
 1

A Discrete Spring Model to Generate Fair Curves and Surfaces

Atsushi Yamada1, Kenji Shimada2, Tomotake Furuhata1, and Ko-Hsiu Hou2
1
Tokyo Research Laboratory, IBM Japan Ltd., LAB-S73

 1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, JAPAN
 ayamada@jp.ibm.com, furuhata@jp.ibm.com

2
Mechanical Engineering, Carnegie Mellon University

 Pittsburgh, PA 15213
 shimada@cmu.edu, khou+@andrew.cmu.edu

If the paper is accepted, one of the authors will present the paper at the Pacific Graphics ’99 conference.

Abstract

To generate fair curves and surfaces is an important tool in the area of
computer graphics (CG), computer-aided design (CAD), and other
geometric modeling applications. In this paper, we present an
iteration-based algorithm to generate fair polygonal curves and surfaces
that is based on a new discrete spring model. In the spring model, a linear
spring, which length approximately represents a curvature, is attached
along the normal line of each polygon node. Energy is assigned to the
difference of the lengths, that is, difference in curvature, of nearby springs.
Our algorithm then minimizes total energy by iterative approach. Our
algorithm accepts as inputs (1) an initial polygonal curve (surface), which
consists of a set of polygonal segments (faces) and a set of nodes as
polygon-vertices, and (2) constraints for controlling the shape. The outputs
are polygonal curve (surface) in smooth shape. We also describe a method
for improving performance of our iterative process into a linear execution
time. Our algorithm provides a tool for fair curve and surface design in
interactive environment.

Keywords: geometric modeling, fair surface design, polygonal models,
energy minimization

1. Introduction

The purpose of this paper is to provide an algorithm to generate fair
curves and surfaces used in the fields of computer graphics (CG) and
computer-aided design (CAD). Generation of fair shapes is a major topic in
shape design [5][10][17][19][22][23][24][26]. It is also required in other
applications such as smooth shape fitting to scattered points [7][20], texture
mapping [15], and so on.

Curves and surfaces treated in this paper are represented in polygonal
form. The inputs of the algorithm are (1) an initial polygonal curve
(surface) consisting of a set of nodes and a set of polygonal segments
(faces), and (2) constraints for controlling the shape. The algorithm moves
the nodes to suitable positions minimizing curvature variation under the
given constraints. The outputs are polygonal curve (surface) in smooth
shape. The polygonal surfaces treated in this paper are not limited to
triangular meshes. Quadrilateral meshes are also available, and,
theoretically, n-sided faces such as pentagon or hexagon may also be
included.

Our algorithm is classified into iterative approach of Gauss-Seidel
type: node positions are iteratively updated under the given constraints. To
update the node positions, two types of spring forces are applied to each

node: (1) a force acting in the normal direction to optimize the curvature
variation and (2) a force in the vertical direction of the normal to optimize
node distribution. Main idea of this paper lies in the discrete spring model
producing the former force. The spring model works to minimize
curvature variation. Curvature is a natural measurement of fairness;
therefore, our spring model produces fair curves and surfaces.

As Taubin [23] points out, most energy-minimization approaches are
expensive in terms of time and space. This paper also provides a method
for achieving a linear execution time.

The remainder of the paper is organized as follows. In Section 2, we
summarize previous work. After defining a discrete spring model in
Section 3, we present a curve (surface) modeling algorithm based on the
spring model in Section 4. Section 5 show some results obtained by using
the algorithm, and Section 6 summarizes the paper.

2. Previous Work

A considerable amount of work has been done on fair surface modeling.
We consider that most previous work related to polygonal surface
modeling can be classified into two types: finite-difference approaches and
finite-element approaches. Our approach belongs to the former category. In
both types of approaches, node positions are updated iteratively or are
calculated by solving a large sparse linear system. In the finite-difference
approaches, values are evaluated only at nodes, while in the finite-element
approaches, values are evaluated over faces by using numerical integration.
One key-factor to distinguish several approaches in a category is the spring
model they employ to move the node positions.

Irrespective of the classifying types, when the displacement of
deformation is large, that is, when the shape of the initial polygonal surface
is very different from the final shape, the deformation reduces to the
non-linear problem. Therefore, once solving a sparse linear system does
not yield a suitable answer; the system must be solved iteratively. The cases
of large deformation appear often in the process of surface design. To
construct a robust algorithm for such cases, we select iterative approach.

Two following subsections survey both types of approaches targeting
surface modeling. In the third subsection, some other applications that use
the fairing as a part of their algorithm are also surveyed.

2.1 Finite-Difference Approaches for Surface Modeling

Laplacian smoothing is the easiest way to generate a fair surface. This
approach iteratively moves the position of a node to the barycenter of its
neighboring nodes. It has the characteristic that the area of the surface is

 2

minimized under given constraints. This approach is often used to improve
the geometrical irregularity of a mesh in the field of finite-element meshing
[11]. But when this approach is applied to surface modeling, the problem
arises that a sharp tip is generated in the neighborhood of a node fixed by a
constraint. Moreover, it is not possible to control normals by giving normal
constraints.

For surface modeling, Szeliski and Tonnesen [22] used a particle
system, in which each particle is defined by its position and normal, and the
population of particles is controlled automatically. To obtain a fairly
triangulated surface, they minimized the weighted sum of three energy
factors: (1) co-planarity, (2) co-normality, and (3) co-circularity. The
co-planarity condition causes neighboring nodes to lie on each other's
tangent plane, the co-normality condition modifies irregular twisting of two
neighboring nodes, and the co-circularity condition preserves constant
curvature on an edge connecting neighboring nodes. In comparison with
their approach, one factor by our spring model provides a similar effect to
their three factors.

Mallet [16][17] provided a general formulation for discrete surface
interpolation with many adjustable parameters. When harmonic weighting
[17] is selected among his proposed parameters - as in his results -, his
approach minimizes the sum of the distances, each of which is from a node
to the barycenter of its neighboring nodes.

Taubin [23] proposed a fair surface design approach in which
high-frequency terms such as noise are removed by using the technique
based on Fourier analysis. Due to its linear execution time, his approach is
powerful for polygonal surfaces with millions of nodes, for example, one
captured by using a range scanner. A node is iteratively moved to a suitable
position on a line connecting a node and the barycenter of its neighboring
nodes. The suitable positioning is determined so as to avoid shrinkage of
the entire shape. Basically, Taubin’s approach is suitable for removing
noise from a given initial shape without causing shrinkage.

The main difference between our approach and those of Mallet and
Taubin is that in our approach curvature variation is used as a measurement
of minimization. Curvature is a natural measurement of fairness;
consequently our approach produces a fairer shape than theirs.

Welch and Witkin [26] also proposed a mesh-based modeling method
for surfaces with arbitrary topology. After defining a local surface equation
in the neighborhood of each node, which fits the latter’s neighboring nodes
in the least-square sense, they minimized a fairness norm based on
curvature, which is calculated from the local surface. The local surface is
temporarily used to evaluate the curvature at a node, and the final outputs
are only node positions, not surfaces of faces. In the sense that curvature is
adopted as a fairing measurement, our approach is similar to theirs.
However, their approach has to solve a 5× m least-square linear system
(where m is the number of neighboring nodes) for each node at each
iteration. This is a time-consuming process if the number of nodes is large.

2.2 Finite-Element Approaches for Surface Modeling

In comparison with finite-difference approaches, finite-element
approaches generally yield a higher-quality surface and generate an explicit
surface equation of each face, while their computational time is more
expensive.

Celniker and Gossard's approach [5] generates a C1 continuous
surface by using a finite-element technique. They applied Zienkiewicz's

shape function [27], which was originally proposed for the finite element
analysis, to attain C1 continuity in surface modeling. Their approach
minimizes a weighted combination of the energy factors of a membrane
and a thin plate.

Welch and Witkin [25] also proposed an approach very similar to that
of Celniker and Gossard, although the former has more general
formulations for both energy factors and shape control constraints.

Moreton and Sequin [19] presented a different type of finite-element
approach in which they use biquintic Bezier patches and a fairness norm
based on measures of curvature variation. Their approach produces the
most impressive surface, but it is too expensive for use in an interactive
environment.

2.3 Other Applications Using Fairing

Halstead and his colleagues [10] provided a solution to the problem
that Catmull-Clark's subdivision surface scheme [4] gives a shrunken
surface without interpolating given control points. In their process, a
fairness factor proposed by Celniker and Gossard is used in conjunction
with the Catmull-Clark scheme. The target of Eck and Hoppe's work [7] is
to generate tensor product surfaces from scattered points. They use a thin
plate as a fairness factor to remove undulations in surfaces. Levy and
Mallet [15] applied their discrete smooth interpolation approach [16][17] to
the non-distorted texture-mapping problem. Koch and his colleagues [14]
applied the thin-plate approach to a system for simulating facial surgery,
and DeCarlo and his colleagues [6] applied the thin-plate approach to
geometric modeling of human faces. As can be seen in the above literature
in this subsection, fairness factors are widely used in the area of CG and
CAD alongside factors unique to each study, which depend on their
applications. Our approach has possibility to be applied for such
applications.

3. Definition of the Discrete Spring Model:
V-Spring

Figure 1 shows a planar curve and its normal lines at some sampling
points on the curve. Consider the normal lines at two neighboring sampling
points Pi and Pj. For a curvature continuous curve, if Pi approaches Pj, the
intersection point H of the normal lines converges to a center of curvature
at Pj [3].

Therefore, our idea is to attach a linear spring, as shown in Figure 2(A),
to each normal line of a node consisting in a polygonal curve (surface). The
linear spring works to keep equal the spring lengths ||Pi - H|| and ||Pj - H|| of a
V-shape formed by Pi, H, and Pj. The spring length approximately
represents a curvature; therefore, the action to keep equal the spring length
is equal to minimize variation in curvature.

Suppose node Pj be fixed by a constraint. If length ||Pi - H|| is smaller than
||Pj - H||, as shown in Figure 2(A), node Pi moves to a new position along
the normal Ni in the direction to enlarge length ||Pi - H|| to the size of ||Pj - H||.
In contract, if ||Pi - H|| is larger, node Pi moves to a new position along the
normal Ni in the direction to shorten length ||Pi - H|| to the size of ||Pj - H||. In
a stable configuration, Pi and Pj are considered to be on a circular arc
whose center is at H and whose curvature radius is ||Pj - H|| (=||Pi + dPi - H||).

Because of this V-shaped configuration of virtual springs, our spring
model is named "V-Spring."

 3

Pi

Nj Ni

Pj

H

Figure 1: Planar curve and normal lines on some sampling points.

 Here we formally define a displacement dPi, from a current position to a
new position, of a node Pi by the force of the spring model under the
supposition that Pj is fixed. Let Pi and Pj be two nodes, and let Ni and Nj, be
unit normal vectors associated with the nodes, respectively. We assume an
inner product dot(Ni, Nj) to be positive; therefore, if two normal vectors
with their negative inner product are given, let either Ni or Nj be the
direction reversed vector. An intersection of the two normal lines is
denoted by H (see Figure 2(A)). Let ti and tj be real values satisfying:

.

,

jjj

iii

t

t

NHP

NHP

=−
=− (1)

|ti| and |tj| correspond to the distances ||Pi - H|| and ||Pj - H||, respectively,
because Ni and Nj are unit vectors. We define the displacement dPi of node
Pi by our spring model as:

 () .iiji tt NdP −= (2)

(tj - ti) in the equation is calculated as follows. For the equation that H is
deleted from Equation (1), by calculating inner products with Ni and Nj,
following equations are obtained.

 () ()()
() ()() 0.,dot

,0,dot

=−+−
=−+−

jjjiiij

ijjiiij

tt

tt

NNNPP

NNNPP (3)

By solving Equation (3) in terms of ti and tj:

 () ()() ()
() ()() (),)(cos1)cos(,dot

,)(cos1)cos(,dot
2

2

aat

aat

jiijj

jiiji

−+−−=

−+−−=

NNPP

NNPP

where cos(a) = dot(Ni, Nj). Consequently, (tj - ti) in Equation (2) is
determined as:

 () ()() ().)cos(1,dot att jiijij ++−=− NNPP (4)

Therefore, Equation (2) is written as:

 () ()()
() .

,dot1

,dot
i

ji

jiij
i N

NN
NNPP

dP

+

+−
= (5)

The denominator of Equation (4) is always non-zero value, because cos(a)
(=dot(Ni, Nj,)) is assumed to be positive. One may consider from Figure
2(A) that numerical error happens when two normal lines are parallel

because of missing of H. However, Equation (5) does not use H in
direct; therefore our spring model is stable even for the case of parallel
normal lines.

In case of a planar curve, normal lines along Ni and Nj always have an
intersection. However, if we consider a non-planar curve or a surface,
normal lines do not always intersect at a point. Therefore, we can not use
Equation (1) as they are for the non-planar cases. Instead of an intersection
point H in Equation (1), we use Hi and Hj which are feet of the shortest line
segment connecting two normal lines (see Figure 2(B)). Then, for
non-planar cases, we modify Equation (1) to the following equations:

.

,

jjjj

iiii

t

t

NHP

NHP

=−
=− (6)

For non-planar cases, the equations corresponding to Equation (3) are:

 () ()()
() ()() 0.,dot

,0,dot

=−
=−

jij

iij

NHH

NHH (7)

By solving Equation (7), (tj - ti) in Equation (2) is derived as the same
equation as Equation (4).

Pi

Pj

Nj

Ni

HiHj

dPi

Pi

(B)

Pi

Nj

NiPj

H

dPi

Pi

(A)

Figure 2: Definition of the spring model. (A) Displacement dPi for a
planar curve. (B) Displacement dPi for a non-planar curve or a
surface.

4. Curve/Surface Modeling Using a Discrete
Spring Model

4.1 Overview of the Algorithm

A polygonal surface is defined as a pair of a set of nodes Pi (i = 1, ..., n),
and a set of polygonal faces. We define neighboring nodes Pj (j = 1, 2, …,
m) of Pi to be a set of nodes connected to Pi by polygonal edges.

Our algorithm can be classified as an iterative method of Gauss-Seidel
type. The positions and normals of nodes are updated in each iteration, and
the iterations are continued until the termination condition is satisfied.
Figure 3 shows an overview of our algorithm.

 4

Let Pi be the position of the i-th node
Let n be the number of nodes
While(termination condition is not satisfied){
 For(all nodes Pi (i = 1, ..., n)){
 Step 1: Calculate pseudo-normal Ni
 Step 2: Calculate displacement dPi caused
 by the force exerted by V-Spring
 Step 3: Calculate displacement dPu, i caused
 by the force for regularizing node distribution
 Step 4: Pi = Pi + (dPi + dPu, i)
 }
}
Figure 3: Overview of the algorithm.

The following subsections 4.2, 4.3, and 4.4 describe Steps 1, 2, and 3 in

Figure 3, respectively. In Section 4.5 we describe several constraints. After
describing the termination condition in Section 4.6, we give a method for
reducing an execution time in Section 4.7. Up to Section 4.7, our
discussion concerns surface modeling. Section 4.8 extends the discussion
to curve modeling.

4.2 Pseudo-normal Calculation

The first step of the algorithm is to calculate a unit normal vector Ni for
each node Pi of a polygonal surface (Step 1 in Figure 3). The polygonal
surface is a discrete model; therefore, the unit normal vector must be
calculated only approximately. In our implementation, we calculate the unit
normal Ni by averaging the normals of polygonal faces adjoining to the
node.

There are more sophisticated ways to calculate the normal. For example,
one way is to calculate the normal from a sphere fitted to the target node
and its neighboring nodes in the least-square sense. However, the way is
more time consuming and fails when the target node and its neighboring
nodes are on the same plane or the neighboring nodes are placed to have
the target node a saddle point. Another way, used by Taubin [23], is
calculate the normal as the average of vectors, each of which is from target
node to one of neighboring nodes. It is the faster way; however, it fails
when the target node and its neighboring nodes are on the same plane.

Our choice is the more basic but the more robust way. In the early phase
of iterations, the normal vector is unreliable; however, as the iterations
proceed, the normal vector converges in the reliable normal of the fair
surface.

4.3 Node Displacement by the Force of V-Spring

Node Pi obtains forces from its neighboring nodes Pj (j = 1, ..., m).
Each force works to keep the edge from Pi to Pj in a circular arc. Weighted
average of the forces makes the node Pi move to a new position along
normal Ni by the displacement dPi (see Figure 4(B)).

The way to calculate the displacement dPij of node Pi by the force of
one neighboring node Pj is as follows. Let Ni and Nj be unit normal vectors
of nodes Pi and Pj, respectively, and let Hi and Hj be feet of the shortest line
segment connecting two normal lines along Ni and Nj, respectively. From
Equation (2) and (4), the displacement dPij is calculated as follows:

 () ,iijij tt NdP −= (8)

 () ()()
() .

,dot1

,dot

ji

jiij
ij tt

NN
NNPP

+
+−

=− (9)

In the same manner, we calculate dPi1, ..., dPim for neighboring nodes. The
final displacement dPi of node Pi is determined by weighted-averaging of
the displacements dPij (j = 1, ..., m) as follows:

 ,
11

∑∑
==

=
m

j

j

m

j

ijji ww dPdP (10)

where wj (j = 1, ..., m) are weights for averaging. In our implementation, the
weight wj is determined by the inverse of the length of the edge connecting
Pi and Pj.

 .)...,,2,1(,1 mjw jij =−= PP

dPi

Ni

Pi

P1

Pm

P2

(B)

Pi
Pi-1 Pi +1

NidPi

(A)

Figure 4: Node displacement by forces exerted by neighboring nodes.
(A) Planar curve case. (B) Surface case.

4.4 Node Displacement for Regularizing Node Distribution

In finite-difference approaches, it is important to maintain the regular
node distribution during the iteration process, because uneven distribution
of nodes results in incorrect estimation of curvature. To obtain the regular
node distribution, we use a variation of Laplacian smoothing operator [11],
which is a popular and effective way to remove the irregularity. The
Laplacian operator moves a node to the barycenter of its neighboring nodes.
However, applying the regular Laplacian operator offsets the displacement
dPi in Equation (8). Therefore, our idea is to use only a component dPu,i,
being vertical to the normal Ni, of the displacement of the Laplacian
operator. Only using the component makes two displacements dPi and
dPu,i being vertical each other. Therefore, the two displacements do not
offset each other. The displacement dPu,i is written as follows:

() .,dot,

,

,0,1

1

,0

,1,0,

iiiuiui

m

j

jiu

iuiuiu

m NNdPdPPPdP

dPdPdP

=−

=

=

∑
=

−

4.5 Constraints

Constraints are considered to be external forces for controlling shape of
a surface. Various kinds of constraints can be considered, depending on the
requirements from applications. In this section, we describe several

 5

important constraints used in surface modeling. We classify the constraints
into two types: direct and indirect constraints.

Direct Constraints

Direct constraints are given directly for a certain node. Major
constraints are:

 - Positional Constraint,
 - Normal Constraint.

The positional constraint fixes a node to a certain position during the
iterations; therefore, Step 2 and 3 in Figure 3 is skipped for the fixed node.
The normal constraint fixes a normal of a node to a certain direction. For
the normal fixed node, the pseudo-normal calculation (Step 1 in Figure 3)
is skipped and the given normal is assigned.

In our approach, positional constraints must be given at least to end
nodes for the case of an open polygonal curve and to boundary nodes for
the case of an open polygonal surface. That is why usage of Laplacian
operator causes the shrinkage of the shape. If it is required to modify the
shape of boundary curves of a surface, start from the modeling of boundary
curves and go on to the modeling of the surface bounded by the boundary
curves.

Indirect Constraints

Indirect constraints do not have a direct connection to a certain node.
During the iterations, connection between the constraints and the nodes is
updated dynamically. One major constraint we introduce here is scattered
points. It is an important application in CAD and CG to generate a smooth
surface fitted to scattered points in least-square sense. In the application, the
constraint by a scattered point works to its closest point on a surface.
Therefore, in our discrete model, we update the connection between the
scattered point and its closest node during the iterations.

We have to modify slightly the algorithm to introduce the indirect
constraints; the modified algorithm is shown in Figure 5. In Figure 5, all the
steps except Step 2 and 5 are the same as in Figure 3.

In Step 2, each scattered point is connected to its nearest node. In
practice, it is not necessary to perform Step 2 at every iteration; once in
every several iterations is enough. To find the nearest node, it is enough to
search neighboring nodes in first and second orders of the previous node
except when performing a first search.

In Step 5, external forces from connected scattered points Vj (j = 1, ..., m)
are applied to a node Pi. The displacement of Pi by Vj is calculated as:

 () ,,dot, iiijjijc k NNPVdP −= (11)

where kj denotes a weight assigned to Vj. The displacement dPc,ij is
interpreted as a component of vector Vj-Pi along the normal Ni. In the same
manner, we calculate dPc,i1, ..., dPc,im for all connected scattered points. The
final displacement of node Pi by forces of its connected scattered points is
determined by weighted-averaging dPc, ij (j = 1, ..., m) as follows:

 ,
11

,, ∑∑
==

=
m

j

j

m

j

ijcjic ww dPdP

where wj (j = 1, ..., m) are weights for averaging. In our implementation, the
weight wj is determined by the inverse of the distance from node Pi to its
foot Qj to the tangent plane at Pi (see Figure 6(B)).

 .)...,,2,1(,1 mjw jij =−= QP

When Qj is identical or very close to Pi, sufficiently large value is assigned
to its wj.

In Equation (11), weight kj is used to take the trade-off between fairing
and keeping proximity to the scattered point Vj. Larger kj approximates Vj
closer.

In the case of a planar curve, least-square fitting is geometrically
interpreted that when a spring is attached to each line from a scattered point
to the nearest point on a curve, the sum of the internal energies of the
springs are minimized (see Figure 6(A)). Our approach is geometrically
interpreted as being to attach a spring to a line from a scattered point to its
foot in the tangent plane at the nearest node (see Figure 6(B)). We therefore
consider that our approach is approximately equivalent to least-square
fitting.

The advantage of our approach is that it can be applied to not only
surfaces with regular topology, such as tensor product surfaces, but also to
surfaces with arbitrary topology. In addition, theoretically, n-sided polygons
such as pentagons or hexagons may be included in the polygonal surface.

Let Pi be the position of the i-th node
Let n be the number of nodes
Let Vi be the i-th scattered point
Let l be the number of scattered points
While(termination condition is not satisfied){
 For(all nodes Pi (i = 1, ..., n)){
 Step 1: Calculate pseudo-normal Ni
 }
 For(all scattered points Vi (i = 1, ..., l)){
 Step 2: Make connection of each scattered point
 to its nearest node
 }
 For(all nodes Pi (i = 1, ..., n)){
 Step 3: Calculate displacement dPi caused
 by the force exerted by V-Spring
 Step 4: Calculate displacement dPu, i caused
 by the force for regularizing node distribution
 Step 5: Calculate displacement dPc, i caused
 by the force exerted by scattered points
 Step 6: Pi = Pi + (dPi + dPu, i + dPc, i)
 }
}
Figure 5: Overview of the fitting algorithm.

Pi

N i

Qm

Q1

Q2 V1

Vm

V2

(A) (B)

Figure 6: Least-square fitting of a planar curve to scattered points. (A)

Geometric interpretation of general least-square fitting. (B) Geometric
interpretation of our fitting approach.

4.6 Termination Condition

To determine when to terminate iterations, the maximum among the
norms of all node displacements is compared with a given threshold e. If
the maximum norm is less than the threshold e, the iterations are
terminated. The size of the displacement depends on the resolution of the

 6

polygonal surface; therefore the displacement should be normalized by the
size of polygonal faces. In our implementation, we normalize the
displacement of each node by the average length of its neighboring edges.
Then the maximum norm of the normalized displacements is compared
with the threshold e.

4.7 Performance Improvement

In iterative approaches of the Jacobi or Gauss-Seidel types, high
frequencies tend to be removed quickly while it takes many iterations to
remove low frequencies. Consequently, if the number of nodes is
extremely large, it takes many iterations to achieve convergence. A
promising way to reduce the execution time is to employ multi-grid
methods [2][9][18]. Kobbelt and his colleagues [13] are positively using
the multi-grid method to model dense meshes. By using the multi-grid
method, a linear execution time can be achieved.

Multi-grid method requires polygonal surfaces with several different
levels of resolutions. Mesh simplification algorithms [1][8][12] [21][24]
can provide the polygonal surfaces with multi-resolutions. For example, let
M1, M2, and M3 be three levels of polygonal surfaces where M1 is the
finest and M3 is the coarsest. The V-cycle multi-grid method applies
iterations for the polygonal surfaces with different levels in the sequence
{M1, M2, M3, M2, M1}. The first-half process, going down from M1 to
M2, is called pre-smoothing, and the second-half process, coming up from
M3 to M1, is called post-smoothing. In the pre-smoothing, some iterations
are performed at each level in order to remove noise. On the coarsest level
M3, a rough shape is predicted by the solution. As the post-smoothing
proceeds, the rough shape approaches the precise shape.

In the post-smoothing, iterations are performed at each level until the
termination condition described in Section 4.6 is satisfied. Our termination
condition is normalized by the resolution; this provides an efficient way of
determining the time at which to move on.

4.8 Extension to Curve Modeling

Basically, the algorithm for curve fairing is the same as for surface
fairing. In each iteration, the node Pi is moved to a new position by forces
exerted by two neighboring nodes Pi-1 and Pi+1 (see Figure 4(A)).

In the case of a planar curve, there is no extended matter from in the
surface case; however, in the case of a non-planar curve, the calculation of
the pseudo-normal Ni is more difficult than in the surface case. From a
sequence of nodes Pi-1, Pi, and Pi+1, we calculate the unit tangent Ti and the
unit binormal Bi as follows:

 ()
() () () () ,

,

1111

1111

iiiiiiiii

iiiii

PPPPPPPPB

PPPPT

−×−−×−=

−−=

+−+−

−+−+

where × denotes the outer product. As the outer product of Bi and Ti, we
calculate the unit principal normal Ni as follows:

 .iiiii TBTBN ××=

If Pi-1, Pi, and Pi+1 are collinear, Bi and Ni are zero vectors; then the
displacement dPi is a zero vector according to Equation (5). The best way
to obtain a fair curve is to apply V-Spring forces in both directions of Bi
and Ni; however, in practice, applying a force only in the direction of Ni
gives a fair curve, even if the problem is a non-planar case.

5. Results

Figure 7 shows a result of fair surface generation by using our algorithm.
Figure 7(A) shows the initial mesh with sharp corners, that is, sudden
change in curvature, while the figures (B) and (C) show the faired results
with two different sets of direct constraints. As seen in the figures, the
algorithm produced fairer surfaces. The surface of Figure 7(B) resulted
when positions of nodes on the inner- and outer-boundaries are kept
unchanged by using the positional constraints. The surface of Figure 7(C)
is generated by constraining normals of the nodes on the inner- and
outer-boundaries, in addition to positions of these nodes. Figure 9 shows
another result of fairing in shaded image.

Figure 8 shows the stability of our algorithm by giving it an extremely
noisy mesh as initial data. We added random noise of large amplitude to
the mesh of Figure 7(A), then processed the noisy mesh by using our
algorithm. Five iterations of pre-smoothing generated a smoother surface
of Figure 8(B). Then the mesh converged to a fair surface of Figure 8(C)
with further processing.

Table 1 shows the execution time of our algorithm measured for meshes
of various resolutions. It says that the time grows approximately linearly to
the complexity of given meshes.

Table 1: Execution time for fair surface generation. The execution time is
measured for the surface shape with the constraints in Figure 7(C). Column
(a) in the table is data for the resolution of Figure 7(C). Column (b), (c), and
(d) are data for different resolutions with the same surface shape. These
data are measured under the following conditions:

CPU: PentiumII 450MHz,
System: WindowsNT4.0,
Threshold e for termination condition: 0.001,
Number of level for multi-grid: 6,
Number of iterations at each level of pre-smoothing: 5.

 (a) (b) (c) (d)
Number of nodes 553 1610 3644 14962
Number of faces (triangles) 985 3018 6983 29316
Execution time (sec) 2.38 13.8 36.4 177.1

 Figure 10 shows results of least-square fitting of polygonal curves by
using indirect constraints as described in Section 4.5. An initial curve
shown by a noisy thin line converged to a smooth curve shown by a thick
line. Node positions of the initial curve are assigned to scattered points. In
Figure 10(A), all weights kj in Equation (11) used to take the trade-off
between fairing and keeping proximity are set to 0.01, while in Figure
10(B) they are set to 0.00001. As seen in the figures, the algorithm
produced fairer curves under the indirect constraints.

6. Summary

This paper presented an algorithm to generate fair polygonal curves and
surfaces based on iterative approach by using a new discrete spring model.
The algorithm produced polygonal curves and surfaces whose local
variation in curvature is minimized.

In our discrete spring model, a linear spring, which length approximately
represents a curvature, is attached along the normal line of each node.
Energy is assigned to the difference of the lengths, that is, difference in
curvature, of nearby springs. Our algorithm then tries to minimize total
energy by iterative approach. The algorithm accepts various constraints,

 7

such as positional, normal, and least-square constraints, so that useful
surface models can be generated for computer graphics, computer aided
design, and other geometric modeling applications.

The implementation of the algorithm is easy due to its geometrically
intuitive interpretation. The results of experiments showed that the
algorithm generated fair surfaces that satisfy positional, normal, and other
constraints. The algorithm was robust under the presence of positional
noise in the initial polygonal data. It also exhibited that computational costs
increased approximately linear to the number of nodes consisting in a
polygonal curve (surface).

In our experience, the algorithm is significantly robust and stable;
however, the convergence of the algorithm should be proved in the future
work. The target of this paper is to apply our spring model to shape
modeling; however, fairing problem is not limited to the application.
Applying our spring model to the other applications is also the future work.

References
[1] N. Amenta, M. Bern, and M. Kamvysselis, A New Voronoi-Based Surface Reconstruction

Algorithm, Computer Graphics (SIGGRAPH'98 Conference Proceedings), pp. 415-421,
1998.

[2] W. Briggs, A Multi-grid Tutorial, SIAM, Philadelphia, 1977.

[3] M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.

[4] E. Catmull and J. Clark, Recursively Generated B-Spline Surfaces on Arbitrary Topological
Meshes, Computer Aided Design, 10(6), pp. 350-355, 1978.

[5] G. Celniker and D. Gossard, Deformable Curve and Surface Finite-Elements for
Free-Form Shape Design, Computer Graphics (SIGGRAPH'91 Conference Proceedings),
pp. 257-266, 1991.

[6] D. DeCarlo, D. Metaxas, and M. Stone, An Anthropometric Face Model using Variational
Techniques, Computer Graphics (SIGGRAPH '98 Conference Proceedings), pp. 67-74,
1998.

[7] M. Eck and H. Hoppe, Automatic Reconstruction of B-Spline Surfaces of Arbitrary
Topological Type, Computer Graphics (SIGGRAPH '96 Conference Proceedings), pp.
325-334, 1996.

[8] M. Garland and P. S. Heckbert, Surface Simplification Using Quadric Error Metrics,
Computer Graphics (SIGGRAPH '97 Conference Proceedings), pp. 209-216, 1997.

[9] W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, New York,
1985.

[10] M. Halstead, M. Kass, and T. DeRose, Efficient, Fair Interpolation using Catmull-Clark
Surfaces, Computer Graphics (SIGGRAPH '93 Conference Proceedings), pp. 35-44, 1993.

[11] K. Ho-Le, Finite Element Mesh Generation Methods: A Review and Classification,
Computer Aided Design, 20(1), pp. 27-38, 1988.

[12] H. Hoppe, Progressive Meshes, Computer Graphics (SIGGRAPH '96 Conference
Proceedings), pp. 99-108, 1996.

[13] L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel, Interactive Multi-Resolution
Modeling on Arbitrary Meshes, Computer Graphics (SIGGRAPH '98 Conference
Proceedings), pp. 105-114, 1998.

[14] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Buren, G. Fankhauser, and Y. I. H. Parish,
Simulating Facial Surgery Using Finite Element Methods, Computer Graphics
(SIGGRAPH '96 Conference Proceedings), pp. 421-428, 1996.

[15] B. Levy and J. L. Mallet, Non-Distorted Texture Mapping for Sheared Triangulated
Meshes, Computer Graphics (SIGGRAPH '98 Conference Proceedings), pp. 343-352,
1998.

[16] J. L. Mallet, Discrete Smooth Interpolation, ACM Transactions on Graphics, 8(2),
pp121-144, 1989.

[17] J. L. Mallet, Discrete Smooth Interpolation in Geometric Modelling, Computer Aided
Design 24(4), 1992, pp. 178-191.

[18] C. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM,
Philadelphia, 1989.

[19] H. P. Moreton and C. H. Sequin, Functional Optimization for Fair Surface Design,
Computer Graphics (SIGGRAPH '92 Conference Proceedings), pp. 167-176, 1992.

[20] D. F. Rogers and N. G. Fog, Constrained B-Spline Curve and Surface Fitting, Computer
Aided Design, 21(10), pp. 641-648, 1989.

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of Triangle Meshes,
Computer Graphics (SIGGRAPH '92 Conference Proceedings), pp. 65-70, 1992.

[22] R. Szeliski and D. Tonnesen, Surface Modeling with Oriented Particle Systems, Computer
Graphics (SIGGRAPH '92 Conference Proceedings), pp. 185-194, 1992.

[23] G. Taubin, A Signal Processing Approach to Fair Surface Design, Computer Graphics
(SIGGRAPH '95 Conference Proceedings), pp. 351-358, 1995.

[24] G. Turk, Re-Tiling Polygonal Surfaces, Computer Graphics (SIGGRAPH '92 Conference
Proceedings), pp. 55-64, 1992.

[25] W. Welch and A. Witkin, Variational Surface Modeling, Computer Graphics (SIGGRAPH
'92 Conference Proceedings), pp. 157-166, 1992.

[26] W. Welch and A. Witkin, Free-Form Shape Design Using Triangulated Surfaces,
Computer Graphics (SIGGRAPH '94 Conference Proceedings), pp. 247-256, 1994.

[27] O. C. Zienkiewicz, The Finite Element Method, Third Edition, McGraw-Hill, United
Kingdom, 1977.

Figure 7: (A) Initial mesh. (B) Deformed result from (A) under the positional constraints on inner- and outer-boundary nodes. (C) Deformed result
from (A) under the positional and normal constraints on inner- and outer-boundary nodes. Arrows on boundary nodes show the directions of normal
constraints.

 8

Figure 8: Stability of the algorithm. (A) Initial mesh with random noise on the nodes. (B) Shape (A) after five iterations of pre-smoothing on the
finest level. (C) Shape (A) after full convergence.

Figure 9: Shaded image of a deformed result. (A) Initial mesh. (B) Deformed result from (A) under the positional and normal constraints on nodes of
upper-, lower-, and inner-boundaries.

Figure 10: Least-square fitting of a polygonal segment to scattered points. A noisy thin line represents an initial segment. A smooth thick line represents a
converged segment. Node positions of the initial segment are given as scattered points. (A) All weights kj in Equation (11) are set to 0.01. (B) All weights
kj are set to 0.00001.

