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ABSTRACT 

A new technique for automatically generating anisotropic quadrilateral meshes is presented in this paper.  The inputs are (1) a 2-
D geometric domain and (2) a desired anisotropy – defined as a metric tensor over the domain – specifying mesh sizing in two 
independent directions.  Node locations are obtained by closely packing rectangles in accordance with the inputs.  The centers of 
the rectangles, or node, are then connected using anisotropic Delaunay triangulation that takes into account the desired anisotropy.  
The obtained triangular mesh is converted into a quadrilateral mesh using mesh conversion templates.  The novelty of the method 
is that closely packed rectangles resemble a pattern of Voronoi polygons corresponding to a well-shaped quadrilateral mesh.  The 
result is a high quality mesh that conforms well to the input.  As a sample application, this method was used to generate a mesh to 
solve a steady state heat transfer problem. 
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1. INTRODUCTION 

Mesh generation is used in a variety of areas such as finite 
element method and computer graphics.  Today, such 
computational techniques form an integral part of design and 
analysis.  Mesh generation using quadrilateral elements is 
computationally expensive due to constraints on element size 
and shape, mesh directionality control and adaptive 
remeshing capabilities.  The problem is further restricted by 
specifications on anisotropy.  Therefore a high quality, 
automatic mesh generation algorithm can increase 
productivity by reducing the time spent on generating the 
mesh. 

This paper describes a new computational automated method 
by which a two-dimensional domain can be meshed into 
anisotropic quadrilateral elements.  It has been shown that 
quad elements perform better in the FEM analysis of plane 
stress [1].  They are also preferred in computational fluid 
dynamics, sheet metal bending, and automobile crash 
simulation.  In addition, an anisotropic mesh aligned to 
specific directions is better in terms of computational cost 
and solution accuracy when the physical phenomenon being 
analyzed has a strong directionality or when the material 
properties are anisotropic.  For example, analyses involving 
shock propagation or analysis of fiber-reinforced glass or 
plastics benefit from an anisotropic mesh. 

Our method to generate an anisotropic quad mesh is an 
extension of the bubble mesh method [2, 3] in which bubbles 
or spheres are packed to obtain node locations suitable for an 
isotropic triangular mesh.  Later ellipsoids were packed to 

generate anisotropic triangular meshes[4].  Square packing 
was done to obtain isotropic quadrilateral meshes[5].  In the 
current method, rectangular cells are packed to obtain the 
desired anisotropy.  This method is readily extensible to three 
dimensions by packing parallelepipeds instead of rectangles. 

The advantage of this approach is that node spacing and mesh 
directionality can be precisely controlled, independent of the 
boundary edges.  This can be important to capture physical 
phenomena such as high stress gradients in stress analysis or 
shocks in fluid flow.  Locally, the size and orientation of the 
rectangles are adjusted based on the input sizing and direction 
information.  This results in a quadrilateral mesh that is 
anisotropic, well-shaped and well-aligned. 

Another advantage is that adaptive remeshing is not 
computationally expensive because dynamic simulation can 
be continued from an existing mesh, instead of starting from 
scratch.   

As a demonstration of the capabilities of this technique, a 
steady state heat transfer problem was solved using a mesh 
generated by our method.  Since the central theme of this 
paper is anisotropic quadrilateral mesh generation, this is 
described separately in section 6. 

2. PROBLEM STATEMENT 

The problem addressed in this paper can be stated as follows 

Given: 

1. a two dimensional geometric domain 



2. a desired mesh anisotropy - element sizing and mesh 
directionality given as a 2x2 tensor field M 

Obtain: 

a well-shaped, graded, anisotropic quadrilateral mesh 
conforming to the input anisotropy – specified by node 
spacing and mesh directionality. 

3. PREVIOUS WORK 

There have been several reviews of mesh generation 
algorithms [6-9].  Recently surveys of mesh generation 
algorithms and related software have been published on the 
world wide web [10-12]. 

Quadrilateral meshing has been implemented using a variety 
of techniques.  One common method is node placement 
followed by connection.  This is popular due to the existence 
of a robust scheme for connection called Delaunay 
Triangulation.  The obtained triangular mesh is then 
converted into a quadrilateral mesh, and many such 
conversion methods have been proposed [13-16].  Other 
approaches have also been published.  A CSG-based 
approach for node placement was proposed by Lee [17, 18].  
In paving [19] proposed by Blacker and Stephenson, 
quadrilateral elements are created one by one, starting from 
the boundary.  The Q-Morph algorithm proposed by Owen 
[20] works similarly, converting a triangular mesh to a 
quadrilateral mesh starting from the boundary.  In these 
advancing front methods, mesh directionality cannot be 
controlled independent of the boundary, which may be 
needed to reflect load conditions or material properties. 

Castro-Diaz et al.  showed the use of a metric tensor to 
improve the quality of adapted meshes in flow computations 
[21].  Borouchaki et al.  demonstrated the use of a metric 
tensor to generate an anisotropic triangular mesh [22].  
Bossen and Heckbert used a 2x2 metric tensor to generate an 
anisotropic triangular mesh using a system of interacting 
particles [23].  Shimada et al. used ellipsoid packing to obtain 
anisotropic triangular meshes [4].  The biting ellipses scheme 
[24] combines paving and packing to generate an anisotropic 
triangular mesh.  Though this method has a theoretical time 
bound for convergence, meshing even simple geometries is 
lengthy. 

Our work draws on both isotropic quadrilateral meshing 
techniques and anisotropic triangular meshing methods and 
incorporates new techniques to realize efficient, high-quality 
anisotropic quadrilateral meshing. 

4. ANISOTROPIC QUADRILATERAL MESH 
GENERATION 

4.1 Outline of Technical Approach 
The anisotropic quadrilateral meshing problem is solved in 
the following way.   

Step 1 :  Place rectangular cells on all vertices 

Step 2 :  Pack rectangular cells on all edges 

Step 3 :  Pack rectangular cells on the faces 

Step 4 :  Place nodes at the centers of the rectangles 

Step 5 :  Generate triangular mesh topology using anisotropic 
Delaunay Triangulation 

Step 6 :  Selectively combine pairs of triangles to obtain a 
quad-dominant mesh 

Step 7 :  Use mesh conversion templates to obtain an all-quad 
mesh 

Figure 1 illustrates this process.  The first three steps generate 
suitable node locations by closely packing rectangles in 
accordance with the given input. The sizes and directions of 
the rectangles are adjusted based on the given mesh sizing 
and mesh directionality information. 
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Figure  1    The mesh generation process 

 

Figure 2 shows various meshes and their Voronoi polygons. 
Figure 2(a) shows a set of packed circles that mimics 
Voronoi polygons of a well-shaped triangular mesh [2,3].  By 
packing a set of ellipses instead of circles, as shown in Figure 
2(b), Voronoi polygons of a well-shaped anisotropic 



triangular mesh can be mimicked [4].  Figure 2(c) shows a set 
of packed squares that mimics Voronoi polygons of a well-
shaped quadrilateral mesh [5].  This paper demonstrates a 
technique for mimicking Voronoi polygons of a well-shaped 
anisotropic quadrilateral mesh by packing a set of rectangles 
instead of squares, as shown in Figure 2(d). 

 
 
 
 
 
 
 

(a) Triangular mesh, Voronoi polygons, and packed circles. 
 
 
 
 

(b) Anisotropic triangular mesh, Voronoi polygons, and 
packed ellipses. 

 
 
 
 
 
 
 

(c) Quadrilateral mesh, Voronoi polygons, and packed 
squares. 

 
 
 
 

(d) Anisotropic quadrilateral mesh, Voronoi polygons, and 
packed rectangles. 

Figure  2    Voronoi Polygons and Meshes 

Some of the issues that arise are as follows: 

1. What are the optimal locations of the rectangles? 

2. How many rectangles are needed to fill the domain? 

3. How to modify Delaunay triangulation to produce 
anisotropic triangles? 

4. How to convert the obtained triangles to quads? 

For the first issue we use a physically-based model, similar to 
a particle system in computer graphics.  A proximity-based 
force field is defined between two rectangles so that either an 
attracting force or a repelling force is applied based on the 
distance between them.  The equations of motion are solved 
numerically assuming a point mass at the center of the 
rectangles and viscous damping.   

The second issue is resolved by checking the local population 
density and adaptively adding or removing rectangles during 
dynamic simulation of the motion of the rectangles.  After an 
iteration, if a region has an excessive number of rectangles, 
then rectangles are removed, and if there are significant holes, 
rectangles are added. 

Delaunay triangulation tries to locally maximize the 
minimum angle in pairs of triangles, which ideally produces 
equilateral triangles.  In anisotropic meshing, however, long, 
slender triangles may be preferred.  So, the Delaunay 
circumcircle test is suitably modified using the input metric 
tensor to evaluate which of the two possible triangulations of 
four nodes is desirable.   

Once the triangular mesh is obtained, it is first converted to a 
quad-dominant mesh using the input directionality data, and 
then to an all-quad mesh using mesh conversion templates. 
Each of these topics is addressed in the following sub-
sections. 

4.2 Mesh Anisotropy – Specification and 
Interpretation 

An input 2x2 metric tensor field is used to specify the desired 
anisotropy.  As in previous work [4, 21-23] this tensor is 
symmetric and positive-definite.  The following topics are 
explained: 

1. How to calculate values of element sizes and directions, 
given a metric tensor 

2. How to specify the metric tensor for a required 
anisotropy 

Mesh directionality, mesh sizing and therefore, anisotropy 
can be specified in a single compact form using tensor 
notation.  Anisotropy implies that one edge of an element has 
a significantly different length than the other(s) – resulting in 
elements that are stretched.  Though these three concepts are 
inter-related, it is important to understand that anisotropy 
cannot be obtained using mesh directionality control and 
mesh sizing control together.  We can obtain anisotropy only 
if the sizing can be controlled independently in different 
directions.  This is different from simply using isotropic 
quadrilaterals and orienting them along a given direction. 

The meshes in Figure 3 all have the same input geometry and 
mesh directionality. Figure 3(a) and Figure 3(b) show the 
input geometry, mesh directionality, and node spacing 
function. In Figure 3(c), uniform squares are packed in the 
domain according to specified mesh directions, and an 
isotropic quadrilateral mesh is then generated, as shown in 
Figure 3(d).  Even if the sizes of the squares are varied as 
shown in Figure 3(e), node locations suitable for a graded 
quadrilateral mesh are obtained, but the mesh shown in 
Figure 3(f) is still isotropic.  By virtue of packing rectangles 
with specified aspect ratios as shown in Figure 3(g), an 
anisotropic quadrilateral mesh is obtained by controlling the 
node spacing in two different directions, as shown in Figure 
3(h). If the sizes of rectangles are varied as shown in Figure 
3(i), a graded anisotropic mesh is generated as shown in 
Figure 3(j). 

 



 
(a) Input geometry and 

mesh directionality 

 
(b) Input geometry and 
node spacing function 
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(f) Graded isotropic 
quadrilateral mesh 
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Figure  3    Square Packing vs.  Rectangle Packing 

The procedure to calculate the required anisotropy from a 
given metric tensor is described first.  Following that, the 
method used to specify the metric tensor, given an anisotropy 
is explained. 

Given a 2x2 tensor M, we obtain the two eigen values λi by 
solving [25] 

0λ− =M I  
(1) 

where I is the 2x2 identity matrix. Once the eigen values are 
found, the eigen vectors xi are found using 

i i iλ=Mx x ,   i = 1,2 
(2) 

The eigen vectors are the directions of the major and minor 
axes specifying the mesh directionality, and the eigen values 
are the inverse of the squares of the major and minor radii. 

 

 
 

Figure  4    Specification, interpretation of  
a tensor as an ellipse 

Analogously, given the directions and magnitudes of the axes 
(the desired mesh sizing and directionality as described 
above), the tensor can be calculated using 

T=M RΛR  
(3) 
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As shown in Figure 4, θ  is the angle between the major axis 
of the ellipse and the positive x-axis, and 1d , 2d are the 
major and minor axis diameters. 

In our implementation, we specify this by  

1. a direction X2 specifying the minor axis 

2. a base size along X2 

3. an aspect ratio 

The single direction specifies the orientation of the minor 
axis.  Since the principal axes are perpendicular to each other, 
the direction of the major axis can be easily calculated.  Mesh 
sizing information is given as a base size along the minor axis 
and an aspect ratio – the ratio of the diameter of the major 
axis to that of the minor axis.  The specified “stretching” can 
easily be visualized using this aspect ratio. 

4.3 Close Packing of Oriented Rectangular Cells 
To get appropriate node locations, rectangles are packed 
closely according to a given input.  A physically-based 
particle simulation approach is used to solve this rectangular 
packing problem efficiently. 

An input metric tensor field is used to specify the length, 
breadth and orientation of quadrilateral elements in the 
domain.  This data is stored in a background grid at discrete 
locations.  At intermediate points, the data at the four grid 
nodes enclosing the point are linearly interpolated.  
Alternatively, if input is given only at a few points, then 
values at all nodes are calculated using a Laplacian 
smoothing [26] type approach to obtain a smoothly varying 
field. 

In the triangular bubble mesh technique [2, 3] a force similar 
to van der Vaals force produces hexagonal packing of 
bubbles.  This field produces an attractive force if two 
particles are farther apart than a stable distance, and a 
repulsive force if they are located closer together than a 
stable distance.  Node locations obtained this way create a 
well-shaped isotropic triangular mesh.  This field was 
modified in square packing to obtain node locations suitable 
for isotropic quadrilateral mesh generation [5] by adding four 
sub-fields to the main force field.  In our proposed method, 
the field used for square packing has been “stretched” using 
the input aspect ratio to obtain rectangular packing. 

Figure 5 (a) shows the force field used in square packing.  In 
5 (b) the given aspect ratio is locally constant and is along the 
x-axis.  The corresponding potential function can be obtained 
by integrating the force.  The rectangles try to occupy 
minimum energy positions in this field.  Packing is complete 
when the geometry is covered sufficiently, without any 
significant gaps or overlaps. 

Ellipses can be used to achieve rectangle packing as shown in 
Figure 6.  After the central rectangle, other stable positions 
for rectangles are the along the directions d1 and d2.  Once 
these are also occupied, the ones in between can be filled.  
For a graded anisotropic quadrilateral mesh (the base size of 
the rectangles and the aspect ratio may vary), the fields and 
the sub-fields have to be suitably adjusted to obtain packing 

of rectangles of desired sizes which would in turn give us a 
mesh consistent with the input. 

Using this proximity-based force, a physically-based 
relaxation method is used to find a closely packed 
configuration of rectangles.  Due to the non-linear nature of 
the force and complicated geometric constraints, force 
equilibrium equations become highly non-linear and are 
difficult to solve using a multi-dimensional root finding 
technique such as the Newton-Raphson method. 

The solution to this problem, instead, is to assume a point 
mass m at the center of each rectangular cell and a viscous 
damping c and solve these equations of motion (Equation 6) 
using a numerical integration scheme like the fourth-order 
Runge-Kutta method. The positions of rectangles xi are thus 
obtained. 

 

 
(a)  Force field used for square packing 

 
(b)  Force field used for rectangle packing 

Figure  5    Force fields used for packing 
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d1, d2    Desired mesh directions 

Figure  6    Rectangle packing using ellipses 



( ) ( ) ( )i i im t c t t+ =x x f         1, 2,....,i n=  
(6) 

While solving this equation numerically, we adaptively adjust 
the number of rectangles in the domain, called “adaptive 
population control.”  This is necessary as the number of 
rectangles needed for packing is unknown at the start.  We 
generate an initial configuration using octree subdivision.  
During simulation, we use a procedure of adding rectangles 
in sparse areas and deleting rectangles in dense areas to get 
closely packed rectangles.  This dynamic simulation and 
adaptive population control approach makes adaptive 
remeshing very efficient because we can simply continue the 
simulation process from previous node locations, without 
starting from a totally fresh configuration, when the geometry, 
node spacing or mesh directionality is changed. 

4.4. Anisotropic Delaunay Triangulation 
Once a force-balancing configuration of rectangles is 
obtained, the centers of the rectangles must be connected to 
form a complete triangular mesh, which is then converted 
into a quad mesh.  In connecting nodes, Delaunay 
triangulation is considered suitable for finite element analysis, 
as the triangulation maximizes the smallest angles of the 
triangles.  Ideally, it creates triangles as equilateral, or 
isotropic, as possible for a given set of points; thus thin, or 
anisotropic triangles are avoided whenever possible. 

One important property of Delaunay triangulation is that a 
circumcircle of a Delaunay triangle must not contain other 
nodes inside it.  Many Delaunay triangulation algorithms use 
the circumcircle test.  This test is also used in Sloan's 
algorithm [27] which was implemented in the original 2-D 
isotropic bubble mesh.  The circumcircle test is performed on 
a pair of adjacent triangles that forms a convex quadrilateral.  
Given such a set of four points, the test checks if the fourth 
point lies inside the circumcircle of the triangle formed by the 
other three points.  If it does, the four points are then 
reconnected into the other possible configuration of two 
triangles.  This test, however, is not suitable for anisotropic 
meshing.  Delaunay triangulation must be modified to 
incorporate anisotropy in the circumcircle test. 

Assuming the metric tensor is locally constant, the 
circumcircle test is done in normalized space.  The co-
ordinates of the four nodes under consideration are 
transformed so that an ellipse is mapped back to a unit circle 
[23]. 

A local average tensor can be determined by first calculating 
the barycenter of the four nodes and then finding the metric 
tensor M at this barycenter1. 

                                                                 
1 Slightly different anisotropic Delaunay triangulation schemes are used by 
other researchers [21-23].  For example, an alternative way to take an average 
of four metric tensors is: 
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where x1, x2, x3, x4 are position vectors of the four nodes. 

This metric tensor is then used to transform the coordinates 
of the four nodes.  A rotational and scaling transformation is 
used to map the ellipse corresponding to this tensor into a 
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The circumcircle test is then applied to the transformed 
normalized coordinates.  This modifies the Delaunay 
triangulation used in the original bubble mesh program so 
that the input anisotropy is taken into consideration.   

Figure 7 shows how a different pair of triangles is selected 
when the anisotropic circumcircle test is performed after 
transforming the positions of the four nodes. In the example 
shown in Figure 7, an aspect ratio of 2 is desired along the 
horizontal direction.  The original circumcircle test 7(a) does 
not account for this and chooses the pair ∆ x1x2x3 and 
∆ x1x3x4 although this does not orient the triangles according 
to the desired anisotropy.  The modified approach first 
transforms the coordinates and then applies the circumcircle 
test. As shown in figure 7(b), this chooses the correct pair of 
triangles, ∆ x1x2x4 and ∆ x2x3x4 . 

To demonstrate the effectiveness of this procedure, Figure 8 
contrasts the original Delaunay triangulation and the 
anisotropic Delaunay triangulation.  Given the same inputs, 
the anisotropic Delaunay triangulation creates a mesh that is 
stretched and “flows” along the input mesh directionality and 
conforms better to the desired anisotropy. 

 

 



 
 
 
 
 
 
 
 
(a)  Original circumcircle test will choose 1 2 3∆x x x and 1 3 4∆x x x  

 
 
 
 
 
 
 
 
 

(b)  The anisotropic circumcircle test with 1 0
0 4
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will choose 1 2 4∆x x x  and 2 3 4∆x x x  

 

Figure  7    Anisotropic circumcircle test 

 

4.5. Conversion to Quadrilateral Mesh 
After an anisotropic triangular mesh topology is obtained, it 
is first converted into a quad-dominant mesh by selectively 
merging two triangular elements into a quadrilateral element 
along the given vector field.  This mesh conversion algorithm 
consists of three stages:  

1. Calculate a score iΩ  that measures how well the 
resultant quadrilateral mesh element aligns along the 
specified mesh directions if the i-th non-boundary edge 
of a triangular element is removed to form a 
quadrilateral. 

2. Sort all the non-boundary edges using a priority queue. 

3. Delete the edges successively from the top of the 
priority queue.  The deletion of one edge creates one 
quadrilateral. 

The score iΩ  is calculated by comparing the directions of 
the four edges of the resultant quadrilateral element with the 
input mesh direction vectors at the centers of the edges.  For 
side j of the quadrilateral element i, we calculate ijω using  
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(a)  Input Mesh Directionality 

 
(b)  Normal Delaunay Triangulation 

 
(c)  Anisotropic Delaunay Triangulation 

Figure  8     Effect of anisotropic Delaunay 
triangulation 

where the subscript i is the index of a quadrilateral element 
and j = 1, 2, 3, 4 is the index of the side edge of the element.  
The inner product ijω is computed using uij the unit vector of 
the edge j of quadrilateral i, and vij the input mesh direction 
vector at the center of that edge. 

This scoring function is similar to our previous methods 
[5,16], but differs because the product is weighted by kj . For 
the two shorter sides of a rectangle, kj is 1. For the longer 
sides kj is the aspect ratio. The weight aligns the edges of the 
output quadrilateral mesh as much as possible along the 
primary vector. 

From this definition of ijω the score iΩ is calculated as 
follows 
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After going through the above stages, a quad-dominant mesh 
is obtained.  This is converted into an all-quad mesh using 
one of two mesh conversion templates [15] 

1. One triangle to three quads 

2. One quad to four quads 

In both these methods, a new node is inserted at the center of 
an element using linear interpolation of the midpoints of the 
edges.  This node is joined to each of the applicable edges to 
form quadrilateral mesh elements.  So, the final element size 
is roughly half the size of elements at the previous step. 

 

 
One triangle to three quads 

 
One quad to four quads 

Figure  9    Mesh Conversion Templates 

5. RESULTS 

This section contains the results of the automatic anisotropic 
quadrilateral mesh generation technique proposed in this 
paper.  The sequence of pictures in Figures 10 and 11 is as 
follows.  The first picture (a) is the desired mesh 
directionality.  Picture (b) has rectangles packed in 
accordance with the input.  The third picture is the triangular 
mesh obtained after anisotropic Delaunay triangulation (c).  
The anisotropic quadrilateral mesh is the final image (d). 

The domain in Figure 10 is a circle approximated using line 
segments.  Mesh directions shown in Figure 10(a) are those 
corresponding to a family of rectangular hyperbolas. The 
aspect ratio is varied from 2 at the left of the domain, to 4 at 
the right.  The rectangle packing result is shown in Figure 
10(b).  The intermediate triangle mesh conforms to the given 
input, as shown in Figure 10(c).  The variation in aspect ratio 
of quadrilateral elements is seen in Figure 10 (d). 

The results shown in Figure 11 showcase the full 
functionality of the presented technique.  Mesh directionality 
and sizing is independently controlled in two directions – 
parallel and perpendicular to the specified direction (base size 
of rectangle and aspect ratio).  The aspect ratio is linearly 
varied from 2 at the right end to 3 at the left end.  The base 
size of the rectangles is 5 at the right and increases to 10 at 
the left.  Mesh directions are specified to coincide with the 
boundary.  This shows how a boundary-aligned mesh may be 
obtained using this method, without the front collision 
problems typical of advancing front methods. 

6. APPLICATION – MESH GENERATION FOR 
STEADY STATE HEAT TRANSFER 

This section describes a procedure which can generate 
meshes for real world problems using the proposed method. 
A mesh is generated to solve a steady-state heat-transfer 

problem.  A preliminary analysis is used to specify the inputs 
required for this technique.  Once the mesh is generated, it is 
used to solve the problem.  Comparing the temperature 
contours of regular meshes with those of the generated mesh 
shows that the computational cost can be reduced without 
losing solution accuracy. 

Figure 12(a) shows the problem to be solved.  The eight 
points shown in the interior of the geometry are at 3000C.  
The four sides are at 00C. The initial coarse mesh shown in 
Figure 12(b) is used for the analysis.  The contour plot of the 
solution is shown in Figure 12(c).  The directions of the 
temperature gradients are shown in Figure 12(d). 

To specify the inputs required for the procedure, a 
preliminary analysis is done using a coarse mesh of 100 
square elements.  Even though a few important details may 
be missed if the mesh is too coarse with reference to the 
features in the problem, it is better than generating a mesh 
with no consideration to the boundary conditions, loads, or 
material properties. 

Data exchange interfaces are used to exchange mesh and 
solution data between ANSYS and the proposed meshing 
scheme.  The command line interface of ANSYS is used to 
read in scripts to import the generated mesh.  The nodal 
solution and the list of nodes and elements in plain text 
format are used for export. 

The flexibility of the process allows arbitrary specification of 
anisotropy – given as mesh sizes, aspect ratios and directions.  
Mesh directions are specified using temperature gradients 
calculated using the coarse mesh solution.  In heat transfer 
problems, there are large temperature gradients near regions 
of high temperature.  Thus, a small mesh size and aspect ratio 
is specified at regions where the high temperature is applied.  
This demonstrates how an expert can use this technique.  A 
better way would be to automate this based on error bounds 
or other desired criteria. 

The FEA code ANSYS was used to solve the problem and to 
make the contour plots in Figure 13.  The plots all have the 
same scale – the same shade represents the same range of 
temperature in the contour plots 13(b), 13(d), and 13(f). 

The mesh thus generated is shown in Figure 13(e).  As a 
comparison, Figures 13(a) and 13(c) show a regular mesh of 
900 and 1600 elements respectively.  The temperature 
contours for the generated mesh shown in Figure 13(f) seem 
to be better than those for the 900 element regular mesh 
shown in Figure 13(b), even though it has fewer number of 
elements – 828.  This is a qualitative comparison, assuming 
the 1600 element mesh has the better solution.  This is a fair 
assumption because, in such a straightforward problem, when 
the number of uniform elements is increased, better solutions 
are obtained.  For instance, the contours are smoother and the 
resolution of the high temperatures is better.  The second 
contour from high temperature spots of the generated mesh 
13(f) resembles those of 13(d), more than the corresponding 
contour of 12(b) resembles 13(d).  The number of elements is 
a good measure of the computational cost.  Since better 
results are obtained with fewer elements, this leads us to 
believe that the proposed technique results in a reduction in 
computational cost without loss in accuracy of analysis. 



7. CONCLUSION AND FUTURE WORK 

This paper presents a new technique for generating 
anisotropic quadrilateral meshes in two-dimensions, using a 
physically - based method for obtaining a close packing of 
rectangles.  The novelty of this technique is that closely 
packed rectangles resemble a pattern of Voronoi polygons 
that correspond to a well-shaped, well-aligned, anisotropic 
quadrilateral mesh. 

The centers of the rectangles give the node locations.  
Though a triangular mesh topology is obtained initially, it is 
well suited for conversion to a quad mesh because rectangles 
have been packed using an appropriate force-field. 

A significant advantage of our technique is the ability to 
control the mesh sizing and direction independent of the 
boundary.  This can be used to achieve effective adaptive 
remeshing because meshes can be tailored to suit specific 
application domains and needs – such as load conditions, or 
properties of materials in stress analysis.  Also, remeshing is 
easy as dynamic simulation can be resumed from previous 
node locations rather than having to start afresh. 

This method is naturally extensible to three dimensions by 
packing parallelepipeds instead of rectangles to generate 
anisotropic hexahedral meshes. 

Since a large number of inputs is required to use the full 
capabilities of an anisotropic quadrilateral mesh generator, an 
adaptation scheme is desirable that can automatically produce 
the input, in this case – size, aspect ratio, and mesh directions.  
It is difficult to specify this input in complicated problems 
without prior knowledge.  So a preliminary analysis would 
present a picture of the loads, material properties, and 
boundary conditions.  Even though it is possible to miss fine 
features when using a coarse mesh, this limited information, 
when used for mesh generation, is much better than none at 
all.  When the mesh better reflects the problem being solved, 
computational cost can be lowered for a desired accuracy, or 
equivalently for the same cost a better solution can be 
obtained.  The design process is streamlined and cycle times 
are reduced. 

Qualitative methods are used to ascertain how good a mesh is 
for a specific application.  A quantitative approach will give a 
definite indication of how much one mesh is better than 
another.  This is an important issue that should still be 
addressed. 
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Figure  10    Mesh generation result – 1 
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(a)  Input mesh directions 

  
(b)  Packed rectangles 

  
(c)  Delaunay triangulation 

 

 
(d)  Anisotropic quadrilateral mesh  

Nodes  1303, Elements  1212 

Figure  11    Mesh generation results – 2 

 

 
(a) Input geometry and loads 

 
(b) Coarse mesh (121 nodes, 100 elements) 

 
(c) Temperature contours 

 
(d) Temperature gradients 

 

Figure  12    Preliminary analysis using  
a coarse mesh 



 
(a) Regular mesh (961 nodes, 900 elements) 

 
(b) Regular mesh (1681 nodes, 1600 elements) 

 
(c) Generated mesh (879 nodes, 828 elements) 

 
(d) Solution with mesh (a) 

 
(e) Solution with mesh (b) 

 
(f) Solution with mesh (c) 

 

Figure 13 Meshes and temperature contours – 
Steady-state heat-transfer 
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