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Abstract

Integrating multiple services into a single network is becoming increasingly

common in today’s telecommunications industry.  Driven by the emergence of new

applications, many of these services will be offered with guaranteed quality of service.

While there are extensive studies of the engineering problems of designing integrated-

services networks with guaranteed quality of service, related economic problems, such as

how to price services offered by this type of network, are not well understood.

In this chapter, we analyze the problem of pricing and capacity investment for an

integrated-services network with guaranteed quality of service.  Based on an optimal

control model formulation, we develop a 3-stage procedure to determine the optimal

amount of capacity and the optimal price schedule.  We show that pricing a network service

is similar to pricing a tangible product, except that the marginal cost of producing the

product is replaced by the opportunity cost of providing the service, which includes both

the opportunity cost of reserving and the opportunity cost of using network capacity.  Our

findings lays out a framework for making investment and pricing decisions, as well as for

the analysis of related economic tradeoffs.

The analysis in this chapter assumes an integrated-service network with fixed-

length data units such as Asynchronous Transfer Mode (ATM) network.  The same

approach can be used to analyze variable packet length IP networks offering guaranteed

quality of service through the use of protocols such as Resources reSerVation Protocol

(RSVP).

Keywords. integrated-services, opportunity cost, optimal price, ATM
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§1. Introduction

The economics of providing multiple types of services through a single network is a

question of growing significance to network operators and users.  As a result of the rapid

development of packet-switching technology, it is becoming increasingly efficient to

provide different telecommunication services through one integrated-services network

instead of multiple single-service networks, such as telephone networks for voice

communications, cable networks for broadcasting video, and the Internet for data transfer.

In a packet-switched integrated services network, any piece of information, regardless of

whether it is voice, image, or text, is organized as a stream of packets and transmitted over

the network.  By controlling the packet transmission rate and packet delay distribution of

each packet stream, the network can use a single packet transmission technology to provide

a variety of transmission services, such as telephony, video, and file transfer.

While integrating multiple services into a single network generates economies of

scope, heterogeneous services complicate pricing decisions.  For example, users watching

High-Definition Television (HDTV) through the network require up to tens of megabits per

second (Mbps) transmission capacity while users who make phone calls only send/receive

tens of kilobits per second (kpbs); telnet users require mean cell transmission delay to be

kept below a few tens of milliseconds but e-mail senders will tolerate longer delay; web

browsing generates a very bursty cell stream while constant-bit-rate file transfer results in a

very smooth cell stream; to carry a voice conversation with acceptable quality, under certain

encoding schemes, packet loss rate, i.e. the percentage of packet that are allowed to miss a

maximum delay bound (usually 30-50 ms for voice conversation), should not exceed 5%,

while to carry video service, packet loss rate should be kept much lower (Peha,1991).

Asynchronous Transfer Mode (ATM) technology emerges as an appropriate basis

for integrated-services networks.  ATM networks have the capability to meet the strict

performance requirements of applications like voice and video, and the flexibility to make
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efficient use of network capacity for applications like e-mail and web browsing.  The use of

fixed-length packets (cells) also facilitate the implementation of high-speed switches.  As a

result, telephone and cable TV networks will adopt cell switching technology, as they

expand the range of services that they offer.  The Internet has already begun to offer new

services like telephony, but without the guarantee of adequate performance that telephone

customers have come to expect.  Eventually, the Internet will also employ protocols that

differentiate packets based on the type of traffic that they carry, and guarantee adequate

quality of service appropriate for each service.  This could be done by adopting ATM

technology, or by adding the capability to guarantee performance through use of protocols

like the Resource reSerVation Protocol [RSVP] (Zhang et al, 1993).  This paper will focus

on ATM-based integrated-services networks, as the technology is available today, but

trivial extensions would enable the same approach to be applied to any integrated-services

networks which offers quality of service guarantees.

Since there are great differences among the services offered by ATM networks, one

might ask whether the prices of these service should also differ, and if so, how?  There is

some literature on how to price a network that offers heterogeneous services. Cocchi et al

(Cocchi et al, 1993) study the pricing of a single network which provides multiple services

at different performance levels.  They give a very impressive example which shows that in

comparison with flat-rate pricing for all services, a price schedule based on performance

objectives can enable every customer to derive a higher surplus from the service, and at the

same time, generate greater profits for the service provider.  Dewan, Whang and

Mendelson et al (Dewan and Mendelson, 1990; Whang and Mendelson,1990) developed a

single queuing model in which the network is formulated as a server (or servers) with

limited capacity, and consumers demand the same service from the server but vary in both

willingness to pay for the service and tolerance for delay.  Based on that model, they

discussed the optimal pricing policy and capacity investment strategy.  MacKie-Mason and

Varian (Mackie-Mason and Varian, 1994) suggest a spot-price model for Internet pricing.
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In their model, every Internet packet is marked with the consumer's willingness to pay for

sending it.  The network always transmits packets with higher willingness to pay and drops

packets with lower willingness to pay.  The network charges a spot price that equals the

lowest willingness to pay among all packets sent during each short period.  The major

benefit of this approach is it provides consumers with an incentive to reveal their true

willingness to pay, and based on that information, the network can resolve capacity

contention in transmitting packets in a way that maximizes social welfare.  In the work by

Gupta et al (Gupta, Stahl, and Whinston, 1996), priority-based pricing and congestion-

based pricing are integrated.  In their pricing model, services are divided into different

priority classes.  Packets from a high-priority class always have precedence over packets

from a low-priority class.  The price for each packet depends not only on the packet’s

priority level, but also on the current network load.

In the optimal pricing models mentioned above, the fact that different applications

may have different performance objectives was usually not considered.  For example,

Dewan, Whang and Mendelson’s work (Dewan and Mendelson; 1990l; Whang and

Mendelson, 1990) assumes that the consumer’s willingness to pay depends only on

expected mean delay, and Mackie-Mason (Mackie-Mason,1996) assumes that consumers

do not care about delay—only whether or not their packets are eventually transmitted.

There is no way, for example, to accommodate a service that would impose a maximum

delay limit.  These formulations also do not consider the case of heterogeneous data rate

and burstiness.  Consequently, pricing policies developed in these studies can not be

applied in ATM integrated-services networks in which services differ from each other in

terms of performance objectives and traffic pattern (data rate and burstiness).  Some of

these factors are discussed in the paper by Cocchi et al (Cocchi et al, 1993), however, they

do not discuss procedures for designing an optimal pricing scheme.  Gupta et al (Gupta,

Stahl, and Whinston, 1996) consider different services which are divided into different
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priority classes, however, none of these services can be guaranteed a given performance

objective under their pricing scheme.

In this paper, we examine the optimal pricing problem for ATM integrated-services

networks.  In our approach, the optimal price for each service is determined from the

demand elasticity for the service, as well as the opportunity cost of providing the service.

The opportunity cost is determined by the required performance objectives and traffic

pattern of each service.  Since demand for network services usually changes with time of

day, we will develop a time-varying price schedule (i.e. price as a function of time of day)

instead of giving a single price for each service.

The rest of our paper is organized as follows: in section 2, we present service

models for different services offered by an ATM integrated-services network.  In section 3,

we formulate an optimal pricing model and discuss how to solve it using a 3-stage

procedure.  We discuss the procedure in detail in section 4.  Conclusions and future work

are discussed in Section 5.

§2. The Network Service Model

Network capacity is often sub-additive, leading to conditions of natural monopoly

for an integrated-services network operator.  In the model which follows, we assume a

single profit-maximizing monopolist is operating the network.  In this chapter, we consider

only a point-to-point single link network.  This frees us from network routing details and

allows us to focus our attention on the economic principles for designing pricing policy.

The capacity of that link is denoted as CT, whose unit is the maximum number of cells that

can be transmitted over the link per unit of time.

The network is used for providing multiple services.  Quality of service is measured

by the distribution of cell delay time, where lost cells are considered as being delayed

infinitely.  A service will be labeled as a “guaranteed” service if during each session, the
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network makes a commitment to meet some pre-specified delay objectives. These

guarantees are typically expressed in stochastic, not absolute terms, e.g. no more than 5%

of the cells will be delayed for more than 30 milliseconds; or the average delay will be less

than 200 milliseconds.  If no such guarantee is made, the service is considered as best-

effort service.  Telephone calls, High Definition Television (HDTV), and interactive games

typically require some type of guaranteed service, while e-mail is usually specified as a

best-effort service.

In our pricing model, the network service provider attempts to maximize profit

which is the sum of profits from guaranteed services and best-effort service.  In

establishing a tariff for network service, one might charge for access independent of any

usage; capacity reservation for guaranteed services, and actual usage.  In this chapter, we

assume dedicated access is priced at average cost, and the cost of all shared network

facilities is recovered through a combination of reservation and usage prices.  This

assumption allows us to consider reservation and usage prices independent of access

prices.

§2.1 Service Model for Guaranteed Services

Guaranteed services differ from each other significantly in terms of performance

objectives, traffic pattern (data rate and burstiness), and call duration distribution.  For

example, HDTV service has a much stricter performance objective and 500-times higher

mean data rate than telephone service.  An HDTV session can take hours to complete, while

telephone calls usually last only minutes.  The transmission rate of the former (if the data

stream is compressed) is also much burstier than that of the latter, which may not be

compressed.
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In this chapter, we assume the network offers N guaranteed services.  Within the

same service category i (i=1,N), calls require the same performance objective, exhibit the

same inter-cell arrival statistics, and have call duration drawn from the same distribution.

We assume the price for a call using guaranteed service is determined by service

type i, call starting time, and service duration.  For a call of service i which begins at time t,

pi(t) is the price which will be charged for each unit of time that the call lasts.  A consumer

will be charged a price equal to pi(t) times the call duration if the call starts at time t.  We

shall also assume that for calls of a given service, call duration is independent of price.

We define λi[pi(t),t] as the arrival rate of calls for service i given that the price of a

call which starts at t will be pi(t) throughout the call1.  We also assume that at any given

price, pi(t), and any given time t, call arrivals are Poisson, i.e. the number of calls arriving

within any period is independent of the number of calls which arrived within previous

periods.  Note that we have also assumed no cross-elasticity of demand between different

services, which may not be realistic.  We leave that enhancement for future paper.

To meet guaranteed performance objectives, the network can only carry limited

numbers of calls simultaneously.  These numbers are determined by performance

objectives and traffic patterns of each service.  To avoid accepting more calls than it can

handle, ATM integrated-services networks enforce an admission policy by which the
                                                

1 The consumer thus expected to pay 
p t

r
i

i

( )
 if call length has a mean value of 

1

ri

.  It is more typical for a

provider to define a price schedule Ri(t) where a call is charged Ri(t) at each instant it is in progress.  Our

formulation of pi(t)is related to Ri(t) by
p t

r
R e di

i
i

r t

t

i
( )

( ) ( )= − −
+∞

∫ τ ττ  when call length is exponentially

distributed.
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network monitors the current network load and decides whether an incoming call should be

admitted or rejected (Peha, 1993).  This process is shown in Figure 1.  For the purpose of

this chapter, we assume calls are not queued if they can not be admitted immediately.

demand for service call arrival

price admission policy

call admitted

call blocked

Figure 1

Call Admission Process for  Guaranteed Services

For each service i (i=1,N), we assume the call duration is exponentially distributed

with departure rate ri.  Define qi(t) as the number of calls underway of service i at time t,

and q ti ( )  as the expected value of qi(t).  Under the assumptions we made about call arrival

and departure processes, the rate of change of  q ti ( )  should follow:

dq

dt
p t r q t qi

i i i i i= − −( ) ( , ) ( )1 β λ i =1, N (2-1)

where βi is the blocking probability.

Since both call arrival and departure are stochastic, unless the network has an

infinite amount of capacity, there will always be a possibility of blocking calls.  A high

blocking probability gives consumers an unpleasant experience with the network and

reduces the demand eventually, but a lower blocking probability also means more capacity

will lay idle most of the time.  From a network operator's perspective, the blocking

probability should be kept at a desired level at which any marginal revenue increase from

increasing demand by reducing blocking probability can no longer offset the marginal loss
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from letting more capacity lay idle.  Values of desired blocking probability are usually

determined during the process of making long-term capacity investment decision.  In the

following, we will show how keeping blocking probability at the desired level will affect

short-term pricing decisions:

Suppose the network only offers one service; then the blocking probability at each

time can be determined by:

β

ρ

ρ
=

=
∑

H

i

i

H

H

i

!

!0

 (2-2)

where β is the blocking probability, H is the maximum number of calls that can be carried

by the network, and ρ is the product of call arrival rate and expected call duration.

Let 
~
β  be the blocking probability that the network operator desires to maintain.

From (2-2), H can be uniquely determined by the desired blocking probability 
~
β  and the

network load ρ, i.e. H=d(ρ, 
~
β ).  In other words, to keep blocking probability at a desired

level under given load ρ, the network should be designed to carry H calls.  This

requirement can be translated into a demand for network capacity: define θ(H) as the

amount of capacity needed to carry H calls, and α(ρ, 
~
β )=θ[d(ρ, 

~
β )].  α(ρ, 

~
β ) can be

interpreted as the amount of capacity needed to keep blocking probability at 
~
β  when the

network load is ρ.

Since at each time, the network load is related to the expected number of calls in

progress by ρ
β

=
−
q

1
~ , we can also express the amount of capacity needed as a function of

expected number of calls in progress as A q
q

( ,
~

) ( ~ ,
~

)β α
β

β=
−1

.  A q( ,
~

)β  increases with

q .  A q( ,
~

)β  is defined as the amount of capacity required to carry an average of q  calls

with blocking probability 
~
β .  If capacity required exceeds total capacity CT, the network
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either has to admit more calls than it can handle, thus failing to meet some quality of service

guarantee, or exceed the desired blocking probability.

At each time t, q t( ) , the expected number of calls in progress is a function of

previous and current prices.  Therefore, in the short term, prices should be set such that the

reserved capacity can never go above total capacity, i.e.:

A q t CT[ ( ),
~

]β ≤ at all t (2-3)

(2-3) defines the “admissible region constraint” (see Hyman et al, 1993; Tewari and Peha,

1995), which specifies the maximum number of calls that can be carried under a given

amount of network capacity and a given blocking probability.

The definition of the admissible region constraint can be extended to a multiple

services scenario, in which the reserved capacity is a function of the expected numbers of

calls in progress for all services, which is shown below:

 A q t q t t CN N T[ ( ), .. ... , ;
~

( ),. .. .,
~

( )]1 1β β ≤ (2-4)

§2.2 Service Model for Best-effort Service:

Without a performance guarantee, cells of best-effort service will be put in a buffer

and transmitted only when there is remaining capacity after the needs of guaranteed services

have been met.  If there is not enough buffer space for all incoming cells, some of them

will be dropped.

In our model, users of best-effort service are charged on a per-cell basis.  We

assume all cells of best-effort service share a buffer of size B s.  The willingness to pay for

sending each cell is revealed to the network.  At each time t, the network sets a cut-off

price, pb(t), which is a function of both current buffer occupancy and predicted willingness

to pay values of future incoming cells.  A cell will be accepted if and only if the willingness
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to pay for that cell is higher than pb(t), and pb(t) will also be the price charged for sending

that cell.  Accepted cells will be admitted into the buffer as long as the buffer is not full.

Once admitted into the buffer, cells will be eventually transmitted according to a sequence

dictated by some scheduling algorithm, such as first-come-first-serve, or cost-based-

scheduling (Peha, 1996).

arriving cells

no cell dropped

cell droppedyes

willingness to
 pay greater than 
the spot price?

spot price

buffer full?

yes

nocell admitted

cell accepted

buffer

cell transmitted

Figure 2

Service Model for Best-effort Service

If we assume that at time t, the arrival process of cells of best-effort service is

Poisson with expected value λb(0,t); the acceptance of cells is also Poisson with expected

value λb[pb(t),t].  Define sb(t) as the instantaneous transmission rate of best-effort service at

that time, then:

s t C s q t q t q tb T N( ) [ ( ), ( ),. .. , ( )]≤ − 1 2 (2-5)

where s[q1(t), q2(t), ..., qN(t)] is the instantaneous transmission rate of all guaranteed

services, which is a function of numbers of calls in progress.  Equation (2-5) implies the

instantaneous transmission rate of best-effort service can not exceed the total bandwidth left

after transmitting all guaranteed services.
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If one accepts the assumptions that: 1) accepted cells constitute a Poisson random

process; 2) the instantaneous transmission rate depends on the bandwidth left by

guaranteed services, which is also random; and 3) the buffer size is limited, there is a

possibility that even accepted cells (i.e. cells with willingness to pay higher than the cut-off

price) can be dropped because the buffer can become temporarily full.  Define υ(t,∆t) as the

number of cells actually admitted into the buffer during the interval [t,t+∆t); then the

instantaneous admission rate can be defined as:

ω
υ

b t

bt
t t

t
( ) lim

( , )
=

−>∆

∆
∆0

(2-6)

ωb(t) is a random variable and we assume its expected value is ϖ b t( ) , then

ϖ λb i bt p t t( ) [ ( ), ]≤ (2-7)

Define qbb(t) as the number of cells in the buffer at time t, then:

dq t

dt
t s tb

b b

( )
( ) ( )= −ϖ (2-8)

and

s t q t Bb b s( ) ( )≤ ≤ (2-9)

§3. The Optimal Pricing Policy

In this section, we will discuss the profit-maximizing pricing policy for network

operators.  We formulate an optimal control model to derive the pricing policy, and discuss

how to solve this model through a 3-stage procedure.

§3.1 The Optimal Pricing Model

Assume a network operator wants to maximize total profit over a period composed

of multiple identical business cycles (such as days).  The cycle length is T.  Her rational

behavior would be to choose a price schedule for each type of guaranteed service pi(t), and
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best-effort service, pb(t), and the amount of bandwidth CT to maximize the following

objective:

{ ( )
[ ( ), ]

( ) ( ) } ( )
~

1
10

− + −
=
∑∫ β

λ
ϖi

i

N
i i

i

i b b

T

T

p t t

r
p t t p dt K C (3-1)

under constraints:
dq

dt
p t rqi

i i i i i= − −(
~

) ( , )1 β λ , qi ≥ 0 i=1,N (3-2)

A q t q t t CN N T[ ( ), .. ... , ;
~

( ),. .. .,
~

( )]1 1β β ≤ (3-3)

dq t

dt
b ( )

 = ω
b
(t) - s

b
(t) (3-4)

when q t Bb s( ) =  ωb bt s t( ) ( )≤ (3-5)

0 ≤ ≤q t Bb s( ) (3-6)

s t C s q t q t q tb T N( ) [ ( ), ( ),. .. , ( )]≤ − 1 2 (3-7)

when q tb ( ) = 0 ωb bt s t( ) ( )≥ (3-8)

qi(0)=qi0, i=1,N (3-9)

Interpretations of these constraints are the same as discussed in section 2, and definitions of

variables can found in both section 2 and in the following list:

Variables of guaranteed services:

N number of different services;

pi(t) unit price for service i, as a function of call starting time t;

λi(pi,t) call arrival rate of service i at time t, when price is pi;

ri call departure rate of service i;

qi(t) number of calls of service i in progress at time t;
q ti ( ) expected value of qi(t);

s[q1(t), q2(t), ..., qN(t)] total data rate of all guaranteed services at time t;
s q t q t q tN[ ( ), ( ),. .. , ( )]1 2 average total data rate of all guaranteed services at time t;
~

( )β i t desired blocking probability for service i at time t;

Variables describing best-effort service:

pb(t) price for admitting one cell into the buffer at time t;

qb(t) queue length of best-effort service at time t;
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sb(t) cell transmission rate at time t;

λb[pb(t),t] cell accepting rate, i.e. arrival rate of cells with willingness

to pay higher than pb(t);

ωb(t) admission rate of cells at time t;

ϖ b t( ) expected value of ωb[pb(t), t];

Other variables:

T duration of business cycle;

CT total bandwidth;

K(CT) amortization of capacity investment cost over one cycle;

BS buffer size.

In (3-1), ( ) ( , )1 − β λi i ip t dt  is the expected number of calls of service i that will be

admitted during the period [t,t+dt).  Multiplying this number by the unit price, pi(t), and

expected call duration,  
1

  
ri

, yields the expected revenue from all calls of service i

admitted in that interval.  At time t, the network also charges a price for each cell of best-

effort service that enters the buffer, and ϖ b t dt( )  is the expected number of cells that will

enter the buffer at that time.  Thus ϖ b bt p t dt( ) ( )  is the expected revenue from best-effort

service at t.  The total expected profit is calculated by summing up expected revenue from

all services, accumulated over all time in [0,T], minus the amortized capacity cost.  At this

point, we assume zero discount rate for simplicity.

§3.2 The Solution: A 3-stage Procedure

Though it would be ideal to solve the model defined in (3-1) - (3-8) directly to get

the analytical form of the optimal pricing trajectory (pi(t),pb(t)) and the optimal amount of

bandwidth (CT), it is mathematically intractable.  Therefore, we construct a three-stage

procedure to find a near-optimal solution.  At each stage, we will make some simplifying

assumptions, or treat some variables as constants, and solve part of the problem.  The

solution obtained at one stage will be used either as an input to the next stage or as a
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feedback for modifying assumptions made in the previous stage.  This process is iterated

until prices stabilize at a near-optimal level.

Stage 1
Optimal Investment Decision

Stage 2
Optimal Pricing for Guaranteed Services

Stage 3
Spot Pricing for Best-effort Service

optimal amount of capacity
desired capacity

load from guaranteed services

shadow price of using bandwidth

Figure 3

The 3-stage Procedure

The 3-stage procedure is defined as follows: at stage 1, we solve a long-term

optimal investment problem to find the optimal amount of total bandwidth (CT), as well as

the desired blocking probability, 
~

( )β i t , which we expect will vary with time of day.

Using these values as inputs, we develop the optimal pricing policy at the second stage.

The result shows that the optimal price for a service should be a function of the opportunity

cost of providing that service.  The opportunity cost is determined by both the service

characteristics and the shadow prices of reserving/using network bandwidth.  We give trial

values to shadow prices and set up a price schedule for each guaranteed service

accordingly.  Based on these price schedules, the traffic load from guaranteed services can

be determined.  Under a given traffic load from guaranteed services, at the third stage, we
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formulate a more precise model to describe the cell flow of best-effort service at each

moment.  The spot price for best-effort service is then derived to maximize the revenue

from best-effort service.  From these spot prices, we can then decide the instantaneous

value of using network bandwidth.  This information is used as feedback to the second

stage for adjusting the trial value of shadow prices we previously calculated, so the price

schedule for guaranteed services can be refined.  The process is iterated until both the price

schedule for guaranteed services and the spot price for best-effort service stabilize.

In the next section, we will discuss the implementation details at each stage, and

interpret the economic implications of our results.

§4 Implementation of the 3-stage Procedure

§4.1 Stage 1: Optimal Investment

At this stage, we formulate and solve an optimization problem to determine the

optimal amount of total bandwidth, CT, and the desired blocking probability of each

guaranteed service at each time, 
~

( )β i t , i=1,N.  The formulation of the problem is as

follows:

Divide [0,T] into M time intervals, each lasting wm, (m=1,M).  Take the average

arrival rate λ
λ τ τ

im

i
m m

m

d

w
= −

∫
[ )

( )
1,

 as the arrival rate for all time during that interval. λm is

determined by price pim.   We also assume that calls admitted during the interval [m-2,m-1]

will have no influence on traffic load within the interval [m-1,m]. βim is the blocking

probability during the interval [m-1,m], which is a function of network loads within that

interval.

At this stage we ignore blocking due to finite buffer space for best-effort traffic.

Then the expected cell acceptance rate equals the expected cell admission rate, i.e.

λbm(pbm)=ϖ bm .  In other words, all cells with willingness to pay higher than the cut-off
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price are assumed to be able to enter the buffer.  To keep the queue length in the buffer

reasonably short, we assume the expected cell admission rate equals the expected cell

transmission rate, i.e. ϖ bm bms= .  Consequently, λbm bm bmp s( ) = .

The network operator controls pim, pbm, and CT to maximize total profit, i.e.

max [
( ) ( )

( )] ( )
, ,p p C m

im im im im

ii

N

m

M

bm bm bm T
im b m T

w
p p

r
p p K C

1

11

−
+ −

==
∑∑ β λ

λ (4-1)

s.t. q
p

rim

im im im

i

=
−( ) ( )1 β λ

(4-2)

r
βm im TA q i N C= =( , , , ),  1

(4-3)

where 
v
β β βm m Nm= ( , .. ..., )1

s q i N Cim im bm T[( ) ]1 1− = + ≤β λ, , , m=1, M (4-4)

This is an optimization problem with (N+1)M+1 controlling variables.  It can be

solved either by non-liner optimization techniques or generic algorithms such as simulated

annealing.  The resulting CT and βm will be considered as optimal values for the total

amount of capacity and for blocking probability in each period.

The solution we have obtained so far is not truly optimal because we have made

several simplifications.  One simplification is that we assume the traffic load in any period

has no influence on the traffic load in succeeding periods.  We have also ignored the fact

that the arrival rate may change continuously over time within each period by using a single

value λb as the arrival rate for all time in a period [m-1,m).  Both simplifications will cause

inaccuracy in our results.  Interestingly, the effects of these two simplifications depend on

how we divide [0,T) into different intervals.  If we divide [0,T) into longer intervals, i.e.

wm is larger, the effect of not considering the relationship between traffic load in different

periods will be smaller and the effect of ignoring the change of arrival rate within a period

is more serious.  If we choose a smaller wm, the effects will go in the opposite direction.
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Therefore, wm should be chosen to minimize the total negative effect of these two

simplifications2.

§4.2 Stage 2: Optimal Pricing

We now allow the arrival rate to change continuously over time, consider the

dependency of traffic load at different times, and derive the optimal pricing policy at this

stage.  We will still keep the assumption that for best-effort service, cell admission rate

equals cell transmission rate at all times, and ignore blocking of best-effort traffic.  As a

result, λb(pb,t), the arrival rate of cells for which the willingness to pay is above the cut-off

price pb(t) at time t, is used both as the average rate of cell admission into the buffer and the

average rate of cell transmission out of the buffer at time t for best-effort service in the

problem formulation.

Given the amount of bandwidth (CT) and optimal blocking probability (
~

( )β i t ,

i=1,N) calculated at stage 1, we can simplify the optimal pricing model defined in (3-1) -

(3-9) as follows:

maximize
p t p t i i i

i

NT
i

i

b b b
i b

t p t
p

r
p t p dt

( ), ( )
{ [

~
( )] ( , ) ( , ) }1

10

− +
=
∑∫ β λ λ (4-5)

subject to:
dq

dt
t p t rq ti

i i i i i= − −[
~

( )] ( , ) ( )1 β λ i=1,N, (4-6)

A q t q t t CN N T[ ( ), .. ... , ;
~

( ), ... . ,
~

( )]1 1β β ≤ (4-7)

λb b N Tp t s q t q t C( , ) [ ( ), ... , ( )]+ ≤1 (4-8)

qi(0)=qi0, i=1,N (4-9)

                                                

2It is preferable to choose a larger wm if call arrival rate is stable over time, and call duration is long, and a

smaller wm if arrival rate is sporadic and call duration is short.
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We assume that the optimal solution exists for this pricing model.  The optimal

solution to equation (4-5) through (4-9) must obey the following proposition, which yields

the optimal pricing policy:

    Proposition:        The       optimal       pricing       policy:   

Suppose pi
*(t), pb

*(t) are the optimal solutions to the pricing model defined in (4-5)-(4-9),

then:

(1) pi
*(t) = 

ε
ε

i i

i i
i

p t

p t
h t

( , )

( , )
* ( )

*

*1+
and pb

*(t) = 
ε

ε
b b

b b

p t

p t
l t

( , )

( , )
* ( )

*

*1 2+
(4-10)

if l2(t) > 0 and hi(t) > 0, i=1,N

or

(2) pi
*(t) = 

ε
ε

i i

i i
i

p t

p t
h t

( , )

( , )
* ( )

*

*1+
and pb

*(t) = pb
0(t) (4-11)

if l2(t) = 0 and hi(t) > 0, i=1,N

or

(3) pi
*(t) = pi

0(t) and pb
*(t) = pb

0(t) (4-12)

if hi(t) = 0, i=1,N

where: pi
0(t)maximizes pi(t)λi(pi,t), pb

0(t)maximizes pb(t)λb(pb,t),

ε
∂ λ
∂ λi i

i

i

i

i

p t
p

p
( , ) **

*

= , ε
∂ λ
∂ λb b

b

b

b

b

p t
p

p
( , ) ** = (4-13)

h t
A

q
l

s

q
re di

it

T

i

i
r ti( ) ( ) ( )= +∫ − −[

∂
∂

τ
∂
∂

ττ
1 i=1,N (4-14)

l1(t) is the Lagrangian multiplier of constraint (4-7),

l2(t) is the Lagrangian multiplier of constraint (4-8).

In §4.2.1 below, we discuss the economic implications of this policy.  How to

decide the optimal pricing schedule for guaranteed services based on the policy is discussed

in §4.2.2.

§4.2.1 Economic implications

The pricing policy shown in (4-10) is designed for situations in which the network

capacity is tightly constrained.  If the network operator prices services without considering

capacity constraints, for guaranteed services, either the network can not meet performance

requirements, or some services will experience a blocking rate beyond the designed value.



21

For best-effort service, if the number of cells admitted exceeds the number of cells

transmitted, the queue would grow without bound.  Our proposition shows that under

these scenarios, the network operator's optimal strategy is to attach an opportunity cost to

each service (hi(t) for guaranteed service i, and l2(t) for best effort service), and price a

network service in the same way as pricing a tangible product, except that the marginal

production cost should be replaced by opportunity costs.

We now explain the rationale for using hi(t) as the opportunity cost for providing

guaranteed service i, and l2(t) as the opportunity cost for providing best-effort service,

starting by explaining the Lagrangian multipliers of the two capacity constraints.  The

economic implication of the Lagrangian multiplier of a resource constraint is the maximum

value that can be derived from having one more unit of the constrained resource, i.e. the

shadow price of consuming one unit of that resource.  In our case, l1(t), l2(t) are shadow

prices of reserving and using one unit of bandwidth, respectively.  Since we measure the

bandwidth in terms of the number of cells that can be sent per unit of time, at time t, when

one cell of best-effort service is sent, one unit of bandwidth is consumed.  Therefore, the

unit opportunity cost for best-effort service at time t is just the shadow price of using one

unit of bandwidth at that time, i.e. l2(t).

To meet performance requirements for guaranteed services, the network needs to

reserve some capacity each time a call is admitted.  At each moment, part or all of reserved

bandwidth will actually be used by guaranteed services.  Consequently, the opportunity

cost should include two components: the opportunity cost of reserving the bandwidth, and

the opportunity cost of using it.  In our formulation, at time t, the former equals the shadow

price for reserving one unit of bandwidth, l1(t), times the marginal increase of the amount

of reserved bandwidth for admitting one more call, 
∂
∂

A

qi

, and the latter equals the shadow

price for using one unit of bandwidth, l2(t), times the marginal increase of bandwidth usage
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which results from admitting one more call, 
∂
∂

s

qi

.  The total opportunity cost for a call is

thus the sum of these two components, accumulated over all time.  Since the service

duration is an exponentially-distributed random variable, the total cost, hi(t), is estimated by

taking mathematical expectation, using the distribution function of the call duration (rei
r ti− ).

Equation (4-10) is appropriate when the number of guaranteed calls that can be

admitted while meeting performance requirements is still limited, but there is more than

enough capacity to carry the cells from all guaranteed calls that are admitted, as well as all

of the best-effort traffic that the network wants to carry.  This situation might occur,  for

example, if the guaranteed calls are extremely bursty, or their performance requirements are

extremely strict. i.e.

λb b N Tp t s q t q t C( , ) [ ( ),..., ( )]+ <1

As a result, at time t, the shadow price of using the bandwidth, l2(t), equals 0, and the

optimal pricing policy should follow (4-10), i.e. the network operator should set price to

maximize total revenue from best-effort service without considering the constraint on data

rate.

Equation (4-11) specifies the pricing policy for the situation when there is an

excessive amount of bandwidth.  In this case, even if the network operator maximizes

revenue without considering capacity constraints, she can still meet performance objectives

for all services, keep blocking probability below the desired level, and have more

transmission capacity for best-effort service than what is needed.  As a result, both the

opportunity costs for guaranteed services and the opportunity cost for best-effort service

equal zero (i.e. hi(t) =0, l2(t) = 0).  This only happens when capacity is not constrained for

both reservation and use for all time, or in other words, the capacity is over provisioned.

Since we have assumed that the capacity, CT, is set at the optimal level in stage 1, this

cannot occur.
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§4.2.2 The optimal pricing schedule for guaranteed services

As shown in (4-10), (4-11), the optimal price for guaranteed services depends on

the εi, which is the demand elasticity, 
∂
∂

A

qi

which reflects traffic characteristic and

performance requirements, as well as l1(t), l2(t), the shadow prices for reserving and using

bandwidth, respectively, i.e. :

p t h ti

i

i
i( ) ( )=

+
ε

ε1

where h t
A

q
l

s

q
l r e di

it

T

i

i
r ti( ) [ ( ) ( )] ( )= +∫ − −

∂
∂

τ
∂
∂

τ ττ
1 2

To find pi(t), values of l1(t), l2(t) need to be determined.  At this point, we assume

the values of l2(t) have been estimated and given as $( )l t2 .  (This prior estimation will be

modified by the feedback from stage 3).  We then set l1(t) to the trial value $( )l t1 ,and

construct the following procedure to find the optimal value for pi(t), as well as to modify

the estimate of l1(t)

1) Calculate the optimal pricing schedule for guaranteed services by :

$( ) [ $( ) $( )] ( )h t
A

q
l

s

q
l r e di

it

T

i

i
r ti= +∫ − −

∂
∂

τ
∂
∂

τ ττ
1 2  and $ ( ) $( )p t h ti

i

i

i=
+
ε

ε1

2) The call arrival rate of guaranteed services i at time t is then $[ $( ), ]λ i ip t t .  Given

λ
^

i ( p
^

i (t),t) and the total amount of bandwidth, CT, the expected number of calls in

progress, $( )q ti , and the blocking probability, $( )β i t , can be determined.

3) If l1(t) is underestimated, $ ( )p ti  will be lower than its optimal value, so call

arrivals will be higher than the optimal level, which leads to the situation that blocking

probability is higher than the desired level, i.e. $( )
~

( )β βi it t>  at some t.  If l1(t) is over-

estimated, p
^

i (t)  will be lower than its optimal value and $( )
~

( )β βi it t< .

4) Increase or decrease $( )l t1  by ∆l1, depending on whether it is over or under

estimated.  Go to 1) to calculate pi(t).

The process is iterated until $( )
~

( )β βi it t= or is within a tolerable error band.
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The price schedule for guaranteed services is based on the given estimates of l2(t),

i.e., the shadow price for using the bandwidth.  This estimate was given arbitrarily at the

beginning, and needs to be modified by using feedback from the third stage.

§4.3 Spot Pricing

Given the prices for guaranteed services obtained at the second stage, the

distribution of available capacity for best-effort service as a function of time can be

determined as C s q t q tT N− [ ( ), .. . , ( )]1 .  At each instant, the network operator will set pb(t),

the spot price for admitting cells of best-effort service into the buffer to maximize:

p t t dtb b
t

T

( ) * ( )ω∫ (4-15)

under constraints:
dq

dt
t s tb

b b= −ω ( ) ( ) (4-16)

s t C s q t q tb T N( ) [ ( ),. .. , ( )]≤ − 1 (4-17)

0 ≤ ≤q t Bb s( ) (4-18)

when q t Bb s( ) =  ωb bt s t( ) ( )≤ (4-19)

when q tb ( ) = 0 ωb bt s t( ) ( )≥ (4-20)

Given ωb(t), sb(t) are random variables with complicated distributions, the problem

in (4-15)-(4-20) can not be solved directly.  However, through simulation, we can design

heuristic rules that indicate how the spot price, pb(t), should be set based on current buffer

occupancy and the expected distribution of willingness to pay of cells arriving in the future.

As soon as the spot price, pb(t), is determined, a new estimate of l2(t) can be

constructed.  This can be done by using the proposition above that defines the optimal

pricing policy.  Equation (4-10), i.e. pb
*(t) = 

ε
ε

b b

b b

p t

p t
l t

( , )

( , )
* ( )

*

*1 2+
applies when the

bandwidth is fully used, and Equation (4-11), i.e. l2(t)=0 applies otherwise.  The new

estimate can then be used as feedback to revise the optimal pricing schedule for guaranteed

services.
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The optimal pricing policy is reached by iterating the second and the third stages

until both the price schedule for guaranteed services and the expected spot price for best-

effort service stabilize.

5. Conclusions and Future Work

In this chapter, we discuss the optimal pricing policy for Integrated-service

networks with guaranteed quality of service based on ATM technology.  By formulating

the pricing decision as a constrained control problem and developing a three stage

procedure to solve that model, we find there is great similarity between the optimal pricing

policy for network services and the optimal pricing policy for conventional products.  We

demonstrate that under capacity constraints, the service provider should consider the

opportunity cost incurred by serving a customer.  This opportunity cost should be used to

determine the price of a network service in the same way as the marginal production cost is

used to determine the price of a conventional product.  We derive the mathematical

expressions that calculate opportunity costs for different services offered by a single

integrated-services network, and explain the implications of these expressions.

Though our procedure is designed for maximizing the service provider’s profit, a

similar approach can as well be used to maximize other objectives, such as social welfare.

Note the pricing policy developed in this paper optimizes the profit for providing

integrated services under the assumption that the demand for each service is independent of

prices of any other services.  In future work, we will relax that assumption and consider

the cross-elasticity effect among services.  Even in the absence of cross-elasticity effect, the

price of one service can also affect the demand for another service if the network adopts a

three-part tariff pricing scheme, under which users are not only charged for each service

based on reservation and usage, but also pay a flat subscription fee (e.g. an access charge).

In this case, the network operator may maximize profit by setting reservation or usage
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prices for each service different from the optimal values derived in this chapter.  As another

example, in the presence of positive network externalities, it can be optimal to price access

below average cost, recovering the balance from the increased demand for usage which

results from a larger network population.  Our paper considers neither three-part tariff nor

positive demand externalites.  The design of an optimal pricing schedule with the

consideration of these factors is an interesting issue that remains to be explored.
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