Commercial tools have been quick to implement the algorithm given its

promising benefits, but in the open-source community, there is no existing full fledged

implementation to our knowledge. Some tools exist such as [11] which target at imple-

menting Harmonic Balance in the future.

But open problems still existing are to develop faster and accelerated implementation

of the kernels on different architectures such as the Many-Integrated Core architecture.

The lack of a readily available simulator makes the entry into the research problem diffi-

cult. Also, none of the existing implementations or research work mention about handling

non-linear capacitance which comes with non-linear devices such as MOSFETs which are

ubiquitous in the current CMOS regime for analog circuit design.

The report is organized as follows. Chapter 3 introduces the Harmonic Balance tech-

nique and the entire flow involved in implementing it. The basis of the acceleration

opportunities is also developed in that Chapter. The succeeding chapters talk about

individual components of the algorithm in more detail such as the non-linear function

evaluation, circuit parsing, the matrix solution phase and the FPGA implementation of

the core functions. This is followed by the Chapter on Results and Discussions which

contains results of the different algorithms, heuristics and techniques used. Future Work

discusses different directions in which the work can be extended. Finally the Appendix

section contains a subset of the codes which are a part of the simulator to assist in

understanding the report.

3

Chapter 3

The Harmonic Balance Formulation

In this section, a basic discussion about the existing method is provided along with some

detailed analysis which forms my contribution to the existing pool of work in this field.

3.1 Charge-Oriented Modified Nodal Analysis

Modified Nodal analysis is the basic algorithmic way to obtain the circuit equations as

a function of the node voltages and some edge currents (mainly Inductor currents). In a

basic form the equation can be written as Equation 3.1

G · x(t) + E · d
dt

(x(t)) + f(x(t)) +
d

dt
(Ed(x(t)) · x(t)) = b(t) (3.1)

where G is the conductance matrix which includes resistance and transconductance el-

ements, E includes the linear capacitances and inductances, f(x(t)) are the non-linear

component equations, Ed includes the non-linear capcitances and inductances and b(t)

are the independent sources.

The issue with the above formulation is that usually the non-linear capacitances and

inductances equations are not available and a more natural way to represent them is

using charges or fluxes. For the purpose of this report, only non-linear capacitances are

considered because inductances are not significant in all major non-linear devices and not

modeled hence. More detailed analysis is presented in [12]

q = qC(x(t)) (3.2)

d

dt
(Ed(x(t)) · x(t)) =

d

dt
q(x(t)) (3.3)

where q are the terminal charges for each non-linear device.

4

3.2 Discrete Fourier Transformation

As mentioned earlier, the Harmonic Balance method deals in frequency domain repre-

sentation of the variables, a method is need to transform from time domain to frequency

domain for the evaluation of non-linear circuits. This is achieved by taking advantage

of the possibility of performing matrix operations by formulating the DFT as a matrix

multiplication. For the rest of the report, the number of harmonics is taken to be M. This

is an approximation because a non-linear function in theory creates infinite harmonics,

but it can be shown that the number can be limited without much loss of accuracy for

weak non-linear behaviour based on Fourier Analysis. It is important to note that, for

circuits exhibiting switching, the harmonic balance matrices can be very large due to the

requirement of a large number of harmonics to accurately represent step-like functions.

x = Γ−1X (3.4)

Γ−1 =



1 cosω0t0 sinω0t0 · · · cosMω0t0 sinMω0t0

1 cosω0t1 sinω0t1 · · · cosMω0t1 sinMω0t1

...
...

...
. . .

...
...

1 cosω0t2M sinω0t2M · · · cosMω0t2M sinMω0t2M


(3.5)

3.3 Harmonic Balance for Non-Linear Circuits

G

(
X0 +

M∑
m=1

(
XC

m cosmω0t+XS
m sinmω0t

))
+

C

(
X0 +

M∑
m=1

(
−mω0X

C
m sinmω0t+mω0X

S
m cosmω0t

))
+(

F0 +
M∑

m=1

(
FC
m cosmω0t+ F S

m sinmω0t
))

+(
Q0 +

M∑
m=1

(
−mω0Q

C
m sinmω0t+mω0Q

S
m cosmω0t

))

=

(
B0 +

M∑
m=1

(
BC

m cosmω0t+BS
m sinmω0t

))
(3.6)

Without going into detailed derivation which are discussed in [3] and [10], here the

time-domain expressions are replaced by the Fourier coefficients to obtain Equation 3.6.

5

The equation 3.6 is represented in the matrix form with the non-linear components

showing up as column vectors as in Equation 3.7 where Y includes the linear elements

contributions, F (X) and Q′(X) are the non-linear elements and B(X) are the indepen-

dent sources.

Y ×X + F (X) +Q′(X) = B (3.7)

The differentiation transformation of the non-linear charges can be represented by a

matrix. Each element in the vector shown is itself a vector whose length is the number

of equations in the original time-domain MNA. But for the purpose of illustration and

simple formation fo the matrix Λ, they are considered to be scalars. Solving the set of

equations as described in 3.7 can be solved using the Newton Raphson method.

Q(X) =



Q0(X)

QC
1 (X)

QS
1 (X)

...

QC
M(X)

QS
M(X)


(3.8)

Q′(X) = Λ×Q(X) =



1 0 0 0 0

0 0 ω0 · · · 0 0

0 −ω0 0 0 0

...
. . .

...

0 0 0 · · · 0 Mω0

0 0 0 −Mω0 0


Q(X) (3.9)

3.3.1 Newton-Raphson Interations

Skipping the details of Newton-Raphson(NR) iterations, here the formation of the vector

and its Jacobian is focused on. At the core of the NR loop is the error vector and the

Jacobian matrix which is the differential of the error as in Equation 3.10

Φ(X) = Y ×X + F (X) +Q′(X)−B (3.10)

6

Figure 3.1: Block Diagram [3] of the required steps to compute F (X)

At each step of the NR iterations the value of F (X) and Q′(X) is obtained as follows

and is illustrated in 3.1 (The reordering is an implementation consideration and more

details can be obtained in [3]):

1. X in the frequency domain is converted to x(t) using the Γ−1 matrix as described

earlier

2. The non-linear functions f(x(t)) and q(x(t)) are evaluated based on the device

models

3. f(x(t)) and q(x(t)) are back converted to the frequency domain using the Γ matrix

to obtain F (X) and Q(X) and consequently using Λ matrix, Q′(X)

The Jacobian matrix now is given by

d

dX
Φ(X) = Y +

d

dX
F (X) +

d

dX
Q′(X) (3.11)

Based on the Jacobian in Equation 3.11, a problem arises. Because F (X) and Q′(X)

are not available as a function which can be differentiated in the frequency domain, it

is necessary to again take assistance of the DFT and IDFT matrices and perform the

differentiation in the time domain.

7

Harmonic Balance Mabrix

Fig. 2. Structure of the Jacobian matrix

where C and G are diagonal (block-diagonal in general)
matrices, with the diagonal elements representing circuit
linearizations at the sampled time points

Naive Jacobian matrix evaluation results in a large, (n N x
n N) , and dense matrix, which is illustrated in Figure 2.
Direct factorization or even storage of such a matrix would
overwhelm any computer even for medium sized circuit.

Iterative methods are the only hope to solve such linear
dystems. Krylov subspace based iterative methods such as
QMR [ll] are particlarly suited for this problem since they
derive all matrix information solely from products of the
matrix with vectors. It is easy to see from the expression

JZ = Y Z + a rm-9 + r G r - 9 (13)

that such matrix-vector products can be computed very
efficiently, without ever forming the matrix - only through
multiplications with sparse matrices and FFTs.

Unfortunately iterative linear solvers and Krylov sub-
space methods in particular, do not converge reliably.
Convergence is achieved through preconditioning, i.e., sys-
tem J Z = W is replaced with the preconditioned system
J- lJZ = J”-’W, which has, the same solution. For ro-
bust and efficient convergence, the preconditioner matrix
J” should be, in some sense, a good approximation of J ,
and also “easy” to invert. In the remainder of this sec-
tion we describe a preconditioning method specific to the
structure of the harmonic balance Jacobian matrix. Be-
ing problem specific, it is superior to any general purpose
preconditioning technique.

The terms that introduce dense blocks in the Jacobian
matrix are I’Cr-l and I’GJ?’. They result in circulant
(block-circulant) matrices [14]. We analyze the first one

= circulant (Cl, . . . , C N)

140, d

Fig. 3. Magnitudes of circulant matrix entries

where [Cl . . . C N] ~ is the I)FT of [c1 . . . C N] ~ . If
the circuit is linear, the elements c1, . . . , CN on the diag-
onal of C are all identical - the linearization of a linear
circuit does not vary. In this case only C1 is nonzero and
equal to the diagonal elements. The analysis of the term
containing G is similar. The Jacobian matrix for a linear
circuit becomes diagonal (block-diagonal)

Y (w 0) + 6 + j w o c] (15) [y ((J N - 1) + + jwN-1c

Jlin =

and, therefore, easy to invert.
When the circuit is nonlinear the circulant matrix fills

up. However, as shown in Figure 3, the strongest entries
in the matrix (in this case comming from a simple mixer)
are concentrated on the diagonal. We can still set elements
c2, . . . CN-1 and 6 2 , . . . 6 ~ - 1 to zero and use the result-
ing diagonal matrix & a preconditioner. In this case the
diagonal elemenk C1 and represent the average of the
circuit linearizations a t all time-points. If the circuit is
“mildly” nonlinear this diagonal matrix is a good approx-
imation of the Jacobian matrix and serves as an effective
preconditioner. When stronger nonlinearities exist in the
circuit, some off-diagonal elements of the circulant matri-
ces must also be included in the preconditioner. In this
case, the Jacobian matrix approximation loses its diagonal
structure but remains much sparser than the original Jaco-
bian matrix and, therefore, within the capabilities of direct
factorization algorithms.

111. RESULTS

As an example, we describe a variety of simulations on
the front-end for a 900 MHz integrated direct conversion re-
ceiver. The circuit consists of a low-noise amplifier (LNA)
driving I and Q mixers. It has 27 bipolar transistors, plus
a variety of linear devices. The steady-state solution is de-
scribed by just over 300 waveforms, many of which are for
internal nodes of the detailed transistor model that was
used. One-tone simulations of the LNA alone were used to
measure gain and the 1dB compression point. Local oscil-
lator (LO) feedthrough from the mixers back into the LNA

21.6.3
463

Figure 3.2: Harmonic Balance Jacobian matrix structure [4]

The partial differential 3.12 can be represented as a block matrix when N is the number

of MNA equations.

∂

∂X
F (X) =



Γ ∂f1
∂x1

Γ−1 · · · Γ ∂f1
∂xN

Γ−1

...
. . .

...

Γ∂fN
∂x1

Γ−1 · · · Γ ∂fN
∂xN

Γ−1


(3.12)

Each block of this element can be further written as in Equation 3.13 which is a diagonal

matrix. This completes the discussion on the Jacobian matrix and hence from this, the

structure of the matrix is obtained as shown in Figure 3.2.

∂fi
∂xj

=



∂fi(xj(t0))

∂xj(t0)
· · · 0

...
. . .

...

0 · · · ∂fi(xj(t2M))

∂xj(t2M)


(3.13)

The blocked structure of the matrix clear shows its affinity to sparse matrix operations

and more specifically using the Block Sparse storage format. The size of the blocks is

given by 2M + 1 where M is the number of harmonics chosen and hence can be very large

especially in the case of 2-tone input where the number combined harmonics blow up.

8

Chapter 4

Non-Linear Function Evaluation

As described in the procedure earlier in Step 2 of 3.3.1, at every iteration, to obtain the

error function and also the Jacobian it is necessary to evaluate the non-linear elements

of the circuit. For devices such as diodes, it is easy to obtain a closed form expression for

the IV relation as well its differential. But when it comes to MOSFETs and BJTs it is

difficult to get accurate results using simple closed form expressions especially with the

aggressive changes in the technology every coming year and development of More-than-

Moore [13] technologies hand-crafted for areas such as RF and sensors.

For this purpose, it was necessary to look for the ability to utilise the industry standard

model files such as BSIM4, etc. which are detailed enough for accurate simulations. For

this purpose, in this section I describe using ngspice simulator as the interface to com-

municate with the BSIM [14] MOSFET models. Though it is not the fasted choice, but

being open-source and the available documentation and community make using it easy.

Though the evaluation corresponds to time-domain evaluation of the devices, the re-

sulting functions are independent of time and hence the function evaluations reduce to

DC analysis. A transient or periodic steady-state analysis(pss) to obtain these values

would be counter-productive because through Harmonic Balance, pss analysis is what is

trying to be achieved.

4.1 Model Requirements

In this section, the requirements to simulate MOSFETs using the aforementioned Har-

monic Balance is discussed. They can be listed as follows:

1. Non-Linear Function Evaluation: f(x(t)) and q(x(t))

9

(a) f(x(t)): MOSFET exhaustive IV Relationship

(b) q(x(t)): MOSFET exhaustive terminal charge relationship

2. Differential of the non-linear functions with respect every node potential: f ′(x(t))

and q′(x(t))

(a) f ′(x(t)): MOSFET conductances

(b) q′(x(t)): Small Signal capacitances

4.2 ngspice Shared Library [1]

Because performance is of importance, the communication with the BSIM Models can

become a bottleneck. Hence, externally initializing the SPICE program and communicat-

ing through files is not a suitable option. To hasten the link, the ngspice shared library

is used.

To extract the values of the dc operating points through the shared library it is necessary

to build a vector out of them. The compose command in ngspice comes in handy. An

example is shown below:

compose cg values @mnmos[cgd] @mnmos[cgg] @mnmos[cgs] @mnmos[cgb]

This line creates a vector cg containing all the gate charge related differentials. And in

this fashion all the values can be extracted. This vector does not prompt a call in the

ngspice API in C++ and hence must be accessed asynchronously. For this purpose, the

following function provided by the shared library can be used.

pvector_info ngGet_Vec_Info(char*)

More information about the API can be found in the ngspice User Manual[1]. It requires

a build of the software from source to create the shared library and provides interface

functions to send and receive data from the API.

There is also a possibility of parallelism, as noted earlier: the Model Evaluation phase

operations can be highly independent of each other. The shared library does offer some

support but is incomplete and its usage questionable.

4.3 Simple Square-Law Model

To take small steps into the algorithm, first the model evaluation to kept at the bare

minimum and hence the charge-oriented model and the ngspice integration were omitted.

10

The following equations were used for NMOS and PMOS evaluations. Sub-threshold was

assumed to be entirely non-conducting.

NMOS in Linear Region:

ID = µCox
W

L

(
(VGS − VTH)VDS −

1

2
V 2
DS

)
(4.1)

gm = µCox
W

L
VDS (4.2)

gds = µCox
W

L
((VGS − VTH)− VDS) (4.3)

NMOS in Saturation Region:

ID = µCox
W

2L
(VGS − VTH)2

(
1 + λ0

L0

L
VDS

)
(4.4)

gm = µCox
W

L
(VGS − VTH) (4.5)

gds = µCox
W

2L
(VGS − VTH)2

(
λ0
L0

L

)
(4.6)

It can be clearly seen from the above set of equations that there is a discontinuity in

the gds parameter when the regions switch. This discontinuity has been removed from

gm to prevent oscillations causing convergence issues.

PMOS in Linear Region:

ID = −µCox
W

L

(
(VSG − VTH)VSD −

1

2
V 2
SD

)
(4.7)

gm = µCox
W

L
VSD (4.8)

gds = µCox
W

L
((VSG − VTH)− VSD) (4.9)

PMOS in Saturation Region:

ID = −µCox
W

2L
(VSG − VTH)2

(
1 + λ0

L0

L
VSD

)
(4.10)

gm = µCox
W

L
(VSG − VTH) (4.11)

gds = µCox
W

2L
(VSG − VTH)2

(
λ0
L0

L

)
(4.12)

11

4.3.1 Discontinuity in the Model

Thought the simple square-law model is very lucrative and can speed up the process

significantly there is an issue of discontinuity in the model between the linear and the

saturation region. This occurs because of the channel-length modulation effect added to

the saturation equation to introduce the drain voltage dependent current of the MOSFET

in the Saturation region.

This does not cause much of a problem when the circuit has devices which operate

only in one region as for convergence, the differential terms: the transconductances, are

continuous. But when looking at large signal behavior of the circuit, the discontinuity

prevents convergence. An example of the output waveform of a One-Stage Operational

Transconductance Amplifier is shown in Figure 4.1 when using the Square Law model.

The glitches can be observed when the NMOS and PMOS switch between their linear

and saturation regions.

-0.000202

-0.000202

-0.000201

-0.000201

-0.000200

-0.000200

-0.000199

-0.000199

-0.000198

 0 1x10
-7

 2x10
-7

 3x10
-7

 4x10
-7

 5x10
-7

 6x10
-7

 7x10
-7

 8x10
-7

 9x10
-7

 1x10
-6

ivdd

Figure 4.1: Output current waveform showing glitch due to discontinuity in the model

One way to avoid this would be to make the model more ideal and just ignore the

channel-length modulation component of the equations. But this would mean that the

drain current in saturation is independent of the drain voltage. This introduces issues of

numerical convergence and cancellation when performing LU Decomposition with static

pivoting which is discussed further in the chapter on Results and Discussions.

12

4.4 Implementation

In the Harmonic Balance method, in every iteration of the Newton-Raphson iterations,

all the non-linear devices are to be evaluated at 2K + 1 time instances where K is the

number of harmonics being considered. The ngspice shared library requires a circuit to

be provided which is parses and also the analysis type before the running the simulator.

Because here we only require the operating points, we perform an op analysis. But there

are multiple ways in which the circuit can be provided, given M non-linear devices:

1. A circuit with all non-linear devices and all their instances instantiated altogether.

This would mean that the circuit has M ×K non-linear devices.

2. A circuit with all K instances of one non-linear device.

3. A circuit with one instance of all M non-linear devices.

We choose the third form of circuit presentation to SPICE because this does not require

us to alter the circuit structure and devices anytime throughout the iteration process

(unline the second form) and also reduces the load on spice as it now needs to handle

only a small circuit (unline the first form). This significantly reduces the matrix size as it

will require smaller number of voltage sources and at the same time it does not increase

the complexity of sending the alter commands to spice.

Initialize ngSPICE

Generate and
Source circuit file

into ngSPICE

Send alter
commands to set

voltages

Run ngSPICE
No

YesAll time
instances done? Prepare Matrices

No

YesIterations Complete? Exit ngSPICE

Figure 4.2: Flowchart showing usage of ngSPICE shared library

13

From the Flowchart in Figure 4.2 it can be clearly seen that using this scheme the

circuit needs to be generated and sourced only once during the entire simulation cycle

and hence reduces the time required if the circuit had be altered multiple times during

each iteration. The method still suffers from the flaw of passing through ngSPICE’s

parser when an alter and data collection compose command is sent. Shown below is an

example conversion from the supplied circuit file to the file to be parsed by ngSPICE.

1 Operational Transconductance Amplifier

2

3 frequency 1E6

4

5 Vinp inp 0 1.2 0.5E-3

6 Vinn inn 0 1.2 -0.5E-3

7

8 IBIAS vdd vbias 0.1E-5

9 MB vbias vbias 0 0 1E-6 180E-9 CMOSN

10 MSS source vbias 0 0 10E-6 180E-9 CMOSN

11 RBIAS vbias vdd 1E5

12

13 VDD vdd 0 1.8

14

15 ML1 outn outn vdd vdd 1E-6 180E-9 CMOSP

16 ML2 outp outn vdd vdd 1E-6 180E-9 CMOSP

17 *RL1 outp vdd 3E3

18 *RL2 outn vdd 3E3

19

20 M1 outp inn source 0 1E-6 180E-9 CMOSN

21 M2 outn inp source 0 1E-6 180E-9 CMOSN

22

23 plot outp outn

24 plot inp inn

25 plot i_vdd

1 operational transconductance amplifier

2 .include 65nm_bulk.pm

3

4 mb 6 6 0 0 cmosn W=1e-06 L=1.8e-07

5 V5 6 0 dc 0

6

7 mss 7 6 0 0 cmosn W=1e-05 L=1.8e-07

8 V6 7 0 dc 0

9

10 ml1 9 9 5 5 cmosp W=1e-06 L=1.8e-07

11 V8 9 0 dc 0

12 V4 5 0 dc 0

13

14 ml2 10 9 5 5 cmosp W=1e-06 L=1.8e-07

15 V9 10 0 dc 0

16

17 m1 10 3 7 0 cmosn W=1e-06 L=1.8e-07

18 V2 3 0 dc 0

19

20 m2 9 1 7 0 cmosn W=1e-06 L=1.8e-07

21 V0 1 0 dc 0

22

23 .op

24

25 .end

14

Chapter 5

Block-Aware Sparse LU

Decomposition

5.1 Left-Looking LU Decomposition

The state-of-the art Sparse LU Decomposition still remains the one proposed by Gilbert

and Peierls [5] called the left-Looking LU algorithm.

864 J. R. GILBERT AND T. PEIERLS

flops (LU) (R)(n 3/2) 10]. Notice that flops (LU) is likely to be o(n2), SO our algorithm
must not spend as much as (n) time per column manipulating sparse data structures.

It is possible that flops (LU)< rn (for example, if A is upper triangular then
L =/, U A, and flops (LU)=0). In this case the algorithm must still spend O(m)
time examining its input. Thus, technically, the best running time we can hope for is
O(flops (LU)+ m). In informal discussion we will still refer to this as "proportional
to arithmetic operations," without explicitly mentioning the possibility that the input
size dominates the running time. In formal statements we will be careful to include
this possibility.

2.2. The algorithm. The basis for our algorithm is column-oriented LU factoriz-
ation. We use the following notation: j is the index of the column of L and U being
computed. Unprimed variables mean the part of a matrix or vector above row j; primed
variables mean the part at and below row j. Thus aj=(alj,’’ ",aj_l,) r,a=
(a,..., a,) ,
(4) Lj

l=(lj,..., l,) v, and u=(ul,’", uj_,j) v. (Note that !ij 1.) Also we use b.=
(b,. ., b,)7" as an intermediate result. Figure 1 is a sketch of column j of L and U
overwriting column j of A. Figure 2 is an outline of the general algorithm.

row j

aj

A

FIG. 1. Computing column j of L and U.

Although partial pivoting was the motivation for all of this work, the pivoting
itself is the simplest part of the algorithm.

We shall represent a column vector as a sequence of records, each containing a
value and a row index. The row indices need not be in increasing order. We shall
represent a matrix as an array of column vectors indexed from 1 to n.

D
ow

nl
oa

de
d

09
/0

5/
18

 to
 1

03
.2

1.
12

5.
80

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Figure 5.1: Block Matrix structure when computing Block Column j [5]

Every element in the A matrix which is to be factored into L and U matrices are

considered to be block matrices themselves. From the Figure 5.1, Lj is the square L

matrix of dimension j− 1 and Uj is the corresponding U matrix. L′j includes the jth row,

but not the jth column which is yet to be factored.The algorithm is shown in Algorithm

15

1. Line 2 of Algorithm 1 requires a forward solve algorithm and the innovation of this

algorithm lies in it. The forward solve algorithm is described in Algorithm 2.

Algorithm 1: Block LU Algorithm based on Gilbert-Peierls LU Algorithm

Input: A ∈ R(H×N)×(H×N)

Output: L,U ∈ R(H×N)×(H×N)

1 for j ← 1 to N do

// Compute Block column j of L and U Matrix

2 Solve Ljuj = aj for uj;

3 b′j = a′j − L′juj; // Multiplication and Subtract

4 Pivot: Swap bjj with the largest magnitude block of b′j;

5 ujj = bjj;

6 ljj = b′j × inv(ujj) ; // Inverse and Multiplication

7 end

For the purpose of Algorithm 2, it is necessary to obtain those elements in the new U

Block Column that’ll be non-zero and also must be sorted in some topological order. This

order is necessary to ensure the dependencies across the loop iterations are not violated.

This can be achieved by creating a directed graph in the form of an adjacency list out

of the Lj square matrix. The directed graph G contains vertices V ∈ 1, · · · , j − 1 and a

vertex m is connected to n only if Lj(n,m) is a non-zero block matrix. Because all the

diagonal elements of L are identity matrices, every vertex is at least connected to itself;

this information can be omitted from the graph and handled separately.

The non-zero elements of uj are given by the vertices which are reachable from the

non-zero elements of aj block column. Ideally, the non-zero indices obtained must be

sorted before going for the Forward Solve, but any topological order also works. Hence

depth-first search and the reverse post-order are ideal graph traversal and topological

order candidates respectively. Also, a list of visited nodes must be maintained so as to

not traverse the same nodes multiple times.

Algorithm 2: Forward Solve

Input: aj ∈ R(j×H)×H and Lj ∈ R(j×H)×(j×H)

Output: uj ∈ R(j×N)×H

1 for k | ukj 6= 0(in topological order) do

// Revaluate uj in a Sparse Loop

2 uj = uj − ukj(l1k, · · · , lj−1,k)T ; // Multiplication and Subtract

3 end

16

For the block matrix based LU, pivoting is not possible as choosing a largest block can

be expensive if obtained using determinants. Hence pivoting is not performed.

5.2 Sparse Matrix Storage Schemes

Sparse matrices when stored as a normal dense matrix expends a large amount of memory

at the cost of algorithmic and manipulation regularity which may still be ineffective when

worked on as a dense matrix. Because of the very few number of elements, the sparse

matrices are stored in different fashions which are optimized for the operation to be

performed on them. Some of the common formats are discussed below:

Coordinate Format

The most basic format to store the sparse matrices is the coordinate format. The non-

zero elements are stored in a array as tuples of (row, column, value) usually sorted

based on rows or columns for fast access.

The format is advantageous as it allows for fast construction but it is not most optimal

for random accesses and memory in most situations.

Compressed Sparse Storage

The storage format uses three arrays to store the matrix: IA, JA, and A. There are two

versions of the storage format:

1. Row Format: A stores the Non-Zero element values row wise. IA stores the indices

indicating the first entry in each row in the array A. And JA stores the column index

of each non-zero element in A.

2. Column Format: A stores the Non-Zero element values column wise. IA stores the

indices indicating the first entry in each column in the array A. And JA stores the

row index of each non-zero element in A.

This format though more complex to construct but is a significant improvement over

the coordinate format in terms of memory storage and traversing the matrix by random

access for rows/columns depending on the format.

Block Compressed Sparse Storage

The only difference they share with the Compressed format is that the A matrix now

consists of blocks instead of individual elements. This is a particularly useful format in

a sparse matrix which consists of sparsely located dense blocks. As this is the case for

17

Harmonic Balance analysis and as LU decomposition requires traversal through columns

making Block Column Compressed Storage (BCCS) appropriate for this application.

Tri-Diagonal Banded Matrix

For matrices which have non-zero elements in almost all the diagonal, super-diagonal

and sub-diagonal entries only, the tri-diagonal banded storage format is suitable. It is a

special case of a general banded storage format. Example of such a matrix is Figure 5.2.

Figure 5.2: Tri-Diagonal Banded Matrix

The matrix is stored in a 3×N matrix with the diagonal occupying the second column

and the sub and super diagonal occupying the 1st and 3rd columns. This storage format

is used for the Y matrix as the blocks are only of linear circuit elements, they all conform

to this pattern.

5.3 Symbolic LU Decomposition

The algorithm of left-looking LU decomposition described in the previous section is an

on-line algorithm and obtains the structure of the output L and U factors as the algorithm

proceeds along with the exact values. This is often suitable for matrices which are do be

decomposed only once or a few times as pre-processing in such cases becomes ineffective

and reduces performance.

But analysis of circuit simulation algorithms show that, though the values in the Jaco-

bian matrix change at every iteration and with values of the circuit element, given the

18

fixed network topology across them, the sparsity-pattern1 does not change. And as the

sparsity-pattern of the L and U matrices only depend on that of the original matrix,

they also remain constant. Hence, the sparsity pattern of the L and U matrices can be

pre-computed and be used as a fixed constant in all iterations of the circuit simulator.

This is also symbolic analysis which is LU decomposition without values. An example is

shown in Figure 5.3.

Figure 5.3: Example Symbolic Decomposition

Symbolic analysis can speed up the decomposition significantly by avoiding the need

to perform graph traversals and sparse matrix structure updates during run-time. It

also allows for the entire schedule of the algorithm to be prepared before-hand to allow

for better tuning with respect to the hardware. This has been exploited by many to

implement these algorithms on FPGAs[15]. But it suffers from a disadvantage of not being

able to perform value dependent partial-pivoting which brings stability to the algorithm.

5.3.1 Fill - In

LU Decomposition for sparse matrices suffers from one major problem which is even

aggravated for circuit matrices: fill-in. The L and U matrices put together have a lot

more non-zero elements that the original matrix as shown in an example in Figure 5.4.

This increases memory required to store them and also the number of operations to be

performed to evaluate the decomposition and to use the L and U matrix to solve a system

of linear equations.

The fill-in can be reduced by re-ordering the row and columns of the original matrix.

PAQ = LU (5.1)

1the rows and columns in the matrix which contain the non-zero elements

19

As this is a purely symbolic problem, many heuristics have been proposed to find a

suitable ordering based on graph algorithms such as AMD [16] and COLAMD [17]. In

this work, COLAMD has been used for its effectiveness on circuit matrices and as it is

simple and only provides column permutations.

Figure 5.4: Example Circuit matrix showing extensive Fill-In after LU Decomposition

5.3.2 Row Pivoting

As it was mentioned earlier, during symbolic analysis it is not possible to perform partial

pivoting based on the values in the matrix. But the COLAMD algorithm permutes the

column in such a fashion that zero entries are brought into the diagonals which prevents

LU decomposition without pivoting to succeed.

To circumvent this issue pivoting becomes necessary. The pivoting used for this purpose

is static and is only based on whether an element is non-zero or not. The row permutation

is performed by choosing the first non-zero element found in the column and permuting

it with the diagonal element. An example of this application is shown in Figure 5.5.

Figure 5.5: Matrices showing effect of COLAMD and Pivoting on diagonal elements

20

5.3.3 Column Dependency Analysis

To improve performance of the algorithm, it is necessary to analyze the extent to which

the LU decomposition can be parallelized. During the forward solve of the Left-Looking

LU Decomposition the solution on one column depends usually on one or more of the

previous computed columns which is used for the forward solve. This dependency can be

obtained by analyzing the sparsity structure of the U matrix after symbolic LU decom-

position. Column i is dependent on Column j iff U(j, i) is non-zero.

The dependencies are depicted as a Strict Directed Graph where the nodes represent

the columns while the edges represent the dependencies. That is to say an edge from i

to j means that the column j is dependent on i. An example matrix and its U factor is

shown in Figure 5.6 and its dependency graph is shown in Figure 5.7.

Figure 5.6: Example Matrix and its U factor

The column dependency graph is stored in the program as an adjacency list. The tool

graphviz [18] is used to plot the graph in the dot format. The number of columns each

column is dependent on is computed using a breadth first search of the graph starting

from those nodes which are not dependent on any others. A queue is maintaining during

runtime which stores initially the root nodes. When a thread demands for a column, the

top element from the queue is popped and when it returns, the child nodes dependency

count is update. As soon as a node reached zero dependency count, it is deemed ready

and is pushed into the queue.

21

0 1

2

3

9

4

5

7

8

6

Figure 5.7: Column Dependency Graph for Matrix in Figure 5.6

When the queue is empty, the thread waits for a column to become ready for com-

putation. If before this happens all the columns are accounted for the thread exits.

This ensures that if during computation more than one node becomes ready, threads are

available otherwise they would have to be terminated prematurely. The blocking is im-

plemented using semaphores. It could also be implemented using a polling loop which is

inefficient, but more importantly not possible using STL queues in C++ because they are

not thread-safe and cannot be declared volatile. This means that a while loop checking

the queue empty status will be optimized away at a higher optimization level as there is

no queue operation being performed within the loop.

Another possible approach is to levelize the graph which is shown in Table 5.1. Each

level of the graph then can be scheduled in parallel. This is more appropriate in case a

static schedule needs to be generated.

Table 5.1: Levelized List of nodes based on the Example Matrix

Level Columns

1 0, 1, 3, 4

2 2, 5

3 6

4 7

5 8

6 9

22

5.4 Dense LU Decomposition

When the number of harmonics become too large, the block correspondingly become very

much large in size. A tiled dense LU algorithm was implemented by further dividing the

blocks into smaller dense blocks to harness the locality of reference. For the operations

on the tiles, Intel MKL is itself used, which implies that if any performance benefit is

observed then the algorithm works faster than Intel MKL.

Algorithm 3: In-place tiled dense LU Decomposition [19]

Input: A ∈ R(H×N)×(H×N)

Output: L,U ∈ R(H×N)×(H×N)

1 for i← 1 to N do

// Compute Block column and row i of L and U Matrix

2 Lii, Uii =LU Decomposition(Aii); // Matrix LU

// Update perimeter blocks

3 for j ← (i + 1) to N do

4 Solve LijUii = Aij for Lij; // Backward Solve

5 Solve LiiUji = Aji for Uji; // Forward Solve

6 end

// Update interior blocks

7 for j ← (i + 1) to N do

8 for k ← (i + 1) to N do

9 Akj = Akj − Lki × Uij; // Multiplication and Subtract

10 end

11 end

12 end

23

Chapter 6

Automatic Circuit Parser

For the purpose of completing the circuit simulator and automate the process of the

Modified Nodal Analysis matrix generation a basic circuit parser was also implemented.

It takes as input a circuit netlist with syntax similar to that used in SPICE to create

the MNA matrices and structures to allow for evaluation and implementation of the

intermediate steps of the simulator.

6.1 Matrix Construction

Once the entire circuit has been read into a structure which stores all the node infor-

mation and mapping of the node and device names to internal structures, the Y and J

matrix which form a part of the simulator iterations are constructed in a symbolic.

To keep the construction as structured as possible each column corresponds to a par-

ticular node voltage and the corresponding row represents the Kirchoff’s Current Law

equation written for that specific node. For situations when the column represents a

current as in case of voltage sources or inductors, the corresponding voltage-related ex-

pression is written in the corresponding row. This often leads to zeros on the diagonal

because of the construction but it is handled by the LU Decomposition algorithm by use

of static pivoting.

Each device structure also stores the pointers to their corresponding blocks as they are

responsible for filling in values in the blocks when the appropriate function is called upon.

This is necessary because once the column and row permutations are applied permanently

to the Jacobian matrix the blocks are moved and hence the original structured mapping

no longer exists. Hence the onus of retaining which block corresponds to which device

and which port is on the device structure.

24

6.2 Syntax

As mentioned earlier, the syntax very closely follows that of SPICE but in its current

form it is quite restrictive. A brief description of the syntax is given below:

� The first non-empty line of the circuit is taken to be the name of the circuit and

ignored for simulation purposes.

� Any line beginning with a '*' is considered to be comment. Inline comments are

not supported.

� All lines are converted to lowercase before parsing and hence uppercase and lower-

case characters are mapped together internally. This is important to note, to avoid

clashing names and unwanted shorts between nodes.

� In the current state Resistors, Capcitors, Inductors, Voltage and Current sources

and MOSFETs are supported by the program. The device line goes as follows:

<type_character><device_name> <ports_list> <parameter_list> [model]

Table 6.1: Device description and synatx for Circuit Parser

Device Type Type Character Ports Parameters Models

Resistor r 2 Ports Resistance (Ω) –

Capacitor c 2 Ports Capacitance (F) –

Inductor l 2 Ports Inductance (H) –

Voltage Source v + and - Port Voltage (V) –

Fourier Series

Current Source i Current Direction: Current (A) –

Port 1 to 2 Fourier Series

MOSFET m Drain, Gate, W and L CMOSN/

Source and Body CMOSP

� Plot Commands: plot command is also available and any node voltage can be

plotted by following plot with the node names. Multiple nodes will be plotted in

the same window when using a single plot line for all of them. GNUPLOT is used for

the purpose of plotting, while the raw data is stored in a binary format always.

� Frequency: It is compulsory to mention the fundamental frequency. The keyword

freq[uency] followed by the frequency value can be used to set the simulation

frequency.

25

6.3 Example

Below is the code of an Operational Transconductance amplifier written the syntax de-

scribed in the previous chapter. Figure 6.1 shows the non-zero pattern of the Jacobian

matrix formed using the Circuit Parser.

1 OTA with Parasitics

2

3 frequency 1E6

4 Vinp inp 0 1.2 5E-3

5 Vinn inn 0 1.2 -5E-3

6 VDD vdd 0 1.8

7

8 IBIAS vdd vbias 1E-6

9 MB bdrain bgate bsource 0 1E-6 180E-9 CMOSN

10 MSS ssdrain ssgate sssource 0 10E-6 180E-9

CMOSN↪→

11 RBIAS vbias vdd 1E5

12

13 ML1 l1drain l1drain l1source vdd 1E-6 180E-9

CMOSP↪→

14 ML2 l2drain l1drain l2source vdd 1E-6 180E-9

CMOSP↪→

15

16 M1 outn gate1 source1 0 1E-6 180E-9 CMOSN

17 M2 outp gate2 source2 0 1E-6 180E-9 CMOSN

18

19 *Parasitics

20 Rparinp inp gate1 2

21 Rparinn inn gate2 2

22 Rparsrc1 source1 ssdrain 2

23 Rparsrc2 source2 ssdrain 2

24

25 Rparbias vbias bdrain 2

26 Rpardiode bdrain bgate 2

27 Rparvbias bgate ssgate 2

28

29 Rparl1 l1drain outn 2

30 Rparl2 l2drain outp 2

31

32 Rparvdd1 l1source vdd 2

33 Rparvdd2 l2source vdd 2

34 Rparssgnd sssource 0 2

35 Rparbgnd bsource 0 2

36

37 plot outp outn

38 plot inp inn

39 plot i_vdd

Figure 6.1: J Matrix of the OTA with parasitics generated from the Circuit Parser

26

Chapter 7

Custom Hardware Implementation

The secondary purpose to this work was to investigate the possibility of implementation

of the Block Sparse LU decomposition on an FPGA to accelerate the dense computations

and make use of the parallelism in the algorithm by implementing multiple computational

blocks.

From the algorithm described in the previous Chapter 5 and the Harmonic Balance

algorithm, there are six main dense matrix operations to be performed. The list below

enumerates the operations, where they are used in the Harmonic Balance flow and their

corresponding BLAS/LAPACK function.

1. Matrix-Matrix Multiplication and Add - cblas_sgemm: The most common

operation used in the column update operation of LU decomposition.

2. Matrix-Vector Multiplication and Add - cblas_sgemv: Used in Forward and

Backward solve algorithms

3. Band Matrix-Vector Multiplication and Add - cblas_sgbmv: Used to mul-

tiply the Y matrix with the x vector in Harmonic Balance

4. Dense Matrix Factorization - LAPACKE_sgetrf: Used once per column in LU

decomposition and Backward Solve as a precursor to invert the pivot block.

5. Dense Matrix Inverse - LAPACKE_sgetri: Used once per column in LU decom-

position to invert the pivot block.

6. Dense Matrix Linear System Solve - LAPACKE_sgetrs: Used once per column

in Backward Solve to solve using the pivot block.

These algorithms are where the parallelism of the FPGA can be utilized and hence

using Vivado HLS, these functions are optimized for hardware using the various available

27

pragma. The following section contains a discussion on some of the pragmas used and

their utilities.

7.1 HLS Hardware Optimization

7.1.1 Function Instantiate

Consider the matrix multiply and add algorithm. The operation performed by this algo-

rithm can be summarized as:

C = A×B + βC

where β is a scaling factor. This algorithm is very diverse and works for all values of

the floating point variable β, but it is clear that for special values of the variable the

hardware can be differently optimized. Consider the two cases below:

� Case β = 0: In this case, there is no need for the addition operation to be performed

and the MAC operations can be immediately be replaced by simple and faster

multiplication operations. Another optimization possible is that the C matrix need

not be loaded into the memory but only needs to be written back to.

� Case β = ±1: In this case, though MAC operations would be required and the

C Matrix needs to be read from the memory, the multiplication β need not be

performed. This might not yield significant performance benefits, but does help

conserve resources.

The pragma function instantiate helps in taking advantage of such situations by opti-

mizing the function specifically for different calls to the function with fixed values of the

specified variable which in this case would be β. The only disadvantage in terms of the

implementation is the multiple copies of the same computation block created for even

multiple serial calls.

This optimization can be applied to the Matrix-Vector Multiplication and Add opera-

tions and the Band Matrix-Vector Multiplication and Add operations.

7.1.2 Array Partitioning

Array partitioning alters how arrays are stored in the local memory/BRAMs instantiated

on the FPGAs. They affect how and in what fashion the array data can be accessed.

There are three ways in which this can be achieved, which is shown in Figure 7.1. The

advantage of array partitioning is that storing the matrix elements in different BRAMs

allows for parallel access of the data.

28

Figure 7.1: Types of Array Partitioning

Consider the situation of Matrix-Matrix Multiplication. For every element a row from

matrix A and a column from matrix B are multiplied with each other, which is depicted

in Figure 7.2. This operation can be parallelized with the rows of A and the columns of

B are split into multiple memories to allow for parallel multiply and addition of multiple

sections of the matrices.

This is specified to the compiler as follows:

#pragma HLS array_partition variable=A block factor=m dim=2

#pragma HLS array_partition variable=B block factor=m dim=1

where the matrix A is split about its second dimension which is across columns while B

is split about it’s first dimension.

Figure 7.2: Matrix Multiplication showing computation of a single element of Matrix C

29

7.1.3 Pipelining

This is most commonly used optimization which provides the maximum performance

benefit. Pipelining works by hiding the latecy of long duration operations by reusing

empty resources by splitting the operation into multiple stages. This allows for operations

to be scheduled every cycle and one operation can then be scheduled and retired in every

cycle. The process is very well explained in the Figure 7.3.

Figure 7.3: Example program showing effects and benefits of pipelining the program [6]

Addition of the pipeline pragma within a loop which contains a nested loop forces the

inner loop to be unrolled and hence pipelined in the process which is the main advantage

when used in program such as Matrix Multiplication. This allows for the RAM read, RAM

write and the MAX operation to be pipelined and hence obtain performance benefit. It

can also be used when streaming data from and to a shared processor through a bus into

the local memory, speeding up the data communication latency.

Occurrence Directive

It often occurs that there are conditional blocks within loops which occur a fraction of

the times the loop is executed. For example a loop with tripcount of N ×N might have

a conditional block execute only N times. This allows for the conditional block to be

pipelined infrequently and even in a parallel fashion with the main pipeline, a few itera-

tions earlier allowing the data to be readily accessible when required later.

This is useful when reading a matrix and a vector which have the same dimensions as

the matrix has N ×N elements while the vector has only N .

30

7.2 Data Movement Optimizations

7.2.1 Data Zero Copy

Data zero copy avoid explicitly moving the data from the processor memory to the local

device memory but allows for the hardware to directly access the processor’s shared

memory through a bus interface. This allows for memory access to be parallelized with

computation being performed in the hardware, but random access of data is not suggested.

Parts of the data can be accessed in short burst reads and writes and computation

performed on them while more data is read/written.

7.2.2 Data Access Pattern - Sequential

For arrays which are to be accessed in a sequential pattern, instead of creating a Random

access interface, a FIFO can be created which allows for data to stream in gradually from

the main memory as required. This also allows for the computation and memory access

to be overlapped and hence hiding the data movement latency.

This is especially useful in reading the matrices and vectors for Matrix multiplication

operations and the right-hand side matrices are read only once and in a streaming regular

fashion.

31

Chapter 8

Results and Discussions

8.1 Fill - In Reduction

The results of reduction in Fill-In when COLAMD is applied on circuit matrices which

are obtained from the Florida Suite-Sparse Matrix Collection [20] are shown in Table 8.1

Table 8.1: Fill-In w/ and w/o COLAMD column permutations for Sparse Matrices

Matrix Dimension NNZ Inital Fill-In COLAMD Fill-In

494 bus 494 1666 11202 1700

662 bus 662 2474 14524 5373

add 20 2395 17319 3996552 59596

add 32 4960 23884 5301064 17598

Hamrle1 32 98 99 84

rajat11 135 812 3541 742

8.2 Numerical Instability

Because we are performing only static pivoting, there are many situations when the

determinant of the diagonal block comes close to 0 which causes numerical instability

producing very high intermediate values. The problem is further aggravated as the num-

ber of harmonics are further increased. Some of the problems, their causes and possible

solutions are discussed below:

� Perfect Numerical Cancellation This often occurs in the first iteration when

starting with an initial guess of all zero. This can be circumvented by detecting the

singular nature of the matrix and adding a small value to the diagonal elements.

This can be seen as equivalent to adding a large resistor to ground from that

diagonal node.

32

� Ideal MOSFETs: Ideal MOSFETs do not have any drain voltage dependence in

the Saturation region which causes Perfect Numerical Cancellation at every itera-

tion. This cannot be circumvented using the previous method but requires pivoting

to be necessarily performed.

� Ideal Current Sources: Ideal current sources though do not cause singular diag-

onal matrices, they cause close to perfect cancellation which produces a very small

diagonal block which when inverted produces incorrect results due to loss of nu-

merical precision. It can be attributed to the absence of a relation between the two

node voltages of the current source and hence can be corrected by adding a large

resistor in parallel to it which provides such an equation.

� SPICE related instability: When using a simple square law, large intermediate

values not going beyond the numerical precision are still tolerable and get corrected

iteratively. But when SPICE calls are made, large values prevent SPICE from

converging onto a stable operating point and hence preventing simulation.

All of the issues can be easily solved by partial pivoting. But as that cannot be per-

formed online, a possible solution is to preprocess the circuit by performing DC simulation

with partial pivoting. This pivoting can then be used as static guide for the Harmonic

Balance iterations. This will also reduce the number of iterations in HB as the DC

solution has been precomputed.

8.3 Simulation Setup

8.3.1 Intel Xeon Phi: Knights Landing Edition

Intel Xeon Phi is a series of manycore processors using the x86 ISA. It was originally

based on a GPU design and hence shares many applications with GPU. The main advan-

tage of this platform over a GPU is its capability to run even single-threaded applications

or those targeted for other x86 architectures without much alteration. Hence this pro-

cessor can run both sections of the code: the serial and the parallelizable portion, hence

minimising the switching costs [7].

Knights Landing is the code name for the second generation many integrated core (MIC)

architecture. The processor contains 64 Atom Cores with upto 4 threads per core using

Intel Hyperthreading technology. Every core in the setup has 512-Bit vector instruction

support through Intels AVX512 SIMD instruction set. The processor has a base clock

speed of 1300 MHz and a L2 cache of 32 MB. It also includes a near memory called

the MCDRAM of 16GB which acts as an extended cache. The maximum performance

33

achievable is around 2.7 TFLOPs [21].

The previous version of the Xeon Phi code-named Knights Corner, was only utilizable

as a co-processor and sported a ring-interconnect network on chip. But this suffers from

scaling issues especially in terms of bandwidth and latency. This version implements a

mesh networking topology which significantly improves the latency and communication,

making it a direct competitor to commercial GPUs.

per core, deeper out-of-order buffers, higher L1 and L2 cache bandwidths, adding

AVX-512 vector instructions, improved reliability features, larger TLBs, and a larger

L1 cache. The new core supports all legacy x86 and x86-64 instructions, making

Knights Landing completely binary compatible with prior Intel® Architecture

processors.

2 × 16
1 × 4MCDRAM

EDC

DDR MC DDR MC

EDC
PCIe

Gen3
DMI

EDC EDC

EDC EDC EDCmisc. EDC

3
D

D
R

4
ch

an
ne

ls

3
D

D
R

4
ch

an
ne

ls

MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

× 4
DMI

36 Tiles
connected by

2D Mesh
Interconnect

Tile

Tile

Tile

Tile

FIG. 2.2

Block diagram showing overview of Knights Landing Architecture.

FIG. 2.3

Block diagram of a tile.

18 CHAPTER 2 Knights Landing overview

Figure 8.1: Intel Xeon Phi: Knights Landing Architecture [7]

AVX - 512

AVX 512 are Advanced Vector Extensions supporting single instruction operation of upto

8 double-precision floating point operations. These engines are similar to the GPU’s abil-

ity to process SIMD instructions. Utilization of these instructions is of utmost importance

to fully exploit the parallelism capability of the Xeon Phi Processors.

Intel MKL

Though the best performance benefit can be obtained by using the AVX intrinsic in-

structions directly in the program, that would require programming at a very low-level.

The Intel MKL library conveniently offers a higher level of abstraction by implementing

34

the BLAS [22] and LAPACK [23] functions optimized for the MIC architecture of KNL.

Some of the important functions of the library are mentioned below:

1. cblas_?gemm: Matrix Multiplication BLAS function which performs the following

operation C := alpha*(A)*(B) + beta*C where alpha and beta are scalars

2. LAPACKE_?getrf: Matrix LU Decomposition which performs the following opera-

tion A = P*L*U, where P is the permutation matrix

3. LAPACKE_?getri: Matrix Inverse which performs the following operation inv(A)

given the LU decomposition of the matrix

The library is multi-threaded using OpenMP from within and hence further parallelli-

sation is not necessary when working with blocks of large enough sizes and these kernels

take significant amount time and maximum parallelism is favourable.

8.3.2 Xilinx ZedBoard: Zynq-7000 SoC

For testing the implementation on the FPGA, Xilinx Zedboard was used which contains

the Zynq-7000 SoC. The system-on-chip contains a dedicated ARM processor and user

configurable programmable logic. The processor is a dual-core ARM Cortex A9 processor

integrated with the programmable logic implemented in 28nm technology.

Table 8.2: Xilinx ZedBoard Frequency Specifications

Frequency

Processor System 666.67 MHz

Data Motion Network 142.86 MHz

FPGA 142.86 MHz

8.4 Dense LU Decomposition

The dense LU implementation was compared for different matrix sizes and block sizes

with the implementation of the MKL library.

From the Figure 8.2, it can clearly be observed that only for really large matrices like

8192 × 8192, the dense tiled LU algorithm provides significant benefit mainly because

of the division of the blocks into sub-blocks which increase the locality of memory and

hence providing the speedup.

Hence it can be concluded that for number harmonics of the order 2000 and below,

using MKL functions directly on the block matrix is faster than going for further sub-

division. This is because MKL utilises AVX instrinsics and hence is better tuned for Intel

35

Figure 8.2: Dense Tiled LU Decomposition Comparison

hardware. For all future results the custom dense tiled LU decomposition is not used as

such high number of harmonics are not required for simple circuit analyses.

8.5 FPGA Implementation

8.5.1 Performance Comparison

In this sub-section the performance of the functions implemented on hardware are com-

pared with similar implementations on the ARM processor on the Zynq7000 SoC.

Figure 8.3: Speedup of the BLAS algorithms on the FPGA over CPU

From Figure 8.3, we can observe that the maximum speedup greater than 1 is observed

only in the case of matrix multiplication. This is because the maximum parallelism is

available in matrix multiplication and also the larger number of floating point operations

are able to better mask the communication latency. Continuing this argument it is clear

why the banded matrix-vector multiplication has the least performance: it has the least

36

number of operations that be performed in parallel as, in each row, only 3 MAC operations

need to be performed.

Figure 8.4: Speedup of the LAPACK algorithms on the FPGA with block size of 64

From Figure 8.4, we can observe that the performance degradation is severe in case of

the matrix inverse, factorization and linear solve operations. This is because the loops

in the algorithms are not of fixed tripcount and they change with every outer loop iter-

ation. This makes pipelining inefficient when minimizing the utilization of resources as

the number of operations keep on changing.

Matrix inverse is faster than linear solve because matrix inverse can be seen as a special

case of linear solve where the other matrix is the identity matrix which reduces data

movement as well as computation. Factorization is faster than both the other operations

because though internally it does perform forward solve internally, it also has a matrix-

vector product stage which is regular and parallelizable.

8.5.2 Timing Closure

Issues with timing closure were observed when implementing pivoting in Matrix Factor-

ization function. The original code which caused the timing closure issue and the altered

code to avoid it are shown below:

58 //This Code Segment causes Timing Closure Issues

59 for (int j = i; j < H; j++){

60 #pragma HLS PIPELINE

61 absA = ((_A[i][j] >= 0) ? _A[i][j] : -_A[i][j]);

62 if (absA > maxA) {

63 maxA = absA;

64 jmax = j;

65 }

66 }

37

68 // Modified Pivot Detection to meet Timing Constraints

69 for (int j = i; j < H; j++){

70 #pragma HLS PIPELINE

71 absA = ((_A[i][j] >= 0) ? _A[i][j] : -_A[i][j]);

72 if ((_A[i][j] > maxA) || (_A[i][j] < -maxA)) {

73 maxA = absA;

74 jmax = j;

75 }

76 }

In the first code segment, the if condition evaluation is dependent on the completion

of the previous statement which is also a conditional evaluation followed by a negation

in the worst case. This cause a series of sequential operations which causes a timing

closure problem because of the requirement of pipelining. This problem is corrected by

making the evaluation of the variable absA independent of the if statement evaluation.

Now there are two independent conditions which can clearly be executed in parallel and

hence avoiding the timing closure problem.

8.6 Simulation Results

8.6.1 Example: Operational Transconductance Amplifier

outp

VDD

IBIAS

GND

inp inn

Figure 8.5: Operational Transconductance Amplifier Schematic

The Figure 8.6 shows the output waveform for multiple input voltage amplitudes using

20 harmonics of the circuit whose schematic is shown in Figure 8.5. We can see clearly

that even for a large input, it is able to predict the large signal behaviour at the output.

38

8.6.2 Output

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1x10-7 2x10-7 3x10-7 4x10-7 5x10-7 6x10-7 7x10-7 8x10-7 9x10-7 1x10-6

5mV
2mV

0.5mV
0.2mV

0.05mV

Figure 8.6: Output waveforms of the OTA for different input voltage amplitudes

8.6.3 Performance Analysis

Note: Unless otherwise mentioned, all results in the graphs are based on the program

which uses the simple square law model so that the LU Decomposition’s performance can

be clearly seen in the overall simulation time.

Table 8.3: Matrix sizes and No. of Non-Linear Elements in circuits used to analyze
performance

Circuit Name Matrix Dimension Non-Linear Elements

ota_par 23 6

ota 10 6

diffamp 9 2

The three circuits as shown in the Table 8.3 are chosen such that the variation with the

number of non-linear elements as well as the size of the matrix dimension can be clearly

observed. Circuits ota_par and ota have the same number of non-linear elements and

hence their model-evaluation phase must take exactly the same amount of time, while

the circuits ota and diffamp have similar matrix dimensions but differ in the number of

non-linear elements.

39

Number of Threads executing Columns in Parallel

Figure 8.7: Speedup of extracting Column-Level Parallelism normalized to serial case

From the graph in Figure 8.7, we can clearly see that there is a significant speedup

when parallelism is extracted at a column level. Comparing the size of the matrices with

the amount of speedup achieved, it can also be noticed that for larger matrices more

parallelism can be extracted.

Number of Harmonics

Figure 8.8: Performance degradation with increasing harmonics normalized to 20
Harmonics

From this data in Figure 8.8 we can clearly see that irrespective of the circuit, the

degradation with increasing number of harmonics is the same. This shows that the

performance in limited by the block operations and model evaluation which both directly

depend on the size of the blocks which is given by the number of harmonics.

40

ngSPICE based Model Evaluation

Figure 8.9: Performance degradation with using ngSPICE calls for Model Evaluation

From the data shown in Figure 8.9, we can see that there is a significant performance

degradation of more than 250 times even when using only 2 non-linear devices. The

degradation is severe in the ota circuit because compared to the dimension of the matrix,

the number of non-linear elements are large. In case of ota_par, the larger part of

the simulation time is also spent in the LU decomposition and hence the degradation

seen is smaller. Because SPICE is serial, especially on the KNL the degradation seen

is exaggerated. On smaller processors which have less parallelization capability while

running at higher frequency, this gap is bridged to a certain extent.

Profiling Results

(a) using ngSPICE (b) using simple Square Law

Figure 8.10: Performance Profiling results with the two different Model Evaluations

From the two profiling results 8.10a and 8.10b, we can see that when using ngSPICE the

performance-limiting step becomes the ngSPICE calls, especially the string commands

which shows that the ngSPICE parser interface degrades performance.

41

Chapter 9

Future Work

The aim of the work is to spawn new opportunities in exploring the optimization of this

algorithm. This can be done in numerous ways and some of them are listed below.

1. The implementation is still not totally complete. More devices need to be supported

in the simulator portion such as inductors, BJTs, etc. Also ngspice component of

the program has not yet been integrated into the program.

2. Preprocessing of Jacobian: Circuit matrices still sometimes cause cancellation pro-

ducing singular diagonal blocks which can be solved using a DC Analysis based

static permutation which would also make the solution and convergence more sta-

ble.

3. Explore Krylov subspace techniques, iterative solvers and preconditioners as an

alternate to the direct LU factorization [4, 24]. Post-Layout extracted circuits tend

to be large and hence a direct approach may not be suitable.

4. Using a static schedule and block matrix operation kernels implemented on an

FPGA this algorithm can be well suited to be implemented on FPGAs and for

larger circuits, on networks of FPGAs as well.

5. As shown in the Results and Discussions section, a large part of the time is spent in

model evaluation especially when using SPICE like models. This can be improved

by using a LUT based approach to model evaluation. Instead of implementing

the complex functions with multiple model parameters, the device characteristics

are evaluated at discrete points and tri-cubic polynomial coefficients stored. At

evaluation time in the simulator, a simple tri-cubic spline interpolation is performed

and the result obtained quickly. This allows for immense parallelization and is very

well suited to implementation even on FPGAs.

42

Part II

Circuit Partitioning for Distributed

Logic Simulation

Chapter 10

Introduction

Digital logic circuits are getting ever larger with the transistor scaling and cheaper tech-

nology and testing and verification of these circuits is getting even harder. Logic simula-

tion is a very time consuming process and is very much slower than the actual hardware.

A fast way to implement this is to emulate the circuit in an FPGA, but increasing sizes of

design, it is becoming increasingly difficult to find a large enough FPGA to fit the entire

design.

This brings about the problem of partitioning the circuit to allow for distributed sim-

ulations across multiple FPGA’s, processor cores or different processors altogether over

a communication network. Circuit networks and logic netlists are easily amenable to the

use of graph partitioning problems for netlist partitioning. There are several levels where

the partitioning can be performed such as the RTL level and the gate level. RTL level

partitioning can yield better partitions because of the higher level view of the functions

and blocks, but describing RTL in a generic format and making a general purpose parti-

tioning tool can be cumbersome and hence a gate level partitioning is performed where

the netlist can be readily represented in a graph structure.

44

Chapter 11

Previous Work and Motivation

This work directly takes off from the yet unpublished work of Vinay B.Y. Kumar, which

includes a toolset for custom Network-On-Chip (NOC) generation. The project aims at

compiled code simulation of a logic circuit on a custom generated NOC. For the pur-

pose of simulation of logic circuits on Intel Xeon Phi platform, the logic netlists are first

clubbed into 9 input LUT which fits into the 512 Bit SIMD vector units allowing bit wise

operations and access to be performed quickly.

First, the verilog netlist is parsed into the BLIF format using the yosys [25] tool fol-

lowed by the LUT mapping by ABC [26]. With the LUT Mapping complete, a compressed

netlist can be generated. The goal now is to split the circuit at its pseudo-primary and

primary outputs, that is clustering of the outputs such that the overlap between the in-

put cones of the clusters (Refer Figure 11.1) is minimised. The algorithm implemented

is a greedy splitting algorithm which is not optimized and not tested against any other

possible approach.

There have been several previous explorations on techniques to partition circuits since a

decade ago when logic circuit sizes began to exceed single FPGA dies and had to be split

into multiple units for emulation. Some of the works [27, 28] describe Ratio-Cut and set

based techniques to perform clustering on circuits. And some well studied algorithms such

as the Kernighan–Lin algorithm and its heuristic improvement the Fiduccia-Mattheyses

algorithm have been applied in several CAD tools for layout and routing of digital circuits.

In this work, we are exploring an approach to speed up the process by only looking at

the output nodes and not at the entire circuit. This approach will not only limit com-

munication to flip-flop outputs but also reduce the exploration set of possible partitions.

We have tested algorithms based on sub-modular functions, and spectral partitioning,

to compare the performance with the simple greedy splitting algorithm based on various

45

metrics of replication, communication (Figure 11.2 shows how partitioning may require

communication across time steps) and balance.

Inputs Outputs

Circuit

Overlap

Set 1 Cone

Set 2 Cone

Set 1

Set 2

Figure 11.1: Example of Partitioning and Minimization Problem

A

PPO1PPI1

FFs

POPI
Logic Circuit

B

A

Figure 11.2: Example of Partitioning and Communication Problem

46

Chapter 12

Sub-Modular Function based

Minimization

12.1 Sub-Modular Set Functions

Loosely, sub-modular set functions are functions on sets such that the incremental differ-

ence addition of an element to the input set makes, reduces as the size of the set increases.

In other words, they satisfy the law of diminishing returns which makes them applicable

to many scenarios such as electrical networks and graph theory. With the advent of the

age of machine learning and AI, the sub-modular set functions are also gaining significant

popularity as they are being modified and applied to learning problems such as feature

selection, and even unsupervised learning.

Formally, given a finite set S, a submodular function is a set function f : 2S → R where

2S is the power set such that it satisfies the following condition [29]:

For every A,B ⊆ S with A ⊆ B and every x ∈ S\B we have that

f(A ∪ {x})− f(A) > f(B ∪ {x})− f(B)

Sub-Modular functions share properties like convex functions and the simplest mini-

mization problem of finding a minimizing set is computable in polynomial time [30].

12.2 Matlab SFO Toolbox [2]

For the purpose of performing the sub-modular minimization, the SFO Toolbox [2] avail-

able for MATLAB was used. The following function by Zhao, et.al [31] for greedy splitting

for approximating multiway partitions is used:

47

function P = sfo_greedy_splitting(E,V,k)

where k is the number of partitions, V in the vertex set of the graph and E is called the

oracle function which is supposed be the sub-modular set function which is optimized.

12.2.1 Queyranne’s Algorithm

The greedy splitting algorithm at it’s core performs a bi-partition based on Queyranne’s

Algorithm [32] which is shown in Algorithm 4.

Algorithm 4: Queyranne’s Algorithm [32]

Input: V, f ; // f: Symmetric Oracle function

Output: Ai

1 for h← 1 to |V | − 1 do

2 (St, Su)← Pendent-Pair[V ′, f];

3 store Ah ← Su and sh ← f(Su);

4 update St ← St ∪ Su and V ′ ← V ′\Su;

5 end

6 Choose i ∈ arg min sh : h = 1, · · · , |V | − 1;

A pendant-pair is an ordered pair (St, Su) of the vertices V of a graph, such that u is a

minimizer for the Oracle function among all groups of nodes containing Su but not St.

12.2.2 The Oracle Function

The oracle function here has been chosen simply to be the number of nodes in the input

cone of the cluster of outputs supplied as input.

This makes sense because within the greedy splitting function, the oracle function is

symmetrized as follows:

Fsym = E(A) + E(V\A) - E(V)

which is basically the overlap between the cluster and its complement which is what was

sought to be optimized.

48

Chapter 13

Ratio-Cut using Spectral

Partitioning

13.1 Spectral Graph Theory

The original algorithm and the proof was proposed by Fiedler [33, 34]. It has been used

to partition graphs for many purposes such as even fill-in reduction ordering for sparse

matrices [35], as an alternate to minimum degree ordering other than the usual ratio-cut

applications in CAD.

Given an undirected graph G(V,E) with weighted edges, A the symmetric adjacency

matrix such that A(i, j) is the weight of the edge (i, j) or 0 if the edge does not exist in the

graph, and D the diagonal degree matrix which contains the sum of wights of all edges

connected to a vertex i, at the ith diagonal element. The Laplacian Matrix L is defined

as L = D − A. The ratio cut partitions the graph (say into X and Y) using the second

eigenvalue of the Laplacian matrix such that the ratio shown in below is minimized.

|E(G) ∩ (X × Y)|
|X| · |Y |

(13.1)

From Equation 13.1 we can observe that along with minimizing the cut between the

partitions, it also takes into consideration the balance between the partitions represented

by the product of the size of the partitions in the denominator, which is to be maximized.

The Laplacian matrix has the properties [8]:

� It is symmetric which implies that all eigenvalues are real and the corresponding

eigenvectors, real and orthogonal.

� The sum of rows of the matrix is [0, 0, · · · , 0]

49

Figure 13.1: Modes of a Vibrating String [8]

� The number of connected components in the graph is given by the number of

eigenvalues which are 0.

� The smallest eigenvalue is 0, which is indicative of the fact that the entire graph

has at least one connected component which is itself.

Without going into the details of the proofs and derivations which are well explained

in the referenced texts, the second smallest eigenvalue provides the lower bound on the

ratio-cut metric as defined in Equation 13.1. The corresponding eigenvector is used to

bipartition the graph based on the signs of the entry as outlined in Algorithm 5. Further

partitions can be obtained by using more eigenvalues and their corresponding eigenvec-

tors to create multi-way partitions using clustering algorithms [36, 37].

Algorithm 5: Ratio-Cut based on Spectral Bisection

Input: G(V,E)

Output: X, Y

1 L = D − A ; // Compute the Laplacian

2 Compute the eigenvector v2 ; // Corresponding to λ2

3 for each node n in G do

4 if v2[n] < 0 then

5 Add node n to Partition X

6 else

7 Add node n to Partition Y

8 end

9 end

This kind of partitioning can be motivated using an analogy with a vibrating string as

shown in Figure 13.1.

50

13.2 Circuit Conditioning

As discussed in the introduction, in this work, we are not looking to partition the circuit

based on the individual gates which is easily represented as a graph. There is no unique

way to convert the set of outputs and flip-flops into a graph which takes into consideration

the metrics such as replication and communication which we are looking to optimize for.

13.2.1 Replication

A heuristic approach is used to encode the replication metric into the graph where the

nodes are the outputs of the logic circuit. An exact overlap cannot be put in terms of

the graph as the overlap does not simply sum when considering a set of outputs in a

partition. A pair wise overlap is computed between the outputs and is assigned to be the

weight of the edge between the two nodes.

Figure 13.2: Example Graph of s526 circuit from ISCAS’85 benchmarks representing
input to Spectral Partitioning embedding Replication metric information

13.2.2 Communication

Unlike replication, communication can be readily embedded into a directed graph struc-

ture. The fan-in of each pseudo-primary output is computed and an edge is introduced

between the output and any pseudo-primary input contained in its fan-in.

But this would produce a directed graph, which cannot be used in spectral partitioning

as the Laplacian of a directed graph might have complex eigenvalues as well. Hence to

51

symmetrize the matrix, each communication edge is added both ways and the weights

summed up.

Figure 13.3: Example Graph of s713 circuit from ISCAS’85 benchmarks representing
input to Spectral Partitioning embedding Communication metric information

13.2.3 Combining the Costs

Balancing comes naturally in spectral graph partitioning but replication and communi-

cation have been modeled as described in the preceding sub-sections. But for the goal

of logic partitioning is necessary to take both into consideration as the same time. Also

it might be the case that we may have some extra resources but cannot afford the extra

latency of communication which occurs in every cycle of the logic simulation.

One way of doing this would be to normalize the Adjacency matrix obtained during

the replication analysis and making the maximum element to 1 and simply adding the

Adjacency matrix obtained by analysis of the communication to it. The weightages can

now be introduced as multiplicative factors. But this method means that for a circuit

which has maximum overlap much larger than another circuit, the overlap weightage is

significantly scaled down to be brought to the same level. A more meaningful method

would be to define a value of replication (rC) which is equivalent to once unit of commu-

nication at each time step, based on the available resource and time constraints. We can

write the new adjacency matrix as in Equation 13.2.

A = AR/rC + AC (13.2)

52

Chapter 14

Results and Discussion

To compare different algorithms and techniques, the metrics used are first defined here:

� Replication Metric: Sum of all gates/nodes in all the partitions. This includes

the gates/nodes that are replicated among the partitions. This metric must be

minimized.

� Communication Metric: Sum of all bits that must be sent from one partition to any

other at the end of each clock cycle. A ‘bit’ broadcasted to multiple other partitions

(for more than a bisection) are counted as many times as they are received. This

metric also must be minimized.

� Balance Metric: Product of sizes of the partitions of the output nodes divided by

the maximum possible product which is (|V |/2)2. This metric must be maximized

as it is a super-modular set function.

14.1 MATLAB interface with C++

The netlist was decoupled from the tool flow for the purpose of optimization, and was

read into a C++ structure. But because the toolbox is present in MATLAB, interfacing

between the two languages was necessary which was accomplished by using the MEX files

or MATLAB executable. This allows C++ functions to be compiled in MATLAB and

called as if they were MATLAB functions.

Because the MEX retains the memory allocation of the C++ code across calls to the

function, the netlist only needs to read once followed by faster access to the already

generated and stored netlist.

53

14.2 Greedy Splitting using SFO Toolbox

Here the basic greedy algorithm as implemented in the previous work in compared with

the sub-modular function based optimization. Only the replication metric is provided as

the cost function and hence only that metric is compared in Table 14.1.

Although from looking at the table, it might appear that the SFO toolbox based parti-

tioning algorithm beats the other algorithm in most of the cases, there are some consid-

erations not captured above.

1. Time taken by the toolbox is very large and increases tremendously with the number

of output nodes as it is of the order O(N3).

2. The Oracle function provided suffers from a flaw, that there is no cost for lack of

balance in the partitions.

Circuit Original Algorithm SFO Toolbox Algorithm

Partitions → 2 3 4 2 3 4

c432 435 594 - 262 332 491

c499 292 390 488 292 390 488

c880 390 512 541 297 297 299

c1355 292 390 488 292 390 488

c1908 313 396 477 297 360 423

c2670 1139 1227 1302 984 984 984

c3540 628 791 1007 388 400 416

c5315 1411 1676 2015 1142 1142 1142

Table 14.1: Comparison of replication metric of Partitioning Algorithms on ISCAS
Combinational Benchmarks

14.3 Spectral Partitioning

Here the sub-modular function based optimization is compared with the Spectral bipar-

titioning approach. Only the replication metric is provided as the cost function for the

SFO toolbox, while the spectral approach incorporates balance as well which is compared

in Table 14.2.

54

Circuit SFO Toolbox Spectral Bipartition

Metric → Replication Balance Replication Balance

c432 262 0.49 262 0.49

c499 292 0.12 292 1

c880 297 0.15 297 0.41

c1355 292 0.12 292 1

c1908 297 0.15 311 0.92

c2670 984 0.03 984 0.9

c3540 388 0.17 388 0.17

c5315 1142 0.1 1142 0.45

Table 14.2: Comparison of Replication and Balance metric of Partitioning Algorithms
on ISCAS Combinational Benchmarks

From the comparison we can clearly see that the spectral algorithms is able to achieve

better balancing as compared to the greedy splitting algorithm from the SFO Toolbox

in most cases at minimal increase in the replication metric. Circuits such as c432 show

no increase in balance, because the overlaps between the output nodes are such and can

be observed in Figure 14.1. Node 4 is removed into a separate partition as it has the

least weights while all other nodes are all to all connected with large weigths and hence

splitting them to improve balance would come at a large cost of replication of nodes.

Figure 14.1: Example Circuit c432 showing lack of good Balanced Partitions

55

14.4 Spectral Partitioning with Communication

Here the Spectral bi-partitioning approach considering only replication is compared with

the Spectral bi-partitioning approach when taking replication and communication into

consideration. As mentioned earlier, for all circuits, the adjacency matrix obtained for

replication is normalized before adding to the communication embedded adjacency ma-

trix.

As defining communication requires FFs to be present and mapped between the inputs

and outputs, the sequential circuits from ISCAS’85 benchmarks are used here. All the

three metrics are compared in Table 14.3.

Circuit w/o Communication w/ Communication

Metric → Replication Balance Comm. Replication Balance Comm.

s344 224 0.71 5 224 0.62 5

s349 225 0.71 5 225 0.71 5

s420 271 0.22 1 286 0.22 0

s526 265 0.4 6 262 0.27 6

s838 547 0.12 1 578 0.12 0

s9234 6094 0.14 4 6094 0.18 0

s13207 9441 0.49 69 9441 0.15 0

s15850 11067 0.17 16 11067 0.15 0

s35932 21017 0.93 178 21008 0.78 165

s38417 25585 0.26 214 25585 0.005 0

s38584 22447 0.014 1 2247 0.012 0

Table 14.3: Comparison of All metrics of the Spectral Partitioning Algorithm on ISCAS
Sequential Benchmarks

For the comparison we can clearly see that after introducing the communication metric,

the communication has reduced compared to when only replication was being considered.

In many cases, the number of nodes have taken a significant hit at the cost of obtaining

less communication. This shows that the weightages still need to be fine tuned and an

appropriate method which guarantees close to expected results.

In some circuits such as s420 we can see that introducing communication also improves

replication. This brings a certain instability in the spectral bipartition algorithms specif-

ically because the edges are not exactly representative of the overlap when considering a

group of nodes.

56

Chapter 15

Future Work

In this work, only a small subset of algorithms have been tests to implement circuit

partitioning. Some other algorithms are also being worked out and tested such as the

sub-super-modular optimization algorithm which optimized the difference of sub-modular

and super-modular function. This can be used to introduce the balance metric which is

a super-modular function into the SFO toolbox based approach to obtain results compa-

rable to the spectral partitioning method.

Different other graph algorithms such as those provided by the METIS which contains

a set of graph partitioning programs which have been tried and tested. Clustering al-

gorithms such as k-means can also be tested using multiple eigen-values in the spectral

partitioning algorithm.

Apart from the improvements to the partitioning algorithm, the partitions produced

need to be integrated into the toolflow to produce and simulate the distributed logic

created. Automatic generation of the partitioned logic and simulation on a network

using multiple FPGAs must be implemented to put these partitioning algorithms’ results

to use and get results from the actual implementation.

57

Part III

Appendix

Appendix I

Harmonic Balance C++ Codes

I.1 Sparse Matrix Storage

I.1.1 sparseCOO.h

1 #ifndef SPARSECOO_H

2 #define SPARSECOO_H

3

4 #include "stdafx.h"

5

6 class sparseCOO{

7 public:

8 uint64_t rowCount, columnCount;

9 vector<pair<pair<uint64_t, uint64_t>, float_t> > COO;

10 static bool rowCompare(const pair<pair<uint64_t, uint64_t>, float_t>& a, const

pair<pair<uint64_t, uint64_t>, float_t>& b);↪→

11 static bool columnCompare(const pair<pair<uint64_t, uint64_t>, float_t>& a, const

pair<pair<uint64_t, uint64_t>, float_t>& b);↪→

12

13 public:

14 //Generate the Sparse COO represetation using the CSV file generated by the

15 //MATLAB exe file. The source of the data is a mat file supplied by the

16 //UFlorida Sparse Matrix Java Application

17 sparseCOO(string fileName);

18 void SpMV(float_t *x, float_t **y);

19 void prettyPrint();

20 void rowSort();

21 void columnSort();

22 };

23

24 #endif //SPARSECOO_H

59

I.1.2 sparseCSC.h

1 #ifndef SPARSECSC_H

2 #define SPARSECSC_H

3

4 #include "stdafx.h"

5 #include "sparseCOO.h"

6

7 class sparseCSC {

8 public:

9 uint64_t rowCount = 0, columnCount = 0;

10 int *col_permutation, *row_permutation;

11 uint64_t nnz = 0, nnz_max = 0;

12 bool symbolic = false, permuted = false;

13 float_t *A; //A - Non-Zero Elements

14 uint64_t *IA, *JA; //IA - Row Indices; JA - Column start indices

15 public:

16 sparseCSC(uint64_t rowCount, uint64_t columnCount, bool symbolic = true, uint64_t

nnz_guess = 0);↪→

17 sparseCSC(float_t* sparseMatrix, uint64_t x, uint64_t y);

18 sparseCSC(sparseCOO* input, bool symbolic = false);

19

20 void insert_element(uint64_t row);

21 bool nextElement(uint32_t *row, uint32_t *column, uint32_t *offset, float_t *num);

22 void do_colamd();

23 void prettyPrint();

24 void spy(string header, bool clean = true);

25 void clear_permutation();

26 void symbolic_lu(sparseCSC *L, sparseCSC *U);

27 };

28

29 #endif //SPARSECSC_H

I.1.3 sparseBCCS.h

1 #ifndef SPARSEBCCS_H

2 #define SPARSEBCCS_H

3

4 #include <stdafx.h>

5 #include "sparseCOO.h"

6

7 class sparseBCCS{

8 public:

9 uint64_t rowCount, columnCount, numBlocks, rowBlocks;

10 pair<uint64_t, uint64_t> blockSize;

60

11 vector<pair<uint64_t, float_t*> > blocks;

12 vector<uint64_t> blockColPointer;

13

14 bool banded = false, permuted = false;

15

16 // Column Permutation: New to Old

17 // Row Permutation:

18 // Column 1: Old to New Mapping

19 // Column 2: New to Old Mapping

20 int *col_permutation, *row_permutation;

21

22 sparseBCCS();

23 sparseBCCS(uint64_t rowCount, uint64_t columnCount, pair<uint64_t, uint64_t>

blockSize);↪→

24 void initialize(uint64_t rowCount, uint64_t columnCount, pair<uint64_t, uint64_t>

blockSize);↪→

25

26 sparseBCCS(sparseCOO* input, pair<uint64_t, uint64_t> blockSize);

27

28 // Makes the Row Permutation permanent by altering the sparse structure

29 void applyPermutation();

30

31 static uint64_t getNumBlocks(sparseCOO* input, pair<uint64_t, uint64_t>

blockSize);↪→

32 void SpMV(float_t *x, float_t *y);

33 void prettyPrint(bool symbolic = true);

34 };

35

36 bool compareBlocks(pair<uint64_t, float_t *> a, pair<uint64_t, float_t *> b);

37

38 #endif //SPARSEBCCS_H

I.2 Circuit Parser and Evaluation

I.2.1 ngspice.h

1 #pragma once

2

3 #ifndef _NGSPICE_H_

4 #define _NGSPICE_H_

5

6 #include <stdafx.h>

7

8 #define PRINT_OUT 0

9 #define PRINT_STATUS 0

61

10 #define FILE_OUT 0

11 #define FILE_STATUS 0

12

13 namespace ngspice{

14 extern std::ofstream ofile_out, ofile_err, ofile_stat;

15

16 int controlledExit(int exit_status, bool unload, bool exit_type, int id, void

*caller);↪→

17 int sendChar(char *out, int id, void *caller);

18 int sendStat(char *status, int id, void *caller);

19 int sendData(vecvaluesall *data_vec, int count, int id, void *caller);

20 int sendInitData(vecinfoall *data_addr, int id, void *caller);

21 int bgThreadRunning(bool running, int id, void *caller);

22 }

23

24 #endif //_NGSPICE_H_

I.2.2 device.h

1 #pragma once

2

3 #ifndef DEVICE_H

4 #define DEVICE_H

5

6 #include <stdafx.h>

7

8 class device {

9

10 protected:

11 static float_t fund;

12

13 uint8_t num_ports, num_parameters;

14 uint64_t *ports;

15 bool type;

16 string d_name;

17

18 // Changes meaning based on type of Device

19 float_t *parameters;

20

21 // Y and J Block Indices which need to be updated

22 // Inherent ordering of blocks depending on the type of device

23 vector<float_t *> Y_blocks, J_blocks;

24

25 // Function defined as virtual as the devices of all

26 // types are going to be stored as generic device pointers

62

27

28 // Default Base Class function, initializes to Identity Band Block

29 virtual void populate_band (float_t *band_block, bool pos_term);

30

31 // Default Base Class function, initializes to Identity Block

32 virtual void populate_block (float_t *block, bool pos_term);

33 device (string name, uint8_t num_ports, uint64_t *ports, float_t *parameters,

34 int num_parameters = 1, bool type = false);

35 ~device ();

36

37 public:

38 virtual void setBlockPointers (float_t *Y_block, float_t *J_block, uint64_t row,

uint8_t port_index);↪→

39

40 static void set_frequency (float_t frequency);

41 static float_t get_frequency ();

42

43 virtual void populate_B (float_t *B);

44

45 // Store the contribution of the device as a function of the "node" potential

46 // to KCLs at various other nodes in the circuit in the preallocated "rows" array

47 // Port Index supplies which port of the device connected to the node

48 // Return value is the number of such rows

49 virtual uint8_t which_rows_Y(uint64_t *rows, uint8_t port_index = 0);

50 virtual uint8_t which_rows_J(uint64_t *rows, uint8_t port_index = 0);

51

52 virtual void populate_Y ();

53 virtual void populate_J ();

54

55 // Doubles as populate_J function for non-linear elements

56 virtual void alter_node_voltages(float_t *x = NULL, uint64_t time_index = 0);

57 virtual void evaluate_nonlinear(float_t *x = NULL, float_t *f_x = NULL, uint64_t

time_index = 0);↪→

58 };

59

60

61 /*

62 * num_ports is set to 2 by default;

63 * Extra Functions to set the B vector on the RHS

64 */

65 class source : public device {

66

67 // type variable

68 // 0 - Voltage Source; 1 - Current Source

69 public:

70

71 // Default only 1 paramater for DC Source

63

72 // Further Parameters of AC Source - Frequency decided for the entire circuit

73 // Ports: 3 for voltage source including the current through voltage

74 // source variable as the 3rd "virtual" port;

75 // 2 for current source

76 source (string name, uint64_t *ports, float_t *parameters,

77 int num_parameters = 1, bool type = false);

78

79 uint8_t which_rows_Y(uint64_t *rows, uint8_t port_index = 0);

80 void setBlockPointers (float_t *Y_block, float_t *J_block, uint64_t row, uint8_t

port_index);↪→

81

82 // Populates the relevant H-length port of the B vector

83 void populate_B (float_t *B);

84 };

85

86 /*

87 * num_ports is set to 2 by default

88 */

89 class resistor : public device {

90

91 private:

92 void populate_band (float_t *band_block, bool pos_term = true);

93 void populate_block (float_t *block, bool pos_term = true);

94

95 public:

96 // Only one resistance parameter

97 resistor (string name, uint64_t ports[2], float_t parameter);

98 };

99

100 /*

101 * num_ports is set to 2 by default

102 */

103 class capacitor : public device {

104

105 private:

106 void populate_band (float_t *band_block, bool pos_term = true);

107 void populate_block (float_t *block, bool pos_term = true);

108

109 public:

110 // Only one resistance parameter

111 capacitor (string name, uint64_t ports[3], float_t parameter);

112 };

113

114 /*

115 * num_ports is set to 2 by default

116 */

117 class inductor : public device {

64

118

119 private:

120 void populate_band (float_t *band_block, bool pos_term = true, bool unit = false);

121 void populate_block (float_t *block, bool pos_term = true, bool unit = false);

122

123 public:

124 // Only one resistance parameter

125 inductor (string name, uint64_t ports[3], float_t parameter);

126

127 uint8_t which_rows_Y(uint64_t *rows, uint8_t port_index = 0);

128 void setBlockPointers (float_t *Y_block, float_t *J_block, uint64_t row, uint8_t

port_index);↪→

129

130 // Needs its own function because of the uniqueness

131 void populate_Y ();

132 void populate_J ();

133 };

134

135 /*

136 * num_ports is set to 4 by default

137 */

138 class mosfet : public device {

139

140 private:

141 // Technology Parameters

142 static const float_t mu_n;

143 static const float_t mu_p;

144

145 static const float_t C_ox;

146 static const float_t lambda;

147

148 static const float_t vthn0;

149 static const float_t vthp0;

150

151 // Port Names

152 static const uint8_t DRAIN, GATE, SOURCE, BODY;

153

154 float_t gate[H * H], drain[H * H], source[H * H];

155

156 char command[512];

157 // parameters[0] - W

158 // parameters[1] - L

159

160 // type = false : NMOS; true : PMOS

161

162 // ports[0] - D; ports[1] - G

163 // ports[2] - S; ports[3] - B

65

164

165 //public: mosfet::MOS IV(float_t D, float_t G, float_t S, float_t B = 0);

166

167 public:

168 // Two parameters only for now, with different ways of initialization as suitable

169 mosfet (string name, uint64_t ports[4], float_t W, float_t L, bool type = false);

170 mosfet (string name, uint64_t ports[4], float_t *parameters, bool type = false);

171

172 // Return 0 as no Y entry for non-linear devices

173 uint8_t which_rows_Y (uint64_t *rows, uint8_t port_index = 0);

174

175 // Store the contribution of the device as a function of the "node" potential

176 // to KCLs at various other nodes in the circuit in the preallocated "rows" array

177 // Port Index supplies which port of the device connected to the node

178 // Return value is the number of such rows

179 uint8_t which_rows_J (uint64_t *rows, uint8_t port_index = 0);

180

181 void setBlockPointers (float_t *Y_block, float_t *J_block, uint64_t row, uint8_t

port_index);↪→

182

183 void alter_node_voltages(float_t *x = NULL, uint64_t time_index = 0);

184 void evaluate_nonlinear(float_t *x, float_t *f_x, uint64_t time_index);

185 };

186 #endif // DEVICE_H

I.2.3 circuit.h

1 #pragma once

2

3 #ifndef CIRCUIT_H

4 #define CIRCUIT_H

5

6 #include <stdafx.h>

7 #include "device.h"

8 #include "ngspice.h"

9 #include "sparse/sparseBCCS.h"

10

11 #define DELIMITERS " ,()\t\r\n"

12

13 class circuit {

14

15 private:

16 string name, spfile_name;

17 static bool ngspice_running;

18

66

19 unordered_map <string, uint64_t> node_map;

20 vector <string> node_names;

21

22 vector <device *> sources, linear, nonlinear;

23

24 vector<vector<string> > nodes_to_plot;

25

26 // Holds the devices at each node and

27 // the port of the device connected to that node

28 vector<vector <pair<device *, uint8_t> > > node_devices;

29

30 void clear_J();

31 void clear_Y();

32

33 public:

34 static void clear_block(float_t *block, bool band = false);

35

36 // Linear Circuit Sparse-Blocked Matrix

37 sparseBCCS Y;

38 // Jacobian Matrix combining Y and Non-Linear Elements

39 sparseBCCS J;

40 // Constant Sources (LHS of MNA Equation)

41 float_t *B;

42

43 circuit(const char* cirfile, const char *file_name);

44 void structure_YJ();

45

46 void populate_Y();

47 void populate_J(float_t *x, float_t *f_x);

48 void populate_B();

49

50 uint64_t get_num_nodes();

51 string get_node_name(uint64_t node);

52 bool store_plot_command(const char* file_name);

53

54 ~circuit();

55 };

56

57 #endif // CIRCUIT_H

67

I.3 Extracting Column Parallelism

I.3.1 Plotting Column Dependency Graph

410 #ifndef NOGRAPHVIZ

411 // Plot the Dependency Graph using graphviz in the dot format

412 int plot_dependency_graph(const char *fname, uint64_t num_cols) {

413

414 char file_name[256];

415 strcpy(file_name, fname);

416

417 Agraph_t *graph;

418 Agnode_t *nodes[num_cols];

419 Agedge_t *edge;

420

421 static GVC_t *gvc;

422 if (!gvc)

423 gvc = gvContext();

424

425 // Create a Strict Directed Graph

426 graph = agopen(file_name, Agstrictdirected, NULL);

427

428 // Create all the nodes

429 for (uint64_t col = 0; col < num_cols; col++) {

430 nodes[col] = agnode(graph, &(to_string(col + 1)[0]), TRUE);

431 agsafeset(nodes[col], "width", ".5", "");

432 }

433

434 // Create the edges

435 for (uint64_t node_start = 0; node_start < num_cols; node_start++) {

436 for (auto node_end : adj_list[node_start]) {

437 edge = agedge(graph, nodes[node_start], nodes[node_end],

438 &((to_string(node_start) + "_" + to_string(node_end))[0]), TRUE);

439 }

440 }

441

442 // Use the directed graph layout engine

443 gvLayout(gvc, graph, "dot");

444

445 FILE *fp;

446 fp = fopen((string(file_name) + ".dot").c_str(), "w");

447

448 // Store the plot output

449 gvRender(gvc, graph, "dot", fp);

450 fclose(fp);

451 gvFreeLayout(gvc, graph);

68

452 agclose(graph);

453

454 system(("dot -Tps " + (string(file_name) + ".dot") + " -o " + string(file_name) +

".eps").c_str());↪→

455

456 return (gvFreeContext(gvc));

457 }

458 #endif

I.3.2 Get Next Column

170 uint64_t get_next_column(uint64_t col_done) {

171

172 // Define a critical section to avoid corruption

173 #pragma omp critical (ready_cols)

174 if (col_done != -1) {

175 // Code implemented by the last returning thread

176 if (++num_cols_done == N) {

177 int waiting_threads = omp_get_num_threads();

178 for (int i = 0; i < waiting_threads; i++)

179 sem_post(&ready_sem);

180 }

181 for (auto col : adj_list[col_done]) {

182 if ((--dependency_count[col]) == 0) {

183 ready_cols.push(col);

184 sem_post(&ready_sem);

185 }

186 }

187 }

188

189 uint64_t next_col = -1;

190 // No ready column available

191 // Find a better solution than polling for ready columns

192 // Semaphores would be the best option - Having the size of the queue

193 sem_wait(&ready_sem);

194 if (num_cols_done == N) return -1;

195

196 #pragma omp critical (ready_cols)

197 if (num_cols_done != N) {

198 next_col = ready_cols.front();

199 ready_cols.pop();

200 }

201 return next_col;

202 }

69

Appendix II

Circuit Partitioning C++ Codes

II.1 dcircuit.h

1 #ifndef DCIRCUIT_H

2 #define DCIRCUIT_H

3

4 #include <stdlib.h>

5 #include <vector>

6 #include <unordered_map>

7 #include <queue>

8 #include <string>

9 #include <stdlib.h>

10 #include <string.h>

11 #include <algorithm>

12 #include <sstream>

13 #include <fstream>

14 #include <omp.h>

15

16 //#include <unistd.h>

17

18 /*

19 * node: Single gate in a digital circuit

20 * Elements:

21 * id : Node id in string format (As in the original netlist)

22 * type : Type of node as defined in "logic" namespace

23 * input_count : Number of inputs to the node

24 * output_count : Number of outputs of the node (1 unless a FAN node)

25 * inverting : Boolean describing the inverting nature of the node

26 * input_nodes : Vector of input nodes, along with their position in the

27 * input nodes' output node vector

28 * output_nodes : Vector of output nodes, along with their positic in the

29 * output nodes' input node vector

70

30 * value : 5-Valued Logic value of the outputs of the node (in same

ordering)↪→

31 */

32 struct node{

33 std::string id;

34 unsigned short type;

35 unsigned int input_count, output_count;

36 bool inverting;

37 std::vector<std::pair<node *, unsigned short> > input_nodes, output_nodes;

38 long int visited = 0;

39

40 node();

41 ~node();

42 };

43

44 /*

45 * dcircuit: Collection of nodes forming a circuit

46 * Elements:

47 * circuit : Vector of all nodes

48 * inputs : Vector of primary inputs of the circuit

49 * outputs : Vector of primary outputs of the circuit

50 * id2node : Reverse mapping of id to node (node also contains information about

the id)↪→

51 *

52 * Methods:

53 * Constructor : Takes as input path of the intermediate ".ov" file to read the

netlist from↪→

54 */

55 class dcircuit{

56 public:

57 std::vector<node *> circuit;

58 std::vector<node *> inputs, outputs;

59 std::unordered_map<std::string, node*> id2node;

60 std::unordered_map<std::string, int> id2index;

61

62 std::unordered_map<std::string, int> id2oindex;

63

64 dcircuit(const char *);

65 ~dcircuit();

66

67 // Obtain count of nodes in the cone above the output set

68 long times_traversed = 0;

69 int count_cone(node *output_node);

70 int count_cone(std::vector<int> output_set);

71 int count_cone(std::vector<node*> output_set);

72 int count_cone(std::vector<std::string> output_set);

73 void find_source_ff(node *gate, std::vector<int> *pin);

71

74 void reset_traversed();

75

76 void store_adjacency_csv(const char* file_name);

77 void store_outputindex_csv(const char* file_name);

78

79 std::queue<node *> assign_inputs(std::string* , unsigned short* , int);

80 std::queue<node *> assign_inputs(unsigned short*);

81 std::vector<std::string> faults();

82 };

83

72

Appendix III

BSIM4 Model

Fortunately, the latest BSIM4 models provide just what is required to perform the Har-

monic Balance simulation. The list of available operating point parameters which are of

importance to the method are listed in Table III.1

Table III.1: Operating Point Parameters available in BSIM4 Models

Parameter Parameter (in Model) Expression

Transconductance gm dID/dVGS

Body Effect Transconductance gmbs dID/dVBS

Drain-Source Conductance gds dID/dVDS

Gate - Gate Capacitance cgg dQG/dVG
Gate - Source Capacitance cgs dQG/dVS
Gate - Drain Capacitance cgd dQG/dVD
Gate - Body Capacitance cgb dQG/dVB
Source - Gate Capacitance csg dQS/dVG
Source - Source Capacitance css dQS/dVS
Source - Drain Capacitance csd dQS/dVD
Source - Body Capacitance csb dQS/dVB
Drain - Gate Capacitance cdg dQD/dVG
Drain - Source Capacitance cds dQD/dVS
Drain - Drain Capacitance cdd dQD/dVD
Drain - Body Capacitance cdb dQD/dVB
Body - Gate Capacitance cbg dQB/dVG
Body - Source Capacitance cbs dQB/dVS
Body - Drain Capacitance cbd dQB/dVD
Body - Body Capacitance cbb dQB/dVB
Gate Charge qg QG

Source Charge qs QS

Drain Charge qd QD

Body Charge qb QB

73

Bibliography

[1] H. Vogt, H. Hendrix, and P. Nenzi, “Ngspice users manual, version 27 (describes

ngspice-27 release version),” tech. rep., ngspice Project, September 2017.

[2] A. Krause, “Sfo: A toolbox for submodular function optimization,” J. Mach. Learn.

Res., vol. 11, pp. 1141–1144, Mar. 2010.

[3] B. Bandali, “Steady-state analysis of nonlinear circuits using the harmonic balance

on gpu,” Master’s thesis, University of Ottawa, 2014.

[4] P. Feldmann, B. Melville, and D. Long, “Efficient frequency domain analysis of large

nonlinear analog circuits,” in Proceedings of Custom Integrated Circuits Conference,

pp. 461–464, May 1996.

[5] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional to arith-

metic operations,” SIAM J. Sci. Stat. Comput., vol. 9, pp. 862–874, Sept. 1988.

[6] Xilinx Inc., “pragma HLS pipeline, SDAccel Development Environment Help,” 2018.

[Online].

[7] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition 2Nd Edition. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2nd ed., 2016.

[8] J. Demmel, “CS267: Notes for Lecture 23 on Graph Partitioning, Part 2,” April

1999.

[9] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of nonlinear circuits in

the frequency domain,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 5, pp. 521–535, October 1986.

[10] G. W. Somers, “Acceleration of block-aware matrix factorization on heterogeneous

platforms,” Master’s thesis, University of Ottawa, 2016.

[11] M. E. Brinson and S. Jahn, “Qucs: A gpl software package for circuit simulation,

compact device modelling and circuit macromodelling from dc to rf and beyond,”

International Journal of Numerical Modelling: Electronic Networks, Devices and

Fields, vol. 22, no. 4, pp. 297–319.

[12] M. Günther, U. Feldmann, and J. T. Maten, Modelling and discretization of circuit

problems, vol. 0537 of CASA-report. Eindhoven: Technische Universiteit Eindhoven,

2005.

[13] G. Q. Zhang, F. van Roosmalen, and M. Graef, “The paradigm of “more than

moore”,” in 2005 6th International Conference on Electronic Packaging Technology,

pp. 17–24, Aug 2005.

[14] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “Bsim: Berkeley short-

channel igfet model for mos transistors,” IEEE Journal of Solid-State Circuits,

vol. 22, no. 4, pp. 558–566, 1987.

[15] T. Nechma and M. Zwolinski, “Parallel sparse matrix solution for circuit simulation

on fpgas,” IEEE Transactions on Computers, vol. 64, pp. 1090–1103, April 2015.

[16] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree

ordering algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17,

no. 4, pp. 886–905, 1996.

[17] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column approximate

minimum degree ordering algorithm,” ACM Transactions on Mathematical Software

(TOMS), vol. 30, no. 3, pp. 353–376, 2004.

[18] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull, “Graphviz — open

source graph drawing tools,” in Lecture Notes in Computer Science, pp. 483–484,

Springer-Verlag, 2001.

[19] S. C. Woo, J. P. Singh, and J. L. Hennessy, The performance advantages of integrat-

ing block data transfer in cache-coherent multiprocessors, vol. 29. ACM, 1994.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM

Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1, 2011.

[21] Wikipedia contributors, “Xeon phi — Wikipedia, the free encyclopedia,” 2018. [On-

line].

[22] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level 3 basic lin-

ear algebra subprograms,” ACM Transactions on Mathematical Software (TOMS),

vol. 16, no. 1, pp. 1–17, 1990.

[23] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, and A. Green-

baum, “Linear algebra package,” 1999.

[24] H. G. Brachtendorf, G. Welsch, and R. Laur, “Fast simulation of the steady-state

of circuits by the harmonic balance technique,” in Proceedings of ISCAS’95 - In-

ternational Symposium on Circuits and Systems, vol. 2, pp. 1388–1391 vol.2, April

1995.

[25] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,” in Proceed-

ings of the 21st Austrian Workshop on Microelectronics (Austrochip), 2013.

[26] A. Mishchenko et al., “Abc: A system for sequential synthesis and verification,”

URL http://www. eecs. berkeley. edu/alanmi/abc, p. 17, 2007.

[27] Nan-Chi Chou, Lung-Tien Liu, Chung-Kuan Cheng, Wei-Jin Dai, and R. Lindelof,

“Circuit partitioning for huge logic emulation systems,” in 31st Design Automation

Conference, pp. 244–249, June 1994.

[28] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: a survey,”

Integration, vol. 19, no. 1, pp. 1 – 81, 1995.

[29] A. Schrijver, Combinatorial Optimization, vol. 24 of Algorithms and Combinatorics.

Springer-Verlag Berlin Heidelberg, 1 ed., 2003.

[30] M. Grötschel, L. Lovász, and Schrijver, A. Combinatorica. Springer, 1981.

[31] L. Zhao, H. Nagamochi, and T. Ibaraki, “Greedy splitting algorithms for approxi-

mating multiway partition problems,” Mathematical Programming, vol. 102, no. 1,

pp. 167–183, 2005.

[32] M. Queyranne, “Minimizing symmetric submodular functions,” Mathematical Pro-

gramming, vol. 82, no. 1-2, pp. 3–12, 1998.

[33] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its

application to graph theory,” Czechoslovak Mathematical Journal, vol. 25, no. 4,

pp. 619–633, 1975.

[34] M. Fiedler, “Laplacian of graphs and algebraic connectivity,” Banach Center Publi-

cations, vol. 25, no. 1, pp. 57–70, 1989.

[35] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with eigen-

vectors of graphs,” SIAM J. Matrix Anal. Appl., vol. 11, pp. 430–452, May 1990.

[36] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,

vol. 17, no. 4, pp. 395–416, 2007.

[37] M. Naumov and T. Moon, “Parallel spectral graph partitioning,” tech. rep., NVIDIA

Technical Report, NVR-2016-001, 2016.

	Abstract
	Contents
	List of Figures
	List of Tables
	I A Harmonic Balance Simulator
	Introduction
	Previous Work and Motivation
	The Harmonic Balance Formulation
	Charge-Oriented Modified Nodal Analysis
	Discrete Fourier Transformation
	Harmonic Balance for Non-Linear Circuits
	Newton-Raphson Interations

	Non-Linear Function Evaluation
	Model Requirements
	ngspice Shared Library ngspice
	Simple Square-Law Model
	Discontinuity in the Model

	Implementation

	Block-Aware Sparse LU Decomposition
	Left-Looking LU Decomposition
	Sparse Matrix Storage Schemes
	Symbolic LU Decomposition
	Fill - In
	Row Pivoting
	Column Dependency Analysis

	Dense LU Decomposition

	Automatic Circuit Parser
	Matrix Construction
	Syntax
	Example

	Custom Hardware Implementation
	HLS Hardware Optimization
	Function Instantiate
	Array Partitioning
	Pipelining

	Data Movement Optimizations
	Data Zero Copy
	Data Access Pattern - Sequential

	Results and Discussions
	Fill - In Reduction
	Numerical Instability
	Simulation Setup
	Intel Xeon Phi: Knights Landing Edition
	Xilinx ZedBoard: Zynq-7000 SoC

	Dense LU Decomposition
	FPGA Implementation
	Performance Comparison
	Timing Closure

	Simulation Results
	Example: Operational Transconductance Amplifier
	Output
	Performance Analysis

	Future Work

	II Circuit Partitioning for Distributed Logic Simulation
	Introduction
	Previous Work and Motivation
	Sub-Modular Function based Minimization
	Sub-Modular Set Functions
	Matlab SFO Toolbox sfo
	Queyranne's Algorithm
	The Oracle Function

	Ratio-Cut using Spectral Partitioning
	Spectral Graph Theory
	Circuit Conditioning
	Replication
	Communication
	Combining the Costs

	Results and Discussion
	MATLAB interface with C++
	Greedy Splitting using SFO Toolbox
	Spectral Partitioning
	Spectral Partitioning with Communication

	Future Work

	III Appendix
	Harmonic Balance C++ Codes
	Sparse Matrix Storage
	sparseCOO.h
	sparseCSC.h
	sparseBCCS.h

	Circuit Parser and Evaluation
	ngspice.h
	device.h
	circuit.h

	Extracting Column Parallelism
	Plotting Column Dependency Graph
	Get Next Column

	Circuit Partitioning C++ Codes
	dcircuit.h

	BSIM4 Model

