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Abstract 

To generate fair curves and surfaces is an important tool in the area of 
computer graphics (CG), computer-aided design (CAD), and other 
geometric modeling applications. In this paper, we present an 
iteration-based algorithm to generate fair polygonal curves and surfaces 
that is based on a new discrete spring model. In the spring model, a linear 
spring, which length approximately represents a curvature, is attached 
along the normal line of each polygon node. Energy is assigned to the 
difference of the lengths, that is, difference in curvature, of nearby springs.  
Our algorithm then minimizes total energy by iterative approach. Our 
algorithm accepts as inputs (1) an initial polygonal curve (surface), which 
consists of a set of polygonal segments (faces) and a set of nodes as 
polygon-vertices, and (2) constraints for controlling the shape. The outputs 
are polygonal curve (surface) in smooth shape. We also describe a method 
for improving performance of our iterative process into a linear execution 
time. Our algorithm provides a tool for fair curve and surface design in 
interactive environment. 
 
Keywords: geometric modeling, fair surface design, polygonal models, 
energy minimization 

 

1. Introduction 

The purpose of this paper is to provide an algorithm to generate fair 
curves and surfaces used in the fields of computer graphics (CG) and 
computer-aided design (CAD). Generation of fair shapes is a major topic in 
shape design [5][10][17][19][22][23][24][26]. It is also required in other 
applications such as smooth shape fitting to scattered points [7][20], texture 
mapping [15], and so on. 

Curves and surfaces treated in this paper are represented in polygonal 
form. The inputs of the algorithm are (1) an initial polygonal curve 
(surface) consisting of a set of nodes and a set of polygonal segments 
(faces), and (2) constraints for controlling the shape. The algorithm moves 
the nodes to suitable positions minimizing curvature variation under the 
given constraints. The outputs are polygonal curve (surface) in smooth 
shape. The polygonal surfaces treated in this paper are not limited to 
triangular meshes. Quadrilateral meshes are also available, and, 
theoretically, n-sided faces such as pentagon or hexagon may also be 
included. 

Our algorithm is classified into iterative approach of  Gauss-Seidel 
type: node positions are iteratively updated under the given constraints. To 
update the node positions, two types of spring forces are applied to each 

node: (1) a force acting in the normal direction to optimize the curvature 
variation and (2) a force in the vertical direction of the normal to optimize 
node distribution. Main idea of this paper lies in the discrete spring model 
producing the former force. The spring model works to minimize 
curvature variation. Curvature is a natural measurement of fairness; 
therefore, our spring model produces fair curves and surfaces.  

As Taubin [23] points out, most energy-minimization approaches are 
expensive in terms of time and space. This paper also provides a method 
for achieving a linear execution time. 

The remainder of the paper is organized as follows. In Section 2, we 
summarize previous work. After defining a discrete spring model in 
Section 3, we present a curve (surface) modeling algorithm based on the 
spring model in Section 4. Section 5 show some results obtained by using 
the algorithm, and Section 6 summarizes the paper.  

 

2. Previous Work 

A considerable amount of work has been done on fair surface modeling. 
We consider that most previous work related to polygonal surface 
modeling can be classified into two types: finite-difference approaches and 
finite-element approaches. Our approach belongs to the former category. In 
both types of approaches, node positions are updated iteratively or are 
calculated by solving a large sparse linear system. In the finite-difference 
approaches, values are evaluated only at nodes, while in the finite-element 
approaches, values are evaluated over faces by using numerical integration. 
One key-factor to distinguish several approaches in a category is the spring 
model they employ to move the node positions.  

Irrespective of the classifying types, when the displacement of 
deformation is large, that is, when the shape of the initial polygonal surface 
is very different from the final shape, the deformation reduces to the 
non-linear problem. Therefore, once solving a sparse linear system does 
not yield a suitable answer; the system must be solved iteratively. The cases 
of large deformation appear often in the process of surface design. To 
construct a robust algorithm for such cases, we select iterative approach. 

Two following subsections survey both types of approaches targeting 
surface modeling. In the third subsection, some other applications that use 
the fairing as a part of their algorithm are also surveyed. 
 
2.1 Finite-Difference Approaches for Surface Modeling 

Laplacian smoothing is the easiest way to generate a fair surface. This 
approach iteratively moves the position of a node to the barycenter of its 
neighboring nodes. It has the characteristic that the area of the surface is 
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minimized under given constraints. This approach is often used to improve 
the geometrical irregularity of a mesh in the field of finite-element meshing 
[11]. But when this approach is applied to surface modeling, the problem 
arises that a sharp tip is generated in the neighborhood of a node fixed by a 
constraint. Moreover, it is not possible to control normals by giving normal 
constraints. 

For surface modeling, Szeliski and Tonnesen [22] used a particle 
system, in which each particle is defined by its position and normal, and the 
population of particles is controlled automatically. To obtain a fairly 
triangulated surface, they minimized the weighted sum of three energy 
factors: (1) co-planarity, (2) co-normality, and (3) co-circularity. The 
co-planarity condition causes neighboring nodes to lie on each other's 
tangent plane, the co-normality condition modifies irregular twisting of two 
neighboring nodes, and the co-circularity condition preserves constant 
curvature on an edge connecting neighboring nodes. In comparison with 
their approach, one factor by our spring model provides a similar effect to 
their three factors. 

Mallet [16][17] provided a general formulation for discrete surface 
interpolation with many adjustable parameters. When harmonic weighting 
[17] is selected among his proposed parameters - as in his results -, his 
approach minimizes the sum of the distances, each of which is from a node 
to the barycenter of its neighboring nodes. 

Taubin [23] proposed a fair surface design approach in which 
high-frequency terms such as noise are removed by using the technique 
based on Fourier analysis. Due to its linear execution time, his approach is 
powerful for polygonal surfaces with millions of nodes, for example, one 
captured by using a range scanner. A node is iteratively moved to a suitable 
position on a line connecting a node and the barycenter of its neighboring 
nodes. The suitable positioning is determined so as to avoid shrinkage of 
the entire shape. Basically, Taubin’s approach is suitable for removing 
noise from a given initial shape without causing shrinkage. 

The main difference between our approach and those of Mallet and 
Taubin is that in our approach curvature variation is used as a measurement 
of minimization. Curvature is a natural measurement of fairness; 
consequently our approach produces a fairer shape than theirs. 

Welch and Witkin [26] also proposed a mesh-based modeling method 
for surfaces with arbitrary topology. After defining a local surface equation 
in the neighborhood of each node, which fits the latter’s neighboring nodes 
in the least-square sense, they minimized a fairness norm based on 
curvature, which is calculated from the local surface. The local surface is 
temporarily used to evaluate the curvature at a node, and the final outputs 
are only node positions, not surfaces of faces. In the sense that curvature is 
adopted as a fairing measurement, our approach is similar to theirs. 
However, their approach has to solve a 5× m least-square linear system 
(where m is the number of neighboring nodes) for each node at each 
iteration. This is a time-consuming process if the number of nodes is large. 

 
2.2 Finite-Element Approaches for Surface Modeling 

In comparison with finite-difference approaches, finite-element 
approaches generally yield a higher-quality surface and generate an explicit 
surface equation of each face, while their computational time is more 
expensive.  

Celniker and Gossard's approach [5] generates a C1 continuous 
surface by using a finite-element technique. They applied Zienkiewicz's 

shape function [27], which was originally proposed for the finite element 
analysis, to attain C1 continuity in surface modeling. Their approach 
minimizes a weighted combination of the energy factors of a membrane 
and a thin plate.  

Welch and Witkin [25] also proposed an approach very similar to that 
of Celniker and Gossard, although the former has more general 
formulations for both energy factors and shape control constraints. 

Moreton and Sequin [19] presented a different type of finite-element 
approach in which they use biquintic Bezier patches and a fairness norm 
based on measures of curvature variation. Their approach produces the 
most impressive surface, but it is too expensive for use in an interactive 
environment. 

 
2.3 Other Applications Using Fairing 

Halstead and his colleagues [10] provided a solution to the problem 
that Catmull-Clark's subdivision surface scheme [4] gives a shrunken 
surface without interpolating given control points. In their process, a 
fairness factor proposed by Celniker and Gossard is used in conjunction 
with the Catmull-Clark scheme. The target of Eck and Hoppe's work [7] is 
to generate tensor product surfaces from scattered points. They use a thin 
plate as a fairness factor to remove undulations in surfaces. Levy and 
Mallet [15] applied their discrete smooth interpolation approach [16][17] to 
the non-distorted texture-mapping problem. Koch and his colleagues [14] 
applied the thin-plate approach to a system for simulating facial surgery, 
and DeCarlo and his colleagues [6] applied the thin-plate approach to 
geometric modeling of human faces. As can be seen in the above literature 
in this subsection, fairness factors are widely used in the area of CG and 
CAD alongside factors unique to each study, which depend on their 
applications. Our approach has possibility to be applied for such 
applications. 

 

3. Definition of the Discrete Spring Model:      
V-Spring 

Figure 1 shows a planar curve and its normal lines at some sampling 
points on the curve. Consider the normal lines at two neighboring sampling 
points Pi and Pj. For a curvature continuous curve, if Pi approaches Pj, the 
intersection point H of the normal lines converges to a center of curvature 
at Pj [3].   

Therefore, our idea is to attach a linear spring, as shown in Figure 2(A), 
to each normal line of a node consisting in a polygonal curve (surface). The 
linear spring works to keep equal the spring lengths ||Pi - H|| and ||Pj - H|| of a 
V-shape formed by Pi, H, and Pj. The spring length approximately 
represents a curvature; therefore, the action to keep equal the spring length 
is equal to minimize variation in curvature. 

Suppose node Pj be fixed by a constraint. If length ||Pi - H|| is smaller than 
||Pj - H||, as shown in Figure 2(A), node Pi moves to a new position along 
the normal Ni in the direction to enlarge length ||Pi - H|| to the size of ||Pj - H||. 
In contract, if ||Pi - H|| is larger, node Pi moves to a new position along the 
normal Ni in the direction to shorten length ||Pi - H|| to the size of ||Pj - H||. In 
a stable configuration, Pi and Pj are considered to be on a circular arc 
whose center is at H and whose curvature radius is ||Pj - H|| (=||Pi + dPi - H||). 

Because of this V-shaped configuration of virtual springs, our spring 
model is named "V-Spring." 
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Figure 1: Planar curve and normal lines on some sampling points. 
 
  Here we formally define a displacement dPi, from a current position to a 
new position, of a node Pi by the force of the spring model under the 
supposition that Pj is fixed. Let Pi and Pj be two nodes, and let Ni and Nj, be 
unit normal vectors associated with the nodes, respectively. We assume an 
inner product dot(Ni, Nj) to be positive; therefore, if two normal vectors 
with their negative inner product are given, let either Ni or Nj be the 
direction reversed vector. An intersection of the two normal lines is 
denoted by H (see Figure 2(A)). Let ti and tj be real values satisfying: 
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|ti|  and |tj|  correspond to the distances ||Pi - H|| and ||Pj - H||, respectively, 
because Ni and Nj are unit vectors. We define the displacement dPi of node 
Pi by our spring model as: 

        ( ) .iiji tt NdP −=                              (2) 

(tj - ti) in the equation is calculated as follows. For the equation that H is 
deleted from Equation (1), by calculating inner products with Ni and Nj, 
following equations are obtained. 
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By solving Equation (3) in terms of ti and tj: 
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where cos(a) = dot( Ni, Nj ). Consequently, (tj - ti) in Equation (2) is 
determined as: 
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Therefore, Equation (2) is written as: 
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The denominator of Equation (4) is always non-zero value, because cos(a) 
(=dot(Ni, Nj,)) is assumed to be positive. One may consider from Figure 
2(A) that numerical error happens when two normal lines are parallel 

because of missing of H.  However, Equation (5) does not use H in 
direct; therefore our spring model is stable even for the case of parallel 
normal lines. 

In case of a planar curve, normal lines along Ni and Nj always have an 
intersection. However, if we consider a non-planar curve or a surface, 
normal lines do not always intersect at a point. Therefore, we can not use 
Equation (1) as they are for the non-planar cases. Instead of an intersection 
point H in Equation (1), we use Hi and Hj which are feet of the shortest line 
segment connecting two normal lines (see Figure 2(B)). Then, for 
non-planar cases, we modify Equation (1) to the following equations: 
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For non-planar cases, the equations corresponding to Equation (3) are: 
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By solving Equation (7), (tj - ti) in Equation (2) is derived as the same 
equation as Equation (4). 

Pi

Pj

Nj

Ni

HiHj

dPi

Pi

(B)

Pi

Nj

NiPj

H

dPi

Pi

(A)

       
Figure 2: Definition of the spring model. (A) Displacement dPi for a 
planar curve. (B) Displacement dPi for a non-planar curve or a 
surface. 

 

4. Curve/Surface Modeling Using a Discrete 
Spring Model 

4.1 Overview of the Algorithm 

A polygonal surface is defined as a pair of a set of nodes Pi (i = 1, ..., n), 
and a set of polygonal faces. We define neighboring nodes Pj (j = 1, 2, …, 
m) of Pi to be a set of nodes connected to Pi by polygonal edges. 

Our algorithm can be classified as an iterative method of Gauss-Seidel 
type. The positions and normals of nodes are updated in each iteration, and 
the iterations are continued until the termination condition is satisfied. 
Figure 3 shows an overview of our algorithm. 
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Let Pi be the position of the i-th node 
Let n be the number of nodes 
While( termination condition is not satisfied ){ 
    For( all nodes Pi (i = 1, ..., n) ){ 
        Step 1: Calculate pseudo-normal Ni 
        Step 2: Calculate displacement dPi caused  
                  by the force exerted by V-Spring 
        Step 3: Calculate displacement dPu, i caused  
                  by the force for regularizing node distribution 
        Step 4: Pi = Pi + ( dPi + dPu, i ) 
    } 
} 
Figure 3: Overview of the algorithm. 

 
The following subsections 4.2, 4.3, and 4.4 describe Steps 1, 2, and 3 in 

Figure 3, respectively. In Section 4.5 we describe several constraints. After 
describing the termination condition in Section 4.6, we give a method for 
reducing an execution time  in Section 4.7. Up to Section 4.7, our 
discussion concerns surface modeling. Section 4.8 extends the discussion 
to curve modeling. 

 
4.2 Pseudo-normal Calculation 

The first step of the algorithm is to calculate a unit normal vector Ni for 
each node Pi of a polygonal surface (Step 1 in Figure  3). The polygonal 
surface is a discrete model; therefore, the unit normal vector must be 
calculated only approximately. In our implementation, we calculate the unit 
normal Ni by averaging the normals of polygonal faces adjoining to the 
node.  

There are more sophisticated ways to calculate the normal. For example, 
one way is to calculate the normal from a sphere fitted to the target node 
and its neighboring nodes in the least-square sense. However, the way is 
more time consuming and fails when the target node and its neighboring 
nodes are on the same plane or the neighboring nodes are placed to have 
the target node a saddle point. Another way, used by Taubin [23], is 
calculate the normal as the average of vectors, each of which is from target 
node to one of neighboring nodes. It is the faster way; however, it fails 
when the target node and its neighboring nodes are on the same plane. 

Our choice is the more basic but the more robust way. In the early phase 
of iterations, the normal vector is unreliable; however, as the iterations 
proceed, the normal vector converges in the reliable normal of the fair 
surface. 

 
4.3 Node Displacement by the Force of V-Spring 

Node Pi obtains forces from its neighboring nodes Pj (j = 1, ..., m). 
Each force works to keep the edge from Pi to Pj in a circular arc. Weighted 
average of the forces makes the node Pi move to a new position along 
normal Ni by the displacement dPi (see Figure 4(B)). 

The way to calculate the displacement dPij of node Pi by the force of 
one neighboring node Pj is as follows. Let Ni and Nj be unit normal vectors 
of nodes Pi and Pj, respectively, and let Hi and Hj be feet of the shortest line 
segment connecting two normal lines along Ni and Nj, respectively. From 
Equation (2) and (4), the displacement dPij is calculated as follows: 

        ( ) ,iijij tt NdP −=                               (8) 
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In the same manner, we calculate dPi1, ..., dPim for neighboring nodes. The 
final displacement dPi of node Pi is determined by weighted-averaging of 
the displacements dPij (j = 1, ..., m) as follows: 
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where wj (j = 1, ..., m) are weights for averaging. In our implementation, the 
weight wj is determined by the inverse of the length of the edge connecting 
Pi and Pj. 
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Figure 4: Node displacement by forces exerted by neighboring nodes. 
(A) Planar curve case. (B) Surface case. 

 
4.4 Node Displacement for Regularizing Node Distribution 

In finite-difference approaches, it is important to maintain the regular 
node distribution during the iteration process, because uneven distribution 
of nodes results in incorrect estimation of curvature. To obtain the regular 
node distribution, we use a variation of Laplacian smoothing operator [11], 
which is a popular and effective way to remove the irregularity. The 
Laplacian operator moves a node to the barycenter of its neighboring nodes. 
However, applying the regular Laplacian operator offsets the displacement 
dPi in Equation (8). Therefore, our idea is to use only a component dPu,i, 
being vertical to the normal Ni, of the displacement of the Laplacian 
operator. Only using the component makes two displacements dPi and 
dPu,i being vertical each other. Therefore, the two displacements do not 
offset each other. The displacement dPu,i is written as follows: 
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4.5 Constraints 

Constraints are considered to be external forces for controlling shape of 
a surface. Various kinds of constraints can be considered, depending on the 
requirements from applications. In this section, we describe several 
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important constraints used in surface modeling. We classify the constraints 
into two types: direct and indirect constraints.  

 
Direct Constraints 

Direct constraints are given directly for a certain node. Major 
constraints are: 

       - Positional Constraint, 
       - Normal Constraint. 

The positional constraint fixes a node to a certain position during the 
iterations; therefore, Step 2 and 3 in Figure 3 is skipped for the fixed node. 
The normal constraint fixes a normal of a node to a certain direction. For 
the normal fixed node, the pseudo-normal calculation (Step 1 in Figure 3) 
is skipped and the given normal is assigned. 

In our approach, positional constraints must be given at least to end 
nodes for the case of an open polygonal curve and to boundary nodes for 
the case of an open polygonal surface. That is why usage of Laplacian 
operator causes the shrinkage of the shape. If it is required to modify the 
shape of boundary curves of a surface, start from the modeling of boundary 
curves and go on to the modeling of the surface bounded by the boundary 
curves. 
 
Indirect Constraints 

Indirect constraints do not have a direct connection to a certain node. 
During the iterations, connection between the constraints and the nodes is 
updated dynamically. One major constraint we introduce here is scattered 
points. It is an important application in CAD and CG to generate a smooth 
surface fitted to scattered points in least-square sense. In the application, the 
constraint by a scattered point works to its closest point on a surface. 
Therefore, in our discrete model, we update the connection between the 
scattered point and its closest node during the iterations. 

We have to modify slightly the algorithm to introduce the indirect 
constraints; the modified algorithm is shown in Figure 5. In Figure 5, all the 
steps except Step 2 and 5 are the same as in Figure 3. 

In Step 2, each scattered point is connected to its nearest node. In 
practice, it is not necessary to perform Step 2 at every iteration; once in 
every several iterations is enough. To find the nearest node, it is enough to 
search neighboring nodes in first and second orders of the previous node 
except when performing a first search. 

In Step 5, external forces from connected scattered points Vj (j = 1, ..., m) 
are applied to a node Pi. The displacement of Pi by Vj is calculated as: 

        ( ) ,,dot, iiijjijc k NNPVdP −=                    (11) 

where kj denotes a weight assigned to Vj. The displacement dPc,ij is 
interpreted as a component of vector Vj-Pi along the normal Ni. In the same 
manner, we calculate dPc,i1, ..., dPc,im for all connected scattered points. The 
final displacement of node Pi by forces of its connected scattered points is 
determined by weighted-averaging dPc, ij (j = 1, ..., m) as follows: 
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where wj (j = 1, ..., m) are weights for averaging. In our implementation, the 
weight wj is determined by the inverse of the distance from node Pi to its 
foot Qj to the tangent plane at Pi (see Figure 6(B)). 

        .)...,,2,1(,1 mjw jij =−= QP  

When Qj is identical or very close to Pi, sufficiently large value is assigned 
to its wj. 

In Equation (11), weight kj is used to take the trade-off between fairing 
and keeping proximity to the scattered point Vj. Larger kj approximates Vj 
closer. 

In the case of a planar curve, least-square fitting is geometrically 
interpreted that when a spring is attached to each line from a scattered point 
to the nearest point on a curve, the sum of the internal energies of the 
springs are minimized (see Figure 6(A)). Our approach is geometrically 
interpreted as being to attach a spring to a line from a scattered point to its 
foot in the tangent plane at the nearest node (see Figure 6(B)). We therefore 
consider that our approach is approximately equivalent to least-square 
fitting. 

The advantage of our approach is that it can be applied to not only 
surfaces with regular topology, such as tensor product surfaces, but also to 
surfaces with arbitrary topology. In addition, theoretically, n-sided polygons 
such as pentagons or hexagons may be included in the polygonal surface. 
 

Let Pi be the position of the i-th node 
Let n be the number of nodes 
Let Vi be the i-th scattered point 
Let l be the number of scattered points 
While( termination condition is not satisfied ){ 
    For( all nodes Pi (i = 1, ..., n) ){ 
        Step 1: Calculate pseudo-normal Ni 
    } 
    For( all scattered points Vi (i = 1, ..., l) ){ 
        Step 2: Make connection of each scattered point  
                 to its nearest node 
    } 
    For( all nodes Pi (i = 1, ..., n) ){ 
        Step 3: Calculate displacement dPi caused  
                 by the force exerted by V-Spring 
        Step 4: Calculate displacement dPu, i caused  
                 by the force for regularizing node distribution 
        Step 5: Calculate displacement dPc, i  caused 
                 by the force exerted by scattered points 
        Step 6: Pi = Pi + (dPi + dPu, i + dPc, i) 
    } 
} 
Figure 5: Overview of the fitting algorithm. 
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Figure 6: Least-square fitting of a planar curve to scattered points. (A) 

Geometric interpretation of general least-square fitting. (B) Geometric 
interpretation of our fitting approach. 

 
4.6 Termination Condition 

To determine when to terminate iterations, the maximum among the 
norms of all node displacements is compared with a given threshold e. If 
the maximum norm is less than the threshold e, the iterations are 
terminated. The size of the displacement depends on the resolution of the 
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polygonal surface; therefore the displacement should be normalized by the 
size of polygonal faces. In our implementation, we normalize the 
displacement of each node by the average length of its neighboring edges. 
Then the maximum norm of the normalized displacements is compared 
with the threshold e. 

 
4.7 Performance Improvement 

In iterative approaches of the Jacobi or Gauss-Seidel types, high 
frequencies tend to be removed quickly while it takes many iterations to 
remove low frequencies. Consequently, if the number of nodes is 
extremely large, it takes many iterations to achieve convergence. A 
promising way to reduce the execution time is to employ multi-grid 
methods [2][9][18]. Kobbelt and his colleagues [13] are positively using 
the multi-grid method to model dense meshes. By using the multi-grid 
method, a linear execution time can be achieved. 

Multi-grid method requires polygonal surfaces with several different 
levels of resolutions. Mesh simplification algorithms [1][8][12] [21][24] 
can provide the polygonal surfaces with multi-resolutions. For example, let 
M1, M2, and M3 be three levels of polygonal surfaces where M1 is the 
finest and M3 is the coarsest. The V-cycle multi-grid method applies 
iterations for the polygonal surfaces with different levels in the sequence 
{M1, M2, M3, M2, M1}. The first-half process, going down from M1 to 
M2, is called pre-smoothing, and the second-half process, coming up from 
M3 to M1, is called post-smoothing. In the pre-smoothing, some iterations 
are performed at each level in order to remove noise. On the coarsest level 
M3, a rough shape is predicted by the solution. As the post-smoothing 
proceeds, the rough shape approaches the precise shape.  

In the post-smoothing, iterations are performed at each level until the 
termination condition described in Section 4.6 is satisfied. Our termination 
condition is normalized by the resolution; this provides an efficient way of 
determining the time at which to move on. 

 
4.8 Extension to Curve Modeling 

Basically, the algorithm for curve fairing is the same as for surface 
fairing. In each iteration, the node Pi is moved to a new position by forces 
exerted by two neighboring nodes Pi-1 and Pi+1 (see Figure 4(A)).  

In the case of a planar curve, there is no extended matter from in the 
surface case; however, in the case of a non-planar curve, the calculation of 
the pseudo-normal Ni is more difficult than in the surface case. From a 
sequence of nodes Pi-1, Pi, and Pi+1, we calculate the unit tangent Ti and the 
unit binormal Bi as follows: 
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where ×  denotes the outer product. As the outer product of Bi and Ti, we 
calculate the unit principal normal Ni as follows: 

        .iiiii TBTBN ××=  

If Pi-1, Pi, and Pi+1 are collinear, Bi and Ni are zero vectors; then the 
displacement dPi is a zero vector according to Equation (5). The best way 
to obtain a fair curve is to apply V-Spring forces in both directions of Bi 
and Ni; however, in practice, applying a force only in the direction of Ni 
gives a fair curve, even if the problem is a non-planar case. 
 

5. Results 

Figure 7 shows a result of fair surface generation by using our algorithm. 
Figure 7(A) shows the initial mesh with sharp corners, that is, sudden 
change in curvature, while the figures (B) and (C) show the faired results 
with two different sets of direct constraints. As seen in the figures, the 
algorithm produced fairer surfaces. The surface of Figure 7(B) resulted 
when positions of nodes on the inner- and outer-boundaries are kept 
unchanged by using the positional constraints. The surface of Figure 7(C) 
is generated by constraining normals of the nodes on the inner- and 
outer-boundaries, in addition to positions of these nodes.  Figure 9 shows 
another result of fairing in shaded image. 

Figure 8 shows the stability of our algorithm by giving it an extremely 
noisy mesh as initial data. We added random noise of large amplitude to 
the mesh of Figure 7(A), then processed the noisy mesh by using our 
algorithm. Five iterations of pre-smoothing generated a smoother surface 
of Figure 8(B). Then the mesh converged to a fair surface of Figure 8(C) 
with further processing. 

Table 1 shows the execution time of our algorithm measured for meshes 
of various resolutions. It says that the time grows approximately linearly to 
the complexity of given meshes. 

 
Table 1: Execution time for fair surface generation. The execution time is 
measured for the surface shape with the constraints in Figure 7(C). Column 
(a) in the table is data for the resolution of Figure 7(C). Column (b), (c), and 
(d) are data for different resolutions with the same surface shape. These 
data are measured under the following conditions: 

CPU:   PentiumII 450MHz,  
System:   WindowsNT4.0,  
Threshold e for termination condition:   0.001, 
Number of level for multi-grid:    6, 
Number of iterations at each level of pre-smoothing: 5.  

  (a)  (b)  (c)   (d) 
Number of nodes 553 1610 3644 14962 
Number of faces (triangles) 985 3018 6983 29316 
Execution time (sec) 2.38 13.8 36.4 177.1 

 
   Figure 10 shows results of least-square fitting of polygonal curves by 
using indirect constraints as described in Section 4.5. An initial curve 
shown by a noisy thin line converged to a smooth curve shown by a thick 
line. Node positions of the initial curve are assigned to scattered points. In 
Figure 10(A), all weights kj in Equation (11) used to take the trade-off 
between fairing and keeping proximity are set to 0.01, while in Figure 
10(B) they are set to 0.00001. As seen in the figures, the algorithm 
produced fairer curves under the indirect constraints. 
 

6. Summary 

This paper presented an algorithm to generate fair polygonal curves and 
surfaces based on iterative approach by using a new discrete spring model. 
The algorithm produced polygonal curves and surfaces whose local 
variation in curvature is minimized. 

In our discrete spring model, a linear spring, which length approximately 
represents a curvature, is attached along the normal line of each node. 
Energy is assigned to the difference of the lengths, that is, difference in 
curvature, of nearby springs.  Our algorithm then tries to minimize total 
energy by iterative approach. The algorithm accepts various constraints, 
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such as positional, normal, and least-square constraints, so that useful 
surface models can be generated for computer graphics, computer aided 
design, and other geometric modeling applications.  

The implementation of the algorithm is easy due to its geometrically 
intuitive interpretation. The results of experiments showed that the 
algorithm generated fair surfaces that satisfy positional, normal, and other 
constraints. The algorithm was robust under the presence of positional 
noise in the initial polygonal data. It also exhibited that computational costs 
increased approximately linear to the number of nodes consisting in a 
polygonal curve (surface). 

In our experience, the algorithm is significantly robust and stable; 
however, the convergence of the algorithm should be proved in the future 
work. The target of this paper is to apply our spring model to shape 
modeling; however, fairing problem is not limited to the application. 
Applying our spring model to the other applications is also the future work. 
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Figure 7: (A) Initial mesh.  (B) Deformed result from (A) under the positional constraints on inner- and outer-boundary nodes.  (C) Deformed result 
from (A) under the positional and normal constraints on inner- and outer-boundary nodes. Arrows on boundary nodes show the directions of normal 
constraints. 
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Figure 8: Stability of the algorithm.  (A) Initial mesh with random noise on the nodes.  (B) Shape (A) after five iterations of pre-smoothing on the 
finest level.  (C) Shape (A) after full convergence. 

                      
Figure 9: Shaded image of a deformed result.  (A) Initial mesh.  (B) Deformed result from (A) under the positional and normal constraints on nodes of 
upper-, lower-, and inner-boundaries. 

  
Figure 10: Least-square fitting of a polygonal segment to scattered points. A noisy thin line represents an initial segment. A smooth thick line represents a 
converged segment. Node positions of the initial segment are given as scattered points.  (A) All weights kj in Equation (11) are set to 0.01.  (B) All weights 
kj are set to 0.00001. 

 


