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Abstract

To generate fair curves and surfaces is an importart todl in the area of
computer graphics (CG), computer-aided desgn (CAD), ad other
geomeric modding gpplications In this pgper, we presat an
iteration-based dgorithm to generate fair polygond curves and surfaces
thet is based on anew discrete Soring modd. In the spring modd, allinear
spring, which length approximatdy represents a curvaure, is atached
dong the normd line of each polygon node. Energy is assigned to the
difference of the lengths that is difference in curvature, of nearby orings
Our dgoarithm then minimizes totd energy by iterdive gpproach. Our
dgorithm accepts as inputs (1) an initid polygond curve (surface), which
conssts of a st of polygond segments (faces) and a set of nodes as
polygon-vertices, and (2) condraints for contralling the shape. The outputs
are polygond curve (urface) in smocth shape. We dso describe amethod
for improving performance of our iterative process into a linear execution
time. Our dgorithm provides a tod for far curve and surface design in
interactive environment.

Keywords geometric modding, far surface desgn, polygond modds,
energy minimization

1. Introduction

The purpose of this paper is to provide an dgorithm to generate fair
curves and surfaces used in the fidds of computer graphics (CG) ad
computer-aided design (CAD). Generation of fair shapesisamgor topicin
shape design [5][20][17][29][22][23][24][26]. It is dso required in other
gpplications such as smoath shepefitting to scattered points[7][20], texture
mapping [15], and so on.

Curves and surfaces tregted in this pgper are represented in polygond
form. The inputs of the dgarithm are (1) an initid polygond curve
(surface) consgting of a st of nodes and a st of polygond ssgments
(faces), and (2) congtraints for contralling the shgpe. The dgorithm moves
the nodes to suitable positions minimizing curvature variaion under the
given condraints. The outputs are polygond curve (surface) in smocth
shgpe The polygond surfaces tregted in this pgper are not limited to
tianguar meshes Quadiilaed meshes ae dso avaladle and,
theoreticaly, n<dded faces uch as pentagon or hexagon may dso be
included.

Our dgorithm is dassfied into iterative gpproach of GaussSeadd
type: node postions are iteraively updated under the given condraints To
update the node positions, two types of spring forces are gpplied to each

node (1) aforce ating in the normd direction to optimize the curvature
vaiaion and (2) aforcein the verticd direction of the normd to optimize
node digtribution. Main idea of this paper liesin the discrete spring modd
producing the former force The gwing modd works to minimize
curvaure vaiation. Curvaure is a naurd messurement of fairmess
therefore, our spring mode produces fair curves and surfaces.

As Taubin [23] points out, mos energy-minimization gpproaches are
expendgve in terms of time and space. This paper do provides amethod
for achieving alinear execution time.

The remainder of the paper is organized as fdlows. In Section 2, we
summarize previous work. After defining a discrete goring modd in
Section 3, we present a curve (surface) modding dgorithm basad on the
spring modd in Section 4. Section 5 show some results obtained by using
the agorithm, and Section 6 summarizes the paper.

2. Previous Work

A consderable anount of work has been done on fair surface modding.
We condder that most previous work reaed to polygond surface
modding can be dassfied into two types finite-difference goproachesand
finite-dement approaches Our goproach bdongsto the former categary. In
both types of gpproaches, node postions are updated iteraivdy or ae
cdculated by solving a large sparse linear system. In the finitedifference
gpproaches, vaues are evduated only a nodes, while in the finite-dement
gpproaches, vaues areevauated over faces by usng numerical integration.
One key-factor to distinguish severd gpproachesin a category isthe spring
mode they employ to move the node positions.

Irrespective of the dassfying types when the diglacement of
deformation islarge, that is, when the shepe of theinitid polygond surface
is vay different from the find shape the deformaion reduces to the
norHinear problem. Therefore, once solving a gparse linear sysem does
not yied asuitable answer; the sysem must be solved iteratively. The cases
of large deformation gppear often in the process of surface desgn. To
construct arobust dgorithm for such cases, we sdlect iterative approach.

Two following subsections survey bath types of gpproaches targeting
surface modding. In the third subsection, some other applications thet use
the fairing as a part of their algorithm are also surveyed.

2.1 Finite-Difference Approachesfor Surface Modeling

Lgpladan smoothing is the eesest way to generate afair surface. This
gpproech iteratively moves the postion of a node to the barycarter of its
neighboring nodes. It has the characteridtic that the area of the surface is



minimized under given condraints. This gpproach is often usad toimprove
the geometricd irregularity of amesh in thefidd of finite-dement meshing
[11]. But when this gpproach is gpplied to surface moddling, the problem
aisssthat ashap tip is generated in the neighborhood of anodefixed by a
condraint. Moreover, it is not possble to control normas by giving norma
congtraints.

For surface modding, Szdiski and Tonnesen [22] used a patide
system, in which each partideis defined by itsposition and normd, and the
population of patides is contralled automaticdly. To obtan a farly
triangulated surface, they minimized the weighted sum of three energy
factors (1) coplanaity, (2) co-normdity, and (3) co-circulaity. The
coplanarity condition causes neighboring nodes to lie on each othe’s
tangent plane, the co-normdity condition modifiesirregular twisting of two
neighboring nodes, and the co-draularity condition presarves condant
curvature on an edge connecting neighboring nodes. In comparison with
ther approach, one factor by our soring modd provides asmilar effect to
their three factors.

Mdlet [16][17] provided a generd formulation for discrete surface
interpolation with many adjustable parameters When harmonic weghting
[17] is sHected among his proposed parameters - as in his reaults -, his
gpproach minimizesthe sum of the distances, each of whichisfrom anode
to the barycenter of its neighboring nodes.

Taubin [23] proposed a far surface desgn goproach in which
high-frequency terms such as noise are removed by using the technique
based on Fourier andysis. Dueto its linear execution time, hisgpproach is
powerful for polygond surfaces with millions of nodes, for example, one
captured by usng arange scanner. A nodeisiteraively moved to asuitable
position on aline connecting a node and the barycenter of its neighboring
nodes. The uitable poditioning is determined o as to avoid shrinkage of
the entire shepe Basicdly, Taubin's approach is sitable for removing
noise from agiven initial shape without causing shrinkage.

The main difference between our gpproach and those of Mdlet and
Taubinisthet in our goproach curvature variaion is used asamessurement
of minimization. Curvature is a naurd messurement of farmess
consequently our gpproach produces afairer shape than theirs.

Welch and Witkin [26] aso propased a meshrbased modding method
for surfaces with arbitrary topology. After defining aloca surface equetion
inthe neighborhood of each node, which fitsthe latter’ s neighboring nodes
in the least-square sense, they minimized a famess norm based on
curvaure, which is cdculated from the locd surface The locd surface is
temporarily used to evduate the curvature & anode, and the find outputs
are only node pasitions, not surfaces of faces In the sensetha curvaiureis
adopted as a fairing messurement, our goproach is Smilar to theirs
However, their goproach hes to solve a5” m lesst-souiare linear system
(where mis the number of neighboring nodes) for each node a each
iteration. Thisisatime-consuming processif thenumber of nodesislarge

2.2 Finite-Element Approachesfor Surface Modeling

In compaison with finitedifference  gpproaches,  finitedement
approaches generdly yield ahigher-qudlity surface and generate an explicit
surface equetion of each face, while ther computationd time is more
expensive.

Cdniker and Gossad's gpproach [5] generates a C1 cortinuous
surface by udng a finitedement technique. They gpplied ZienkiewicZs

shape function [27], which was origindly propased for the finite dement
andyss to atan C1 continuity in surface modding. Their gpproach
minimizes a weighted combination of the energy factors of a membrane
and athin plate.

Welch and Witkin [25] dso propased an goproach very similer to thet
of Cdniker and Gossad, dthough the former has more generd
formulations for both energy factors and shape control constraints.

Moreton and Sequin [19] presarted a differant type of finitedement
gpproach in which they use biquintic Bezier patches and a faimess norm
based on mesaures of curvaure variaion. Ther goproach produces the
modt impressive surface, bt it is too expensve for use in an interactive
environment.

2.3 Other ApplicationsUsing Fairing

Hastead and his colleagues [10] provided a solution to the problem
that Camull-Clark's subdivison surface scheme [4] gives a shrunken
surface without interpolating given control points In ther process, a
farmess factor proposed by Cdniker and Gossard is used in conjunction
with the Camull-Clark scheme. The target of Eck and Hoppeswork [7] is
to generate tensor product surfaces from scattered points. They use athin
plae as a famess factor to remove unduldions in surfaces. Levy ad
Madlet [15] gpplied ther discrete smoath interpolation goproach [16][17] to
the non-distorted texture-mapping problem. Koch and his colleagues [14]
gpplied the thin-plate approach to a sysem for smulaing facid surgery,
and DeCalo and his colleegues [6] applied the thin-plate goproach to
geomelric modding of human faces As can be seen in the above literature
in this subsection, faimess factors are widdy used in the area of CG and
CAD dongsde factors unique to eech study, which depend on ther
applications Our approach has posshility to be goplied for such
applications.

3. Definition of the Discrete Spring Modd:
V-Spring

Figure 1 shows a planar curve and its normd lines & some sampling
pointson the curve. Congder the normd linesa two neighboring sampling
points P and P.. For a curvature continuous curve, if P gpproaches P, the
intersection point H of the normd lines converges to a center of curvature
a P [3].

Therefore, our ideais to atach alinear oring, as shown in Figure 2(A),
to each normd line of anode condgting in apolygond curve (surface). The
linear spring worksto kesp equd thespring lengths P - H|and [P - H| of a
V-shgpe formed by P, H, ad P. The sring length gpproximatdy
represents a curvature; therefore, the action to kesp equa the spring length
isequa to minimize variaion in curvature.

Suppase node P befixed by acondraint. If length [P - H|issmdler then
[P - HJ, as shown in Figure 2(A), node P moves to a new postion dong
thenorma N inthedirection to enlargelength |P: - H| to the size of [P - HJ.
In contrat, if [P - H| islarger, node P moves to anew pastion dong the
normd Ni in the direction to shorten length |P: - H| tothesize of |P, - H|. In
a gable configuration, P and P, are conddered to be on a draular ac
whose center isat H andwhosecurvatureradiusis|P; - H| (5]P. +dPi - H)).

Because of this V-shaped configuration of virtud springs, our spring
model is named "V-Spring.”
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Figure 1: Planar curve and norma lines on some sampling points.

Herewe formdly define adisplacement dP,, from acurrent positiontoa
new pagtion, of a node R by the force of the aring modd under the
suppostionthat P isfixed. Let P and P, betwo nodes, and let Ni and N;, be
unit normd vectors associated with the nodes, respectively. Weassumean
inner product dot(Ni, N;) to be postive; therefore, if two normd vectors
with their negdive inner product are given, let ether Ni or Nj be the
direction reversad vector. An intersection of the two normd lines is
denoted by H (see Figure 2(A)). Let ti and tj be red values satisfying:

Pi- H =tiNi, )
Pi- H =t N;.

[f] and [ corespond to the distances |P: - H| and |P; - H, respectively,
because Ni and N; are unit vectors We define the digolacement dP: of node
Pi by our spring modd as

dP = (t' - ti) Ni. @

(t - t) in the equation is cdculated as falows For the equetion thet H is
deleted from Equation (1), by cdculaing inner products with Ni and N;,
following equations are obtained.
dot((Pj- Pi+tiNi- tN;), (Ni))=0, )
dOt((Pj - Pi+tiNi - thj), (Nj)) =0.

By solving Equation (3) in terms of ti and t;:

t=dot((P;- P), (- Ni+cos(@)Ny)) / (- cos’(a)),

fj :dot((Pj - Pi), (- cos(a) Ni +Nj)) / (1- cosz(a)),
where cos(@) = dot( Ni, N; ). Consequently, (t - t) in Equation (2) is

determined as:

ti-ti= dOt((Pj - Pi), (Ni + Nj)) / (1+ cos(a)). C)

Therefore, Equation (2) iswritten as:

azlot((P; - Pi), (Ni +N;
=g t((1F:r doFt’()N(i,'\l N) 2

The denominator of Equation (4) is adways non-zero vaue, because cos(a)
(=dot(Ni, Nj,)) is assumed to be positive. One may consder from Fgure
2(A) that numerica eTor happens when two normd lines are pardld

Ni. ®

o
2

because of missing of H. However, Equetion (5) does not ue H in
direct; therefore our soring modd is stable even for the case of pardld
normal lines.

In cage of aplanar curve, normd lines dong Ni and Nj dways havean
intersection. However, if we condder a nonplanar curve or a surface,
normd lines do nat dways intersect a a point. Therefore, we can not use
Equation (1) asthey arefor the non-planar cases. Ingtead of an intersection
point H in Equation (1), we use Hi and Hj which arefest of the shortest line
ssgment connecting two normd  lines (see FHgure 2(B)). Then, for
non-planar cases, we modify Equation (1) to the following equations:

Pi- Hi =ti N;, ©)
Pi- Hj =t N;.

For non-planar cases, the equations corresponding to Equation (3) are:
dot((H; - Hi), (Ni)) =0, @
dot((H; - Hi), (N;))=0.

By solving Equation (7), (tj - t) in Equation (2) is derived as the same
equation as Equation (4).

N;

®)

Figure 2: Definition of the spring modd. (A) Displacement dP: fora
planar curve. (B) Displacement dPi for anon-planar curve or a
surface,

4. Curve/Surface Modeling Using a Discrete
Spring Mode

4.1 Overview of the Algorithm

A polygond surfaceis defined asapar of asst of nodesP (i =1, ..., n),
and ast of polygond faces We define neighbaring nodes Py (=1, 2, ...,
m) of Pi to be a set of nodes connected to Pi by polygona edges.

Our dgorithm can be dassfied as an iterative method of Gauss-Sadd
type. The positions and normals of nodes are updated in eech iteration, and
the iterations are continued until the termination condition is satified.
Figure 3 shows an overview of our agorithm.



Let Pi bethe position of thei-th node
Let n bethe number of nodes
While( termination condition isnot satisfied )}{
For(dl nodesPi (i=1, .., n)
Step 1: Calculate pseudo-norma Ni
Step 2: Calculate displacement dPi caused
by the force exerted by V-Spring
Step 3: Calculate displacement dPu, i caused
by the force for regularizing node distribution
Sep4: Pi=Pi + (dPi + dPy,i)
}

}
Figure 3: Overview of the dgorithm.

Thefollowing subsections 4.2, 4.3, and 4.4 describe Steps 1, 2, and 3in
Figure 3, respectivdy. In Section 4.5 we destribe severd condraints After
describing the termination condition in Section 4.6, we give amethod for
reducing an execution time in Section 4.7. Up to Section 4.7, our
discusson concerns surface modding. Section 4.8 extends the discusson
to curve modding.

4.2 Pseudo-normal Calculation

Thefirg gep of the dgorithm is to cdculate a unit normd vector Ni for
each node P, of apolygond surface (Step 1in Fgure  3). The polygond
urface is a disorete modd; therefore, the unit normal vector must be
cdculated only approximately. In our implementation, we cdculate the unit
norma Ni by averaging the normas of polygond faces adjoining to the
node.

There are more sophidticated waysto cdculate the normd. For example,
one way isto cdculate the normd from a sphere fitted to the target node
and its neéghboring nodes in the least-square sense. However, the way is
more time consuming and fails when the target node and its neighboring
nodes are on the same plane or the neighboring nodes are placed to have
the target node a saddle point. Another way, usad by Taubin [23], is
cdculate the normd asthe average of vetors, each of which isfrom target
node to one of neghboring nodes. It is the fester way; howeve, it fals
when the target node and its neighboring nodes are on the same plane.

Our choiceisthe more basc but the more rabust way. Inthe early phese
of iterations, the normd vector is unrdidble however, as the iterdions
procesd, the normd vector converges in the relisble normd of the far
surface,

4.3 Node Displacement by the Force of V-Spring

Node P obtains forces from its neighboring nodes P, (j = 1, ..., m).
Each force worksto keep the edge from P to P, in adrcular arc. Weighted
average of the forces makes the node P move to a new pastion dong
norma Ni by the displacement dP: (see Figure 4(B)).

The way to cdculate the digdlacement dPj of node P by the force of
one neighboring node P isasfallows Let Ni and Nj be unit normd vectors
of nodes P and P;, respectively, and let Hi and Hj befeet of the shortest line
segment connecting two normad lines dong Ni and Nj, respectively. From
Equation (2) and (4), the displacement dP; is cdculated asfollows:

drj = (tj - ti) Ni, ®

dot((P - 1) (Ni+ i) ©)

b ot (N )

In the same manner, we cdculate dPy, ..., dPim for neighboring nodes The
find displacement dP: of node P is determined by weighted-averaging of
the displacements dP;j (j = 1, ..., m) asfollows:

dPi=Q wdry [ g w, (10)
j=1 j=1

wherew (j = 1, ..., m) aeweghtsfor averaging. In our implementation, the
weight w is determined by theinverse of the length of the edge connecting
Pi and P;.

w=1/|P- P, (j=12..,m).

dP dpi

(@]

Figure 4: Node displacement by forcesexerted by neighboring nodes.
(A) Planar curve case. (B) Surface case.

4.4 NodeDisplacement for RegularizingNodeDigribution

In finite-difference goproaches it is important to maintain the regular
node distribution during the iteration process, because uneven digtribution
of nodes resiits in incorrect estimation of curvature. To obtain the regular
node distribution, we use avariation of Laplacian smoothing operator [11],
which is a popular and effective way to remove the irregulaity. The
Lgpladian operator moves anodeto the barycenter of its neighboring nodes.
However, goplying the regular Laplacian operator offsets the displacement
dP: in Equetion (8). Therefore, our idea is to use only a component dPuj,
being veticd to the normd Ni, of the digdlacement of the Lgpladian
operator. Only using the component makes two displacements dP ad
dPu,; being verticd each other. Therefore, the two digolacements do not
offset each other. The displacement dPu,i iswritten asfollows:

dPu,i = dPuO,i - dPul,i,

0
dPuo,i :ﬂ‘a Pj/m?- Pi, dPui = dot(dPuo,i, Ni) Ni.

=

a

45 Congraints

Condraints are conddered to be externd forces for contralling shape of
asurface Vaiouskinds of condraints can be consdered, depending on the
requirements from gpplicaions In this section, we desribe severd



important condraints used in surface modding. We dassify the condraints
into two types: direct and indirect constraints.

Direct Congraints
Direct condrants are given diretly for a catan node Mgor

congraints are;

- Positional Constraint,

- Norma Congtraint.
The postiond condraint fixes a node to a certain postion during the
iterations; therefore, Step 2 and 3 in Figure 3 is skipped for the fixed node.
The normd congtraint fixes anormd of anode to a certain direction. For
the normd fixed node, the pseudo-normd calculation (Step 1 in Fgure 3)
is skipped and the given normd is assigned.

In our gpproach, postiond condraints must be given a least to end
nodes for the case of an open palygond curve and to boundary nodes for
the case of an open polygond surface. That is why usage of Lapladian
operator causes the shrinkage of the shape. If it is required to modify the
shape of boundary curves of asurface, sart from the modeling of boundary
curves and go on to the modding of the surface bounded by the boundary
curves.

Indirect Congraints

Indirect congraints do not have a direct connection to a certain node.
During the iterations, connection between the condraints and the nodesis
updated dynamicdly. One mgor condraint we introduce here is scattered
points. It isan important gpplication in CAD and CG to generate asmooth
surfacefitted to scattered pointsin least-square sense. In the gpplication, the
condraint by a scatered point works to its dosest point on a surface
Therefore, in our discrete modd, we update the connection between the
scattered point and its closest node during the iterations.

We have to modify dightly the dgorithm to introduce the indirect
congraints, the modified dgorithm isshownin Figure 5. InFgure 5, dl the
steps except Step 2 and 5 arethe same asin Figure 3.

In Sep 2, each scatered point is connected to its nearest node In
practice, it is not necessary to peform Sep 2 & every iteration; once in
evary svad iterdions is enough. To find the neerest node, it isenough to
search neighboring nodes in firg and second orders of the previous node
except when performing afirst search.

In Sep 5, externd forces from connected scattered points Vi (j = 1, ..., m)
are gpplied to anode Pi. The displacement of Pi by Vj iscaculated as:

dPe,ij = ki dot (Vi - Pi, Ni) Ni, (1)

where k denotes a weight assigned to Vi. The digdlacement dPejj is
interpreted as acomponent of vector Vi-P: dong the norma Ni. Inthe same
manner, we cdculae dPjy, ..., dPeimfor al connected scattered points The
find displacement of node P by forces of its connected scattered pointsis
determined by weighted-averaging dPc,ij (j = 1, ..., m) asfollows:

dPe,i :é W dPc,ij é w,
= =
wherew (j = 1, ..., m) aeweightsfor averaging. In our implementation, the
weight wj is determined by the inverse of the distance from node R to its
foot @ to the tangent plane at P: (see Figure 6(B)).

w=1/|P-Qf (j=12..m).

When Q isiderticd or very doseto P, sufficiently large valueis assigned
toitsw.

In Equation (11), weight k is used to take the trade-off between faring
and keeping proximity to the scattered point V. Larger k gpproximates V
closer.

In the case of a planar curve, least-square fitting is geometricaly
interpreted thet when agoring is attached to each line from ascattered point
to the neares paint on a curve, the sum of the intemd energies of the
springs are minimized (see Fgure 6(A)). Our gpproach is geometricaly
interpreted as being to atach a spring to aline from ascattered point to its
foot in the tangent plane & the nearest node (see Figure 6(B)). We therefore
consder that our approach is goproximately equivdent to lesst-square
fitting.

The advantage of our approach is that it can be gpplied to not only
surfaces with regular topalogy, such as tensor product surfaces, but dso to
surfaceswith arbitrary topology. In addition, theoreticaly, n-sided polygons
such as pentagons or hexagonsmay beindudedin the polygond surface.

Let Pi bethe position of thei-th node
Let n bethe number of nodes
Let Vi bethei-th scattered point
Let | bethe number of scattered points
While( termination condition isnot satisfied )}{
For(dl nodesPi (i=1, .., n)
Step 1: Caculate pseudo-norma Ni
}
For( dl scattered paintsVi (i=1, ..., 1) }{
Step 2: Make connection of each scattered point
toitsnearest node

}
For(al nodesPi (i=1, .., n)
Step 3: Calculate displacement dPi caused
by the force exerted by VV-Spring
Step 4: Cdculate digplacement dPu, i caused
by theforcefor regularizing node distribution
Step 5: Calculate displacement dPc,i  caused
by the force exerted by scattered points
Sep 6: Pi = Pi + (dPi + dPy,i + dPc,i)
}

}

Figure 5: Overview of thefitting agorithm.

®*) |)

Figure 6: Least-square fitting of a planar curve to scattered points. (A)
Geometric interpretation of generd leest-square fitting. (B) Geometric
interpretation of our fitting approach.

4.6 Termination Condition

To detlermine when to terminate iterations, the maximum among the
norms of dl node digplacements is compared with a given threshold e If
the maximum norm is less than the threshold e the iterdions are
terminated. The size of the displacement depends on the resolution of the




polygond surface; therefore the diplacement should be normdlized by the
sze of poygond faces In our implementaion, we normdize the
digplacement of each node by the average length of its neighboring edges.
Then the maximum norm of the normaized displacements is compared
with the threshold e

4.7 Performance | mprovement

In iterative goproaches of the Jaocobi or GaussSadd types high
frequencies tend to be removed quickly while it takes many iterations to
remove low frequencies Consequently, if the number of nodes is
extremdy large, it takes many iterdions to achieve convergence A
promisng way to reduce the execution time is to employ multi-grid
methods [2][9][18]. Kobbdt and his colleegues [13] are postively usng
the multi-grid method to modd dense meshes By using the multi-grid
method, alinear execution time can be achieved.

Multi-grid method requires polygond surfaces with severd different
levels of resolutions Mesh smplification agorithms [1][8][12] [21][24]
can provide the polygond surfaces with multi-resolutions. For example, let
M1, M2, and M3 be three levels of polygond surfaces where M1 is the
finest and M3 is the coarsest. The V-cyde multi-grid method gpplies
iterations for the polygond surfaces with different leves in the ssquence
{M1, M2, M3, M2, M1}. The firg-hdf process going down from M1 to
M2, is cdled pre-smoathing, and the second-hdf process, coming up from
M3 to M1, is cdled post-amocthing. In the pre-amoathing, Someiterations
are performed a each levd in order to remove noise. On the coarsest level
M3, a rough shepe is predicted by the solution. As the post-amocthing
proceeds, the rough shape gpproaches the precise shape.

In the post-amoathing, iterations are paformed a each levd until the
termination condiition described in Section 4.6 is stisfied. Our termingtion
condiition is normalized by the resolution; this provides an efficient way of
determining the time at which to move on.

4.8 Extension to Curve Modeling

Bagcdly, the dgorithm for curve faring is the same as for surface
faring. In each iteration, the node P is moved to anew pastion by forces
exerted by two neighboring nodes Pi-1 and Pi+1 (see Figure 4(A)).

In the case of a planar curve, there is no extended matter from in the
surface case however, in the case of anon-planar curve, the caculation of
the psaudo-normd Ni is more difficult then in the surface case From a
sequence of nodes P, P, and Pi+1, we cdculate the unit tangent Ti and the
unit binormal Bi asfollows

Ti =(Pi+1- Pi—l)/ | Piv1- Pi—l",
Bi =(Pi - Pi—l)' (P.+1- Pi)/ || (P. - Pi—l)' (P.+1- Pi)",

where ”  denotesthe outer product. Asthe outer product of Bi and Ti, we
caculate the unit principal norma Ni asfollows:

Ni:Bi'Ti/"Bi'Ti".

If Py, P, and P ae ocdllinear, Bi and Ni are zero vectors then the
digplacement dP: is a zero vector according to Equation (5). The best way
to obtain afar curve is to goply V-Spring forces in both directions of Bi
and N;; however, in practice, goplying a force only in the direction of Ni
givesafair curve, evenif the problem isanon-planar case.

5. Reaults

Figure 7 showsareault of fair surface generation by using our dgorithm.
Figure 7(A) shows the initid mesh with shap comers, tha is sudden
change in curvature, while the figures (B) and (C) show the faired resits
with two different sets of direct condraints As seen in the figures, the
dgorithm produced farer surfaces The surface of Figure 7(B) resuited
when padtions of nodes on the inner- and outer-boundaries are kept
unchanged by using the positiond condraints The surface of Figure 7(C)
is gengrated by condraining normds of the nodes on the inne- and
outer-boundaries; in addition to postions of thesenodes.  Figure 9 shows
another result of fairing in shaded image.

Figure 8 shows the stability of our dgorithm by giving it an extremdy
noisy mesh asinitid data We added random noise of large amplitude to
the mesh of Figure 7(A), then processed the noisy mesh by using our
dgorithm. Five iterations of pre.samoothing generated a smoother surface
of Figure 8(B). Then the mesh converged to a fair surface of Figure 8(C)
with further processing.

Table 1 shows the execution time of our dgorithm messured for meshes
of various resolutions. It saysthat the time grows gpproximeately linearly to
the complexity of given meshes.

Table 1: Execution time for fair surface generation. The execution time is
meesured for the surface shapewith the congraintsin Figure 7(C). Column
(a) inthetableisdaafor the resolution of Figure 7(C). Caumn (b), (), and
(d) are data for different resolutions with the same surface shepe. Thee
data are measured under the following conditions:

CPU: Pentiuml | 450MHz,

System: WindowsNT4.0,

Threshold e for termination condition: 0.001,

Number of level for multi-grid: 6,

Number of iterations at each leve of presmoothing: 5.

@ b) © @

Number of nodes 553 1610 3644 14962
Number of faces (triangles) 985 3018 6983 29316
Execution time (sec) 2.38 13.8 36.4 177.1

Figure 10 shows reaults of least-square fitting of polygond curves by
using indirect condrants as destribed in Section 4.5. An initid curve
shown by anoisy thin line converged to a smooth curve shown by athick
line. Node positions of theinitid curve are assigned to scattered points. In
Figure 10(A), dl weights k in Equetion (11) usad to teke the trade-off
between faring and kegping proximity are st to 0.01, while in Fgure
10(B) they are st to 0.0000L. As seen in the figures the dgorithm
produced fairer curves under the indirect constraints.

6. Summary

This paper presented an dgorithm to generate far polygond curvesand
surfaces basad on iterative gpproach by using anew discrete spring moddl.
The dgorithm produced polygond curves and surfaces whose locd
variation in curvature is minimized.

Inour discrete spring modd, alinear spring, which length gpproximately
represents a curvaure, is atached dong the normd line of each node
Energy is asigned to the difference of the lengths that is, difference in
curvature, of nearby springs  Our dgorithm then tries to minimize tota
enargy by iterative gpproach. The dgorithm accepts various condraints,




such as postiond, normd, and least-square condraints, o thet useful
surface modds can be generated for computer grgphics, computer aided
design, and other geometric modeling applications.

The implementation of the dgorithm is easy due to its geometricaly
intuitive interpretation. The reaults of experiments showed tha the
agorithm generated far surfaces that satisfy positiona, normd, and other
congraints The dgorithm was robust under the presence of postiond
noisein theinitid polygond data. It dso exhibited thet computationdl costs
increesed gpproximately lineer to the number of nodes congding in a
polygona curve (surface).

In our experience, the dgarithm is sgnificantly robus and stable
however, the convergence of the dgorithm should be proved in the future
work. The target of this paper is to goply our gring modd to shagpe
modding; however, fairing problem is not limited to the gpplication.
Applying our goring modd to theother gpplicationsisaso thefuturework.
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Figure7: (A) Initid mesh. (B) Deformed result from (A) under the positiond constraintson inner- and outer-boundary nodes. (C) Deformed result
from (A) under the positional and normal constraints on inner- and outer-boundary nodes. Arrowson boundary nodesshow thedirectionsof normd

congtraints.
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Figure 8: Stability of theagorithm. (A) Initia meshwithrandomnoiseonthenodes. (B) Shape(A) after fiveiterationsof pre-amocthingonthe
finest level. (C) Shape (A) after full convergence.

(A)

Figure9: Shadedimage of adeformed result. (A) Initid mesh.  (B) Deformed result from (A) under the positiona and normal congtraintson nodesof
upper-, lower-, and inner-boundaries.

Figure 10: Leas-square fitting of a polygond segment to scatered points A noisy thin line represents an initid segment. A smoath thick line represants a
converged ssgment. Node positions of theinitid segment are given asscattered points. (A) All weightsk in Equation (11) arestt0 0.01.  (B) All weights
ki are set to 0.00001.



