
 1

Submitted to : Computer Aided Design, 2000

A Survey of Computational Approaches to Three-
dimensional Layout Problems

Jonathan Cagan1 Kenji Shimada Su Yin

Department of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

1 Introduction

Component layout plays an important role in the design and usability of many engineering

products. The layout problem is also classified under the headings of packing, packaging,

configuration, container stuffing, pallet loading or spatial arrangement in the literature. The

problem involves the placement of components in an available space such that a set of objectives

can be optimized while satisfying optional spatial or performance constraints.

Whereas the technologies for circuit board and IC chip layout have advanced significantly

during the past two decades and many commercial CAD tools have been available, the same is

not to be said for three-dimensional mechanical layout methods and tools. While the number of

components to be placed in a mechanical system is modest compared to that of a VLSI system,

the increased combinatorial complexity over the two-dimensional layout problem and the

geometric complexity of 3-D non-uniform components and container spaces make the mechanical

layout synthesis a challenging task. Current tools available in practice to designers to aid in the

general mechanical layout process mostly remain at the stages of physical or electronic models

with the assistance of manual adjustment and visual feedback. The needs arising in the product

layout and rapid prototyping for compact and complex products, quick turnaround time and

efficient use of resources justify the development of effective layout synthesis methods for 3-D

components of complex geometry.

1 Author of contact: (412) 268-3713, cagan@cmu.edu

 2

The difficulty in automating the mechanical and electro-mechanical layout process stems

from 1) the modeling of the design objectives and constraints, 2) the efficient calculation of the

objectives and constraints, 3) the identification of appropriate optimization search strategies.

optimization search algorithm

exploratory moves

evaluations / simulations

decision making

accept, reject moves

stop criteria

topological
connections

attachment points

route definition

constraints
non-overlap
proximity
alignment

components

geometric representation

rigid body transformation

design variables
location
orientation

objectives
packing density
center of gravity
configuration cost
routing cost
bracket cost
performance

constraints
non-overlap
proximity
alignment

constraints
non-overlap
proximity
alignment

components

geometric representation

rigid body transformation

design variables
location
orientation

objectives
packing density
center of gravity
configuration cost
routing cost
bracket cost
performance

objectives
packing density
center of gravity
configuration cost
routing cost
bracket cost
performance

optimization search algorithm

exploratory moves

evaluations / simulations

decision making

accept, reject moves

stop criteria

Figure 1. Major constituent parts for generic layout synthesis.

 3

A number of design goals can be modeled as layout objectives. Simulations may be

necessary to test the thermal, stress or vibration properties of the package. In addition, a set of

constraints often has to be satisfied to ensure the applicability of the layouts. Efficient

calculations of objectives and constraints are necessary to solve the layout problem in reasonable

time since the analyses of objectives and constraints can be computationally expensive and a

large number of evaluations may be required to achieve convergence. The search space of the

layout problem is nonlinear and multi-modal, making it vital to identify a suitable algorithm to

navigate the space and find good quality solutions.

Figure 1 illustrates the major constituent parts for solving a generic layout problem.

Geometric representations of components and the container space are necessary for the check of

interference and clearance. Since the interference calculation between components of complex

geometry is computationally expensive, different levels of detail may be desirable for coarse and

refined evaluations at different stages of the problem solving process. The locations and

orientations of components are the design variables to be determined. Rigid body transformation

is utilized to record the position and orientation of each component in the global coordinate

frame. The layout and packaging goals are usually formulated as objective functions. The

objectives may reflect the cost, quality, performance and service requirements. Various

constraints may be necessary to specify spatial relationships between components. A common

constraint is no component overlap and no container protrusion. Other constraints may include

the proximity or alignment between components. Topological connections are necessary if tube

routing, for example, is involved in addition to the component placement. The specifications of

components, objectives, constraints, and topological connections define a layout problem and an

optimization search algorithm takes the problem formulation and identifies promising solutions

by evaluating design alternatives and evolving design states. Analyses of objectives and

constraints vary from problem to problem. However, the optimization search technique and

geometric representation and the resulting interference evaluation are problem independent and

are thus the focus for a generic layout tool.

This paper examines the characteristics of the layout space and provides a survey of the

current state-of-the-art in technologies for the three-dimensional layout problem. The paper is

organized as follows: Section 2 shows a fractal analysis of the layout space and a continuum of

optimization search algorithms as a basis for further discussions on various search techniques and

their effectiveness. Section 3 reviews the optimization algorithms and geometric representations

utilized in the layout problem, the advantages and limitations of different methods, and suitable

 4

areas of applications. Section 4 discusses the key issues and strategies in building an effective and

efficient layout synthesis tool.

2 Layout Space Characteristics and Solution
Approaches

2.1 Spectral Density Analysis of the Layout Space
It is generally agreed that the 3-D layout space is nonlinear and multi-modal. Deterministic

algorithms are unable to navigate such a space for globally near-optimal solutions, and stochastic

algorithms are usually required for solutions of good quality. Are there any properties or

regularities of the space that might help explain why some search methods are more effective than

others in the layout space exploration? While it is impossible to visualize the space in general

since it is multi-dimensional and the design variables are coupled, an energy landscape approach

is utilized here to show the characteristics of the 3-D layout space.

Sorkin explored the effectiveness of simulated annealing algorithms on VLSI layout space

(Sorkin, 1991, Sorkin, 1992). He revealed that the space is fractal-like. A fractal is a geometric

figure that has built-in self-similarity in which the figure repeats itself on an ever-diminishing

scale (Peitgen and Saupe, 1988). Fractalness has strong connections to natural shapes such as

coastlines, snowflakes, clouds, and mountains. A function f is fractal if the distribution of)('Xf

conditional on)(Xf , X, and 'X , is normal with mean 0 and variance proportional to

HXXd 2'),(, where H is a parameter in (0,1) that represents the scaling property of the fractal

space. Since this definition involves probability distribution that is difficult to check, a simpler

measure of fractalness is to sample over random values of X and 'X for a given function f and

check the satisfaction of the power-law relation:

2HX),d(Xf(X)-)f(X' '])E[(2 ∝ , (1)

where E is the expectation of the function, d(X’, X) is a function representing the distance

between state X and X’, or the number of steps it takes to change a state from X to X’. Equation

(1) is the mathematical expression of the fractalness, or the self-similarity characteristics.

The characteristics of the 3-D layout space are analyzed by following the practice

discussed in Sorkin (1992). A random walk is taken on the 8-cube packing problem, where 8

 5

identical cubes are packed into a container of 8 times the size of the individual cubes (Cagan et.

al, 1998). A random walk is a sequence of points X(t) (t = 0, 1, 2, …) where X(t+1) is generated

by a random move from X(t). The time-energy series and spectral density of the random walk are

then examined. The energy (the objective function value) time-series f(X(t)) plot is shown in

Figure 2 and its spectral density S(f) of the energy time-series f(X(t)) is generated using MATLAB

and the statistics package S-Plus and shown in Figure 3.

0 500 1000 1500 2000 2500 3000
2

3

4

5

6

7

8

9

10
x 10

5

iteration

Figure 2. Energy versus time-series plot of a random walk on a layout space.

energy

 6

10
0

10
1

10
2

10
3

10
7

10
8

10
9

10
10

10
11

10
12

Figure 3. Spectral density of the layout space energy time-series.

The spectral density analysis is used to characterize the time correlations of sampling

points from the random walk. It can be shown that the spectral density (Figure 3) of a random

walk on a 3-D layout space has spectral energy which is power-law in frequency, as is reflected

by the trend of a logarithmic slope (shown by the dashed line) of
2f

1 holding down to the

frequency of about 10Hz. Since a random walk is a fractional Brownian motion only if the walk

steps are significantly smaller than the dimension of the space, the power-law relation applies

only for the frequencies above a certain point. The fractalness of the layout space is thus inferred

by the satisfaction of the power-law relation.

As a comparison, a random walk is taken on the design space of a linear objective function

(a 45° line) and its energy time-series and spectral density plots are shown in Figure 4 and Figure

5 respectively. The characteristics of the random walk resembles those of a white noise since the

energy time-series is uncorrelated from point to point and thus its spectral density turns out to be

frequency

spectral
density

 7

flat, representing equal energy for all frequencies. In contrast, the energy time-series of a random

walk on a 3-D layout space consists of more slow (low frequency) than fast (high frequency)

fluctuations (Figure 3), and the power-law relation as shown in Eq. 1 is satisfied.

Figure 4. Energy versus time-series plot of a random walk on a linear space.

iteration

energy

 8

Figure 5. Spectral density of the linear space energy time-series.

The layout space, then, as represented by the 8-cube problem, is clearly characterized as

fractal-like. The implications are that deterministic, downhill search algorithms will generally

converge to inferior minima. Thus stochastic algorithms are required to solve the general layout

problem.

2.2 A Continuum of Search Algorithms
A continuum is shown in Figure 6 along which a variety of optimization search algorithms

are placed according to the amount of randomness each method possesses, with deterministic

methods such as gradient method (GM) on the one end, random search (RS) on the other. It is

often necessary for an algorithm to have some degrees of randomness to escape from inferior

local optima because of the fractalness of the layout space. However, too much randomness can

make the search exhaustive and the convergence difficult to achieve. There is a trade-off between

the amount of computing time invested and the quality of solutions obtained. While the amount of

randomness appropriate for an algorithm is problem-dependent and related to the complexity of a

design space and the expected quality of the design, the desired place for an algorithm on the

frequency

spectral
density

 9

continuum should be somewhere close to the deterministic end, but have some stochastic

characteristics. An arrow is placed in Figure 6 to represent a suitable place for the layout

algorithm, which is not far from deterministic algorithms to ensure efficiency, but at the same

time has stochastic elements introduced to enable global exploration.

random deterministic

RS GM

x x x

random deterministic

RS GM

x x x

random deterministic

RS GM

x x x

Figure 6. A brief continuum of layout search algorithms.

Various algorithms used in the layout problem are discussed in the next section. The pros

and cons of each algorithm are summarized and the corresponding positions on the continuum are

characterized.

3 Literature Survey

The layout problem can have different formulations, but it is usually abstracted as an

optimization problem. An assignment of the coordinates and orientations of components that

minimizes the cost and satisfies certain placement requirements is sought. The problem can be

viewed as a generalization of the quadratic assignment problem and therefore belongs to the class

of NP-hard problems (De Bont, et al., 1988). Consequently it is highly unlikely that exact

solution to the general layout problem can be obtained in an amount of time that is bounded by a

polynomial in the size of the problem, resulting in prohibitive computation time for large

problems. Heuristic algorithms are typically used to generate acceptable solutions.

Much of the literature concerns with simpler two-dimensional rectangular layout and three-

dimensional cuboid layout. Circuit board layout and glass or metal cutting applications are

examples of 2-D rectangular layout. Shipping container stuffing and vehicle loading are typical 3-

D cuboid layout problems.

While it is possible to solve rectangular layout problems with a small number of objects of

a few sizes using linear programming or branch and bound approaches (Dyckhoff 1990), the

combinatorial and geometrical complexity makes it hard to obtain optimal solutions to the general

 10

3-D layout problem efficiently. Certain approximations of arbitrary shapes of objects may be

necessary, and heuristics are often used to guide the search for good solutions.

Recent research efforts have led to several approaches for the layout of 3-D objects of

complex geometry. The genetic algorithm approaches (Ikonen et al. 1997), simulated annealing

approaches (Kolli et al. 1996, Cagan et al. 1998), a hybrid approach using a combination of

simulated annealing and expert systems (Hills and Smith, 1997), and an extended pattern search

approach (Yin and Cagan, 2000a; Yin and Cagan, 2000b) are among the ones that have shown

promise.

This section reviews the related work in layout optimization, with a focus on the following

two key aspects: 1) the optimization algorithms used for the exploration of the design space and

the identification of good solutions; and 2) the geometric representation for 3-D components of

complex shapes and the interference evaluation techniques.

3.1 Layout Search Algorithms
A variety of optimization algorithms have been applied to the layout problem. Some of the

approaches may be efficient for specific types of problems, but often place restrictions on

component geometry, allowable degrees-of-freedom, and the objective function formulation.

Others are applicable to a wider variety of problems but may require prohibitively long

computing time to solve even simplistic problems. Layout algorithms can be classified into

different categories according to search strategies used for design space exploration. Heuristic

rule-based algorithms, traditional optimization algorithms, genetic algorithms, simulated

annealing algorithms, extended pattern search algorithms, and hybrid algorithms are discussed in

this section. The emphasis is on the mechanical and electro-mechanical applications. The topic

presented in this section corresponds to the building block of the optimization search algorithm

shown in Figure 1.

3.1.1 Heuristic Rule-Based Approaches

Heuristic rule-based algorithms are often used in operations research to solve packing

problems. Dowsland and Dowsland (1992) presented a survey of packing problems. The basis for

heuristic rule-based algorithms is a set of rules to determine efficient packing of boxes into

containers without any additional restrictions. Since the solution space is large, it is important that

the search for good solutions is not so exhaustive as to require inordinate amount of computing

time.

 11

Heuristic rules are often derived from common sense or experiences and they can provide

insights into the mechanisms behind efficient packing. For example, practical constraints such as

load stability and ease of loading can be incorporated into the rules instead of being checked after

the completion of the packing.

Although heuristics can be fairly simple, the range of possible adjustments that may be

utilized in order to provide improved packing can be considerable. It is clearly not possible to try

all variations of all placement rules and it is difficult to know which are most likely to lead to

effective packing for a specific problem. Since heuristics are likely to be domain-dependent, it is

important to match one’s requirement to the heuristic’s capabilities.

Wang (1983) presented an approach to two-dimensional rectangular packing by

successively “gluing” together pairs of rectangles to produce a set of feasible subsolutions. For

the non-rectangular packing, the geometric complexity of placing the pieces directly onto the

stock sheet is generally prohibitive. Adamowicz and Albano (1976) and Israni and Sanders

(1985) proposed an approach to first nest the pieces into regular modules.

The wall-building approaches (George and Robinson, 1980, Bischoff and Marriott, 1990)

are the common methods to deal with 3-D cuboid packing problems. Sections of a container

across the full width and height are packed first. Identical items are grouped together to develop

layers. An ordering of boxes based on decreasing volume (Gehring et al., 1990) is used to develop

layers.

Dai et al. (1994) proposed a heuristic algorithm for the generation of three-dimensional

non-cuboid packing. An octree representation (Dai and Cha, 1994a) was used to approximate the

geometry of the components. The packing algorithm is based on the idea of matching the octree

nodes to identify the proper order and orientation of the components. The objects are packed into

the container sequentially and only rotations of multiples of 90 degrees are allowed. The method

is quite effective in cases where the total volume of packed items is much smaller than that of the

container but not for problems with tight packing.

Heuristic algorithms are deterministic methods that are efficient for specific types of

problems. However, it is difficult to generate rules applicable for components of irregular shapes

or optimize objectives other than the packing density. These algorithms are typically

deterministic, falling to the left on the continuum of Figure 6.

 12

3.1.2 Traditional Optimization Approaches

Traditional optimization algorithms, such as branch & bound methods, linear programming

methods and gradient-based algorithms, can be used to solve a narrow class of packing problems

efficiently.

Scheithauer and Terno (1995) presented a branch & bound algorithm to compute optimal

solutions for instances of the one-dimensional cutting stock problem, where the objective

function and constraints are linear functions of the design variables. Beasley (1985) proposed a

linear optimization method with 0/1-variables for the two-dimensional non-guillotine cutting

problem of rectangular objects using a Lagrangean relaxation and a subgradient iteration to

compute upper bounds. Only translations of the objects are allowed in these methods. Models for

the general cases where rotations are used are not linear. For packaging applications, except some

simpler problems (such as the 1-D bin-packing problem), it can be challenging to find a feasible

solution to start with. The performance of the algorithm degrades as the problem size increases.

Gradient-based algorithms use gradient information in seeking the optimal solutions. By

calculating the gradient of the objective function and then searching in the negative direction, we

can limit the search to a specific direction. Since the objective function is often nonlinear, a new

direction at a new state needs to be calculated and the process to be repeated a number of times.

The gradient information provides some insight into choosing reasonable search directions. In the

cases where analytical gradient information is unavailable, finite-difference approximations may

be used.

Landon and Balling (1994) used gradient-based methods to place and orient 3-D solid

objects within containers according to spatial and mass property criteria. The gradients of the

mass properties are calculated by differentiating the appropriate formula with respect to the

design variable being considered. The objects are modeled using a boundary representation. The

minimum separation distance between a pair of objects is found by searching for the closest two

points within the two respective solids. The interference distance is calculated as the distance by

which an object needs to translate away from the other object in a specified direction until the two

objects barely touch. Both distances are computed by solving a constrained optimization problem.

Newton’s method is used to return to the constraint boundary.

Kim and Gossard (1991) formulated the packaging task as a constrained optimization

problem. The objective function is an aggregate “energy” function composed of packaging goals

 13

and penalty functions. Packaging goals can be described as spatial relationships among

components. Two common spatial relationships are near and far relationships. They can be

conceptualized as a translational spring attached to the two objects. The near relationship tends to

move an object toward another object, and the far relationship holds when the spring behaves like

a repulsive spring. The near relationship is useful for a compact package and far relationship is

applicable when an object may be influenced by proximity to another object such as through heat

transfer or electromagnetic interference. The coplanar, coaxial and parallel relationships are

represented as equality constraints. This formulation of the packaging problem results in an

underdetermined system containing more variables than equations. Variables that are not

determined by equality equations are computed through energy minimization.

In Kim and Gossard’s work, the solid modeler uses a dual representation of the objects: a

boundary representation and a constructive solid geometry (CSG) tree. The boundary

representation is useful for specification of constraints and the CSG tree’s half-space

representation specifies a solid by unions and intersections of multiple half-spaces. The

interference between objects is approximated by the translation necessary to eliminate the

interference. The non-interference constraint as an energy function can be minimized but may not

be avoided entirely. When the number of objects is large and spatial relationships are complex,

the computational problems of convergence and efficiency may arise and the constraint

management can be difficult.

Gradient-based algorithms are deterministic methods (to the far left on the continuum

shown in Figure 6) that can significantly reduce the computation time required to converge to an

optimal solution by limiting search to promising directions. However, the solution is only the

nearest local optimum with respect to the initial design. Multiple runs from different starting

points may be necessary because of the fractalness of the layout space. When explicit gradients

are not available, which is the case for many layout problems, forward difference approximations

may not be accurate and thus may have misleading effects on the search.

3.1.3 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based upon natural selection. The first step

in using GAs is to code the problem space. The design variables are mapped into chromosomes

by a fixed length string of symbols. It is assumed that each individual string represents a unique

point in the search space. In each iteration of the search process, a population of strings that

represent a family of the current possible solutions is maintained. The selection, mutation and

 14

crossover operators are used to create the new generation of solutions. A fitness function

evaluates the designs and decides which will be the survivors into the next generation. Selection

is accomplished by copying strings from the last generation into the new generation based on a

fitness function value. Mutation is the process of randomly changing one bit of information in the

string and it prevents GAs from stagnating during the solution process. Crossover is responsible

for introducing most new solutions by selecting two parent strings at random and exchanging

parts of the strings.

GAs have been used in VLSI placement and routing (Schnecke and Vornberger, 1996;

Cohoon and Paris, 1986) and two-and-a-half dimensional cuboid packing (Wodziak and Fadel,

1994). Dighe and Jakiela (1995) used GAs to pack 2D polygons by "dropping" them into a

container. Ikonen et al. (1997) used GAs to pack 3-D non-convex objects into a cylindrical

container for rapid prototyping. In his approach, three pieces of information are represented: 1)

the order in which parts are placed; 2) the orientation of each part; and 3) how parts spatially

relate to each other. Each chromosome is a list of three sublists of integers. The first sublist is a

permutation of part numbers being packed. The second sublist is the orientation list, which

indicates the rotation of each part. To reduce the search space, the number of allowed rotations is

restricted to 45-degree increments around each coordinate axis. The third sublist is the list of pre-

defined attachment points on the previous part in the permutation sublist the current part is

attached to. Crossovers are used between the same type of sublists and a higher mutation rate is

used for the orientation list to prevent some orientation values leading to a non-promising packing

from being removed from the gene pool too soon. The fitness function uses a penalty-function

method where infeasible solutions are given a penalty to indicate how much the defined

constraints are violated. The calculation of intersection between objects is based on the

intersection of triangles on the tessellated surfaces of the objects. To reduce the number of

triangles to be checked in the intersection calculation, the bounding boxes of the objects and

triangles are checked first for intersection.

The search space for layout is highly discontinuous and multi-modal. How well a genetic

algorithm does on such a space depends on the evaluation function used and how well it is able to

differentiate between promising and poor solutions. It has been observed that even a small change

in the weight factors of the evaluation function can make a big difference to the results a genetic

algorithm is able to obtain. A small change in a chromosome can also make a great difference in

the packing solution. For example, layouts with objects slightly disoriented from a good packing

plan can produce a very low score. Also, it is not easy to choose good mutation and crossover

 15

rates to make the algorithm converge properly. The intersection calculation based on pairs of

triangles is accurate, but may be very slow when the objects are of complex shape and thus the

number of surface triangles is numerous. Further, the process would be more complicated if

arbitrary rotations of objects were considered.

GAs are stochastic algorithms that have a lot of randomness built in; thus they are placed

close to the random end on the continuum. They are zero-order algorithms that require function

values only. They are reliable and can deal effectively with non-smooth and discontinuous

functions. The price paid for this generality is that these methods often require a large number of

function evaluations to achieve an optimum, even for the simplest of problems. Therefore, they

are considered most useful for problems in which the function evaluation is not computationally

expensive. The strength of GAs is their robustness, which is mainly caused by the fact that they

deal with a sample of candidate solutions at a time and utilize probabilistic transition rules.

However, the coding and decoding processes can be very long if the number of objects is large.

Also, there are often limitations in the processes to make the search space manageable. The

quality of solutions is dependent on the weight factors in the evaluation function and the relative

ratio of the selection, mutation and crossover operators, however it is not obvious how to choose

the values that can lead to a good solution for a specific problem.

3.1.4 Simulated Annealing Algorithms

Simulated annealing (Kirkpatrick et al. 1983) is a generally applicable stochastic technique

based on the analogy between simulating the metallurgical annealing process and solving large

combinatorial optimization problems. Within the algorithm an initial design state is chosen and

the value of the objective function for that state is evaluated. A step is taken to a new state by

applying a move, or operator, from an available move set. This new state is evaluated; if the step

leads to an improvement in the objective function, the new design is accepted and becomes the

current design state. If the step leads to an inferior state, the step may still be accepted with some

probability. This probability is a function of a decreasing parameter called temperature, based on

an analogy with the annealing of metals, given by:

T
ÄC

accept eP
−

= , (2)

where ∆C is the change in objective function due to the move and T is the current temperature.

The temperature starts out high and decreases with time. Initially, steps taken through the state

 16

space (and therefore the objective function space) are almost random, resulting in a broad

exploration of the objective function space. As the probability of accepting inferior steps

decreases, those steps tend to get rejected, allowing the algorithm to converge to an optimum

once promising areas of the objective function space have been found.

Applications of SA algorithms require specifications of three distinct items (De Bont et al.

1988): 1) a concise problem representation; 2) a transition mechanism; and 3) a cooling schedule.

The problem representation consists of a configuration representation and an expression for the

cost function. The cost function represents the cost effectiveness of different layouts. The

transition mechanism generates a new configuration from a current one. The difference in cost

between the two configurations must be calculated and a decision is made whether or not the new

configuration is to be accepted. The cooling schedule is used to control the temperature in the

algorithm, and specify the starting value, decrement function, length of generation and the

stopping criterion.

Simulated annealing algorithms have shown great success in circuit layout (Sechen, 1988;

Wong, et al., 1988; Rutenbar, 1989; Hustin and Sangiovanni-Vincentelli, 1987) and significant

work in the mechanical component layout area was motivated by the circuit layout technology.

Jajodia, et al., (1992) presented a solution to inter-cell and intra-cell layout problems using SA,

which addressed the relative placement of equal-dimensional manufacturing entities within a

discrete solution space in an attempt to minimize the total material flow between these entities.

The performance of the SA algorithm was compared to other facility layout methods and shown

to yield either equal or better quality for each of a set of classical test problems. The quality of the

SA approach is insensitive to the initial starting states.

Cagan (1994) presented an approach using a combination of shape grammars (Stiny, 1980)

and simulated annealing to solve the constrained geometric knapsack problem. A 2-D packing of

half-hexagons into knapsacks of various shapes is solved in polynomial time and space

complexity.

Szykman and Cagan (1995, 1997) extended the technology from 2-D VLSI to 3-D

mechanical and electro-mechanical layout. Their approach can deal with blocks and cylinders

with rotations constrained to multiples of 90 degrees. A perturbation-based approach was used in

which infeasible states with component overlap and constraint violations were allowed and

penalized. The move set includes translation, rotation and swap moves. An adaptive annealing

 17

schedule (Huang et al., 1986) was used to control the temperature, and a probabilistic move

selection strategy (Hustin and Sangiovanni-Vincentelli, 1987) was used to choose moves based

on their prior performance. The objective function consists of a weighted sum of multiple

performance measures. Several types of spatial constraints that are characteristic of layout

problems are defined. These include the global and relative constraints on component locations

and orientations.

An integrated approach to 3-D layout and routing was introduced in Szykman and Cagan

(1996) and Szykman et al. (1998). Routing problems are abundant in engineering applications

such as routing of pipes, wires and air ducts. The routing cost can be influential in the

manufacturing of certain products such as HVAC (Heat, Ventilation and Air Conditioning)

products. Taking the routing cost into account during the component placement stage of the

layout could significantly improve the quality and reduce the cost of the product layout.

The specification of a routing task consists of locations of a pair of terminals that must be

connected for each route. The routing moves include adding, removing, or relocating a bend. The

adding move selects a route and inserts a new bend at a random location. The remove move

selects a route and randomly deletes one of its bends. The relocation move changes the location of

a bend by moving it along a direction by some distance. The layout and routing are carried out

concurrently. In addition to the layout cost terms, the routing cost (route length and number of

bends) and the component-route intersection penalty terms are included in the objective function.

The experiments showed that concurrent layout and routing results in superior solutions over the

typical layout-then-route approach.

Kolli et al. (1996) extended the work of Szykman and Cagan by relaxing the restrictions on

component geometry and rotations. The component geometry can be imported from

commercially available CAD packages and octree representations are used for quick interference

evaluation between components of complex shapes. The octree resolution level to be used at a

particular stage of the annealing algorithm can be adjusted to make the algorithm more efficient.

At higher temperature, the annealing process essentially performs a random walk through the

design space and hence does not require a very accurate estimate of the objective function. At low

temperatures the probability of accepting an inferior state is much lower and only moves that lead

to a better state are likely to be accepted, thus more accurate evaluations are necessary. Several

test problems are solved, which include the cube packing and cogwheel packing problems. Cagan

et al. (1998) further extended the work to include constraint satisfactions.

 18

Simulated annealing is a general method for a wide variety of combinatorial problems. The

method is flexible as well as powerful. Sorkin (1991) has revealed that the behavior of simulated

annealing depends heavily on the “energy landscape” associated with the optimization problem.

The success of annealing relies on the overall energy difference of collections of states being

large compared with the barriers dividing these collections. A large number of evaluations are

necessary for SA to converge to good solutions. When the objective function is complex, the

computation can be expensive and time-consuming. Certain approximations of the actual analyses

may be necessary in order to obtain solutions in reasonable time. Campbell et al. (1997) used a

hierarchical heat transfer analysis to reduce the computational time of the placement of heat

generating electronic components.

SA algorithms are essentially random during the initial stages of the search and become

more deterministic as the temperature decreases. SA algorithms can be placed near to but to the

left of GAs on the continuum.

3.1.5 Extended Pattern Search Algorithms

Pattern direct search algorithms are a subset of direct search algorithms introduced by

Hooke and Jeeves (1961). Direct search methods are defined as the sequential examination of trial

solutions involving comparison of each trial solution with the “best” obtained to that time

together with a strategy for determining (as a function of earlier results) what the next trial

solution will be. Torczon and Trosset (1997) surveyed the history of pattern search methods and

provided some practical suggestions for utilizing them. The search algorithms follow a series of

exploratory moves defined by pattern matrices to walk through the design space and search for a

stationary point. They rely exclusively on direct comparisons of function values during the search

and thus provide a tool suitable for the exploration of a design space that is nonlinear and

discontinuous, as is the case of the layout problem.

A basic pattern search method proceeds as follows: An initial state is chosen, and the

objective function for that state is evaluated. A step is taken to a new state by applying a move

along a pattern direction by a specified step length. The objective function is evaluated again at

the new state. The two evaluations are compared, and the better one is chosen; the corresponding

state is accepted as the current state. The search continues from the current state along the next

pattern direction, following the same criteria of the new state acceptance. After an iteration of

explorations along all the pattern directions, the step length is either carried into the next iteration

if at least one previous move has led to a better new state, or scaled by a factor that is less than 1.

 19

The search stops when the step length is smaller than a pre-specified tolerance. Individual pattern

search methods are characterized by the choices of exploratory moves by which the search

directions and step size are defined.

Pattern search methods exhibit several attractive features that suggest they can be the

methods of choice for nonlinear and non-smooth optimization problems. First, they are gradient-

related methods, but they do not rely on the evaluation of derivatives. This is desirable for the

cases where derivatives are either unavailable or unreliable. Secondly, pattern search methods

have good global behavior: a stationary point can be located by starting from an arbitrary initial

point. Finally, pattern search methods are straightforward and easy to use, which makes

implementation and parameter tuning a simple task.

Compared to the probabilistic hill-climbing methods of simulated annealing, pattern search

methods explore the design space in a more restrictive manner. The moves are allowed only along

the pattern directions. The step sizes are updated according to certain rules, with large steps used

early in the search and scaled down gradually during the search. These enable pattern search

methods to converge with fewer evaluations than simulated annealing does. But the greedy search

methods of pattern search cannot prevent the solution from being trapped in the inferior local

optima. Extensions need to be introduced to make the algorithm stochastic and enable it to escape

from inferior optima for a better design.

Five extensions (Yin and Cagan, 2000a) were introduced to the basic pattern search

algorithm to address the characteristics of the layout problem and help convergence to good

quality solutions. The extensions include: randomized search orders, constraint related search

directions, occasionally allowed step-jumps, strategically used swapping moves, and judiciously

chosen hierarchical models. The extended pattern search layout algorithm was applied to a series

of test cases and industrial applications (Yin et al., 1999) and shown one-to-two orders of

magnitude improvement in speed over a robust SA algorithm for solutions of equivalent quality.

Various pattern search heuristics have been incorporated into the algorithm to guide the search

along promising directions (Yin and Cagan, 2000b).

The extended pattern search algorithm moves components through the design space,

evaluates the design states, and makes decisions about the exploratory moves. The moves are

allowed only along certain directions defined by a pattern direction set. The pattern directions can

be updated according to the effectiveness of previous moves. The translation moves and rotation

 20

moves are interlaced. The swap moves are used only if a loop of translations and rotations at a

given step size fails to generate any improved state, creating a better chance for the search to

continue from a better design state. The order of selecting components for exploratory moves and

the search directions to move along is randomized, making the sequence of the moves less

deterministic to avoid getting trapped into certain local minima. The step size starts to be large

and is generally decreased over time. The search stops when a pre-specified minimal step size is

reached. Step jumps may be used to allow occasional increase in the step size that essentially

combines the local and global explorations and makes the search more exhaustive by delaying the

satisfaction of stop criteria. New design states are accepted as the current states whenever an

improvement in the objective function occurs, and the original state is retained if no such

improvement is found.

The extended pattern search algorithm is more deterministic than SA algorithms in terms

of the move direction, step size, and new state acceptance. However, it has stochastic elements

that help navigate the fractal space. It places no restrictions on objective function formulation and

thus is a generally applicable method, found left of center on the continuum.

3.1.6 Hybrid Approaches

Hybrid approaches take advantage of two or more search algorithms and combine them in the

problem solving. Dai and Cha (1994b) presented a hybrid approach of heuristic rules and neural

network algorithms to solve the two-dimensional rectangular layout. The 2-D packing problem is

mapped to a Hopfield neural network in which the heights and widths of the rectangles

represented by neurons and the unused area represented by an energy function. The heuristic rules

are based on the algorithm proposed by Coffman and Short (1990) to decide the packing order

and the orientation of the rectangles. Dai and Cha’s hybrid method was compared to three other

approaches: a pure heuristic method, a mixed discrete optimization method, and a simulated

annealing method. The pure heuristic algorithm has high stability, needs little computing time,

and is very robust in finding feasible solutions. However, it rarely gets superior quality solutions.

The performance of the mixed discrete optimization algorithm is poor and time-consuming

because of the existence of a large number of local minima for the packing problem. The

simulated annealing algorithm has the potential to get arbitrarily close to a global optimum, but is

terribly slow (note, however, that the authors did not discuss the type of annealing schedule they

had used; our conjecture is that they used a simple vanilla annealing schedule that would not

perform well). The hybrid method can find a good solution in reasonable time. The disadvantages

 21

of using artificial neural networks include their strict demands on the format of the energy

function and the difficulty in network parameter adjustment.

Smith et al. (1996) described an application using a combination of a simulated annealing

method and a knowledge-based system technique for spatial layout. Conflicting requirements

such as the usage of space, routings and adjacencies need to be negotiated in the design. The

knowledge-based system represents the design engineer's expertise to formulate problem

specifications and evaluate candidate solutions. The SA algorithm is used to generate initial

layout configurations for later manipulation by the knowledge-based system. A cellular

decomposition of the entire placement space is used. Because of this grid-like layout, non-

orthogonal rotations and translations of non-unit factor are not permitted, limiting the permissible

packing density.

The hybrid methods are placed around the center on the continuum: the neural network

algorithm and the SA algorithm introduce randomness into the layout process while the heuristic

rules and the knowledge system make the methods less stochastic.

3.1.7 Summary

Various layout algorithms are reviewed in this section. The continuum appeared in Figure

6 is shown again in Figure 7, with the positions for different algorithms marked.

random deterministic

RS GM

x x x

random deterministic

RS GM

x x x

random deterministic

RS GM

x x x x x x

GAs SA EPS HB

HR

Figure 7. A detailed continuum of the layout search algorithms.

As a recapitulation, heuristic rule (HR) based algorithms and gradient methods (GM) are

deterministic methods that are efficient for specific types of problems, but the solutions are likely

to be inferior local optima. Simulated annealing algorithms (SA) and genetic algorithms (GAs)

are stochastic methods that are applicable to a wide variety of problems. However, the large

amount of randomness makes the methods inefficient. Hybrid methods (HB) use stochastic

 22

methods to navigate the space and heuristic rules or knowledge-based systems to reduce the

search space, thus they are placed in the center on the continuum. The extended pattern search

(EPS) algorithm incorporates stochastic elements into an otherwise deterministic pattern search

method and thus is placed towards the deterministic end on the continuum.

3.2 Geometric Representation and Interference Detection
For the general three-dimensional layout/packaging problem, components can be of

complex geometry and the container space may not be substantially larger than the combined

spatial occupation of the components to be contained. For better exploration of the search space,

it is often desirable to allow objects to move through each other and penalize the degree of

overlap to drive the design into a feasible region. Since the interference calculation is performed

in each iteration and a large number of iterations are necessary for convergence to a good

solution, it is vital to choose an appropriate geometric representation scheme and an efficient

intersection detection algorithm.

Interference detection is a key issue to many applications such as computer animation,

virtual reality and robotic path planning. The solution strategy for this difficult problem has to be

decided considering a trade-off between accuracy and speed. In this section, the generic

representation schemes of 3-D geometry that are amenable in the layout and packaging

applications are reviewed. These include the boundary representation, the constructive solid

geometry, and the bounding volume and multi-resolution models. The topic in this section

belongs to the component representation, which is a part of the building block of the components

in Figure 1.

3.2.1 Boundary Representation

A boundary model represents the boundary surface of a three-dimensional object as a

collection of geometric entities such as vertices, edges, and faces. The data structure is based on

graphs that represent connectivity of the entities. The interference detection is through the pair-

wise intersection tests between lines and faces on the tessellated boundary surfaces. Boundary

models are the most popular internal representation of three-dimensional geometry in commercial

solid modeling systems. However, we often need to convert a boundary model to another

representation suitable for efficient intersection detection. The popular boundary representations

include vertex-based polygon models, edge-based boundary models, and winged-edge models.

 23

The simplest representation of a solid surface is a vertex-based polygonal model consisting

of lists of vertices and polygonal faces. If a face has holes, it has to be subdivided into a set of

simpler polygons with no holes. This representation has been widely used in many computer

graphics file formats. It stores an unordered list of vertices and an unordered list of faces, and

each face is represented as an ordered list of boundary vertices. It is important that boundary

vertices are ordered consistently, i.e., either counter-clockwise or clockwise, so that an

intersection detection algorithm can tell which side of a face is outside. This vertex-based model,

the simplest representation of solid objects, gives sufficient information to calculate intersections

between two solids. In the latest version of the virtual reality modeling language, VRML2,

collision detection is automatically performed between two solids represented using

IndexedFaceSet, which is essentially a vertex-based polygon model.

A vertex-based polygonal model does not have edge entities explicitly in its data structure.

This is because we assume that all the edges are straight lines and that all the faces are planar

faces. If these assumptions do not apply, edges should be explicitly represented in the data

structure so that the geometric information of a curved edge can be associated with each edge

entity in the database.

An edge-based boundary model consists of: 1) an unordered list of vertices, 2) an

unordered list of edges, each of which has an ordered pair of two end vertices, and 3) an

unordered list of faces, each of which has an ordered list of edges.

While the vertex-based models and edge-based models are sufficient and convenient for a

simple rendering system, higher level geometric operations such as Boolean set operations and

intersection detection can benefit from more information on the topological connectivity among

the geometric entities. Although this same information can be derived from a vertex-based

polygon model or an edge-based boundary mode, if the information is required repeatedly in

performing geometric operations we can save computational time for the operations by explicitly

representing this information on the topological connectivity.

How much topological information should be represented? If we represent too much

information, maintaining and updating such information can become a computational bottleneck.

The optimal choice of how much information should be stored in the data structure depends on

the types of geometric operations we perform, but in many geometric operations like intersection

 24

detection the so-called “winged-edge” data structure and its variations are known to be good

choices.

Baumgart first introduced the winged-edge data structure in his Ph.D. thesis (Baumgart,

1974) as a convenient data structure for polyhedral objects for computer vision. It is a kind of

edge-based data structure, but each edge entity has more pointers to: 1) the two end vertices; 2)

four adjacent edges; and 3) two faces that share the edge.

3.2.2 Constructive Solid Geometry Representation

In constructive solid geometry (CSG), a solid is represented as a combination of primitives,

or building blocks, such as cuboid, cones, cylinders, spheres, tori, prisms, and so on. The

motivation for decomposing a component into a set of primitives is that the intersection tests

between the simple-shaped primitives are much faster than the tests between the complex original

geometry. Three essential elements of CSG besides primitives are: 1) rigid transformation, 2)

regularized Boolean set operations, and 3) binary tree structures (Mortenson, 1997).

Primitives are first scaled based on specified dimensions, then transformed by a rigid

motion, or a combination of translations and rotations, and finally merged together by regularized

Boolean set operations: 1) union, 2) intersection, 3) difference, and 4) complement. Because the

final geometry changes depending on the order of the operations performed, this order of

operations is stored in a binary tree structure. CSG is conceptually straightforward and many solid

modeling systems use the representation as one of the modeling user interfaces.

3.2.3 Bounding Volume and Multi-Resolution Representation

The exact interference calculations using the boundary representation or CSG

representation may not be computationally efficient since the number of pairs of primitives on the

tessellated surfaces or primitives in CSG representation can be huge if the components are of

complex geometry and in close proximity. The bounding volume and multi-resolution models are

often used to approximate the actual geometry and perform the intersection detection quickly

without significant compromise in accuracy in order to solve the problem in reasonable time.

Further, hierarchical models work well in stochastic layout methods in that more accurate

interference analysis can be done at lower levels of the hierarchy while rough analysis useful in

the early stages of these algorithms can be done at higher levels. The most often used bounding

volume and multi-resolution representations include sphere tree, octree, and OBB tree.

 25

The key to the sphere tree representation is that the symmetries of an object around its

skeleton suggest ways to place spheres for a tight approximation. Hubbard (1995) used sphere

hierarchies to compute time-critical intersection detection in a virtual environment. The first step

in the sphere-tree construction is to build the medial-axis surface (Goldak et al., 1991) or skeleton

of the object. The method distributes points over the surface of the object and builds Voronoi

diagrams for the points. The corners of the Voronoi cells define the centers of spheres that closely

fit the object. Repeatedly merging adjacent pairs of spheres reduces the number of spheres for a

desired level of detail. For each pair of objects whose bounding spheres have intersection, the

intersection detection method descends the pair’s hierarchies and tests only child spheres whose

parents intersect.

Using spheres as the basis of approximation (Hubbard, 1996; Palmer and Grimsdale, 1995)

works well in a wide range of situations. Spheres are rotationally invariant, which makes the

testing computationally efficient. However, broad, flat objects may pose problems in that many

spheres are necessary to approximate such objects. Also, the pre-process that builds the medial-

axis surface is difficult to implement and slow to run.

Octrees represent a solid using spatial-occupancy enumeration (Mortenson, 1997). The

representation starts with an axial-aligned bounding box of the original object, and the box is

recursively subdivided into eight octants. If any of the resulting octants is full or empty, there is

no need to subdivide it further. The partially full octants are recursively subdivided until the

resulting octants are full or empty, or until a pre-specified level of resolution is reached.

The cost of testing a pair of octants for interference is small and the degree of interference

is easy to quantify, which is desirable for fast interference evaluation. However, for some

geometry, such as a set of long-thin oriented polygons, it may take more levels of octrees to fit

the object tightly.

An oriented bounding box (OBB) tree (Barequet, et al., 1996) is a rectangular bounding

box at an arbitrary orientation. The primary motivation for using OBB is that, by virtue of their

variable orientation, they can bound a geometry more tightly than octrees and sphere trees.

Therefore, fewer levels of an OBB tree need to be traversed to process the collision detection for

objects in close proximity. Gottschalk et al. (1996) developed efficient algorithms for computing

the hierarchies of tight-fitting OBBs for unstructured models and for the rapid checking of the

overlap between two OBB trees.

 26

The placement of a tight fitting OBB around a collection of polygons makes use of first

and second order statistics summarizing the vertex coordinates. Two of the three eigenvectors of

the covariance matrix are used to determine the axes along which the box is aligned. After the

tight-fitting OBBs are computed, they are represented hierarchically using a top-down approach,

which subdivides the longest axis of a box and partitions the polygons according to the splitting

axis. The overlap test between two OBBs uses a separating axis theorem, which projects the

boxes onto a set of axes. An axis is called a separating axis if the intervals by the projection of

two boxes do not overlap. Two objects are disjoint if at least one separating axis exists. OBBs are

efficient for detecting interference, but it is difficult to quantify the degree of interference.

It is clear that no hierarchical representation gives the best performance all the time. The

total cost of interference detection varies considerably with the relative placement of the objects.

The choice of the primitive shapes to construct a hierarchical tree is governed by two conflicting

constraints. On the one hand, the model should fit the original object as tightly as possible. On the

other hand, testing two such models for overlap should be as fast as possible. Simple primitives

like spheres and octrees do very well with respect to the second constraint. However, they cannot

fit long, thin objects tightly. OBBs provide tight fits, but checking for overlap between them is

more expensive. Generally speaking, when objects are far apart, hierarchical representations

based on spheres and octrees work well in practice, while OBBs are more computationally

efficient when two objects are in close proximity.

4 Conclusions

Various optimization search algorithms and their representative layout implementations are

summarized in this paper. Heuristic rule-based approaches and traditional optimization techniques

can be used to solve a narrow class of layout problems efficiently, but they are not suitable for

problems with nonlinear, non-differentiable objective and constraint functions. Stochastic

algorithms such as GA and SA algorithms are applicable to the general layout problem. However,

a large number of iterations may be necessary to achieve good convergence and the computation

can be expensive if the objective function evaluation is time-consuming.

How much randomness should a layout algorithm contain? On the one hand, it is beneficial

to make use of the gradient information and go along with the downhill directions until an

optimal solution is found. On the other hand, it is very unlikely that a solution so found is of good

quality because of the multi-modal and fractal-like design space. A proper balancing of

deterministic and stochastic search techniques is necessary for the efficient and effective

 27

exploration of the layout space. The extended pattern search algorithm demonstrated substantial

time-savings over a robust SA algorithm while obtaining good quality solutions through such a

balancing. The algorithm achieves efficiency by reducing the number of search directions to a

minimal size while still maintaining a sufficiently rich set of search directions to capture the

direction of steepest descent. The step size adjustment and the swap moves allow some “jumping

around” in the layout space to address its fractal characteristics. Domain-specific knowledge and

heuristics can be incorporated into the algorithm to help reduce the search space and improve

efficiency.

Geometric representation and interference detection are an important part of the design

evaluation for the layout of 3-D components of complex geometry. While there is no single

representation that performs best for all cases of interference tests in the layout/packaging

problem, it is recommended to consider the following observations in choosing a geometry

representation most suitable for a specific problem:

• In virtually all cases, the usage of some kind of bounding volumes will help reduce the

computational cost of interference tests;

• Unless a component’s geometry is identical to that of the bounding volume, box or

sphere, use hierarchical versions of bounding volumes;

• If a component’s geometry has a strong directionality, or is aligned to the three

orthogonal axes for example, as in the case of most automobile components, use octrees

for computational efficiency and representation simplicity;

• If a component’s geometry is arbitrarily shaped and its orientation is not axis-aligned, use

oriented, hierarchical bounding volumes, such as OBB trees and spherical trees;

• When arbitrarily shaped objects need to be tightly packed, it is more efficient to use

polygonal models in addition to bounding volumes. A rough interference test should

follow using bounding objects, while a detailed interference test should be performed

using a polygonal model;

• The levels of detail of polygon models should be decided based on how tightly the

objects need to be packed.

 28

Regardless of the types of geometric representations chosen for specific applications, the

corresponding interference testing routines can be interchangeable for a general layout algorithm.

A great deal of research efforts has been devoted to the development of computational

layout approaches and technology is now available for the automated layout synthesis. Future

research directions include the incorporation of domain-specific knowledge into the layout

algorithm to make the problem solving process more efficient and the creation of seamless

interfaces with solid modelers and analysis packages to facilitate the use of the layout tools in

practice.

References

Adamowicz, M., and Albano, A., 1976, “Nesting Two-Dimensional Shapes in Rectangular

Modules,” Computer Aided Design, 8, 27-33.

Barequet, G., Chazelle, B., Guibas, L., Mitchell, J.S.B., and Tal, A., 1996, “BOXTREE: A

Hierarchical Representation for Surfaces in 3D,” Proc. Eurographics ’96, pp. 387-484.

Baumgart, B.G., 1974, Geometric Modeling for Computer Vision, Ph.D. thesis, Stanford

University.

Beasley, J.E., 1985, “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search

Procedure,” Operational Research, 33, 49-65.

Bischoff, E.E. and Marriott, M.D., 1990, “A Comparative Evaluation of Heuristics for Container

Loading,” European Journal of Operational Research, 44(2), 267-276.

Cagan, J., Degentesh, D., and Yin, S., 1998, “A Simulated Annealing-Based Algorithm Using

Hierarchical Models for General Three-Dimensional Component Layout,” Computer Aided

Design, Vol.30, No. 10, 781-790.

Campbell, M.I., Amon, C.H, and Cagan, J., 1997, “Optimal Three-Dimensional Placement of

Heat Generating Electronic Components,” ASME Journal of Electronic Packaging, 119(2):

106-113.

Coffman, E.G. Jr., and Short, P.W., 1990, “Average-Case Analysis of Cutting and Packing in

Two Dimensions,” European Journal of Operational Research, 44, 134-144.

 29

Cohoon, J.P., and Paris, W.D., 1986, “Genetic Placement,” Proc. of IEEE Int. Conf. On CAD, pp.

422-425.

Dai, Z., Cha, J., and Yuan, J., 1994, “An Octree Based Heuristic Algorithm for 3-D Packing,”

Advances in Design Automation 1994: Proceedings of the 20th ASME Design Automation

Conference, 2:125-133.

Dai, Z., and Cha, J., 1994a, “An Octree Method for Interference Detection in Computer Aided 3-

D Packing,” Advances in Design Automation 1994: Proceedings of the 20th ASME Design

Automation Conference, 1:29-33.

Dai, Z., and Cha, J., 1994b, “A Hybrid Approach of Heuristic and Neural Network for Packing

Problems,” Advances in Design Automation 1994: Proceedings of the 20th ASME Design

Automation Conference, 2:117-123.

De Bont, F.M.J., Aarts, E.H.L., Meehan, P. and O’Brien. C.G., 1988, “Placement of Shapeable

Blocks,” Philips Journal of Research, 43:1-22.

Dighe, R., Jakiela, M. J., 1995, “Solving Pattern Nesting Problems with Genetic Algorithms

Employing Task Decomposition and Contact Detection,” Evolutionary Computation,

Cambridge, Massachusetts, MIT Press, 3(3):239-266.

Dowsland, K.A., and Dowsland, W.B., 1992, “Packing Problems,” European Journal of

Operational Research, 56:2-14.

Dowsland, W.B., 1991, “Three-Dimensional Packing – Solution Approaches and Heuristic

Development,” International Journal of Production Research, 8:1673-1685.

Dyckhoff, H., 1990, “A Typology of Cutting and Packing Problems,” European Journal of

Operational Research 44, 145-59.

Gehring, H., Menschner, K. and Meyer, M., 1990, “A Computer-Based Heuristic for Packing

Pooled Shipment Containers,” European Journal of Operational Research, 44 (2), 277-

289.

George, J.A., and Robinson, D.F., 1980, “ A Heuristic for Packing Boxes into a Container,”

Computers and Operational Research, 7:147-156.

 30

Goldak, J.A., Yu, X., Knight, A., and Dong, L., 1991, “Constructing Discrete Medial Axis of 3-D

Objects,” International Journal of Computational Geometry and Applications, 1(3):327-

339.

Gottschalk, S., Lin, M.C., and Manocha, D., 1996, “OBBTree: A Hierarchical Structure for Rapid

Interference Detection,” Proc. SIGGRAPH ’96, pp. 171-180.

Hills, W., and Smith, N., 1997, "A New Approach to Spatial Layout Design in Complex

Engineered Products," Proceedings of the International Conference on Engineering Design

(ICED 97), Tampere, Finland, August 19-21.

Hooke, R., and Jeeves, T.A., 1961, “Direct Search Solutioin of Numerical and Statistical

Problems,” Journal of the Association for Computing Machinery, 8(2):212-229.

Hopfield, J.J. and Tank, D.W., 1985, “Neural Computations of Decisions in Optimization

Problems”, Biol. Cybern., 52, 141-152.

Huang, M.D., Romeo, F., and Sangiovanni-Vincentelli, A., 1986, "An Efficient General Cooling

Schedule for Simulated Annealing," ICCAD-86: IEEE International Conference on

Computer Aided Design - Digest of Technical Papers, Santa Clara, CA, November 11-13,

pp. 381-384.

Hubbard, P.M., 1995, “Real-Time Collision Detection and Time-Critical Computing,” Workshop

on Simulation and Interaction in Virtual Environment.

Hubbard, P.M., 1996, “Approximating Polyhedra with Spheres for Time-Critical Collision

Detection,” ACM Transactions on Graphics, 15(3):179-210.

Hustin, M.D. and Sangiovanni-Vincentelli, A., 1987, “TIM, a New Standard Cell Placement

Program Based on the Simulated Annealing Algorithm,” IEEE Physical Design Workshop

on Placement and Floorplanning.

Ikonen, I., Biles, W., Kumar, A., Ragade, R.K., and Wissel, J.C., 1997, “A Genetic Algorithm for

Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes,”

Proceedings of 7th International Conference on Genetic Algorithms.

Israni, S. and Sanders, J.L., 1985, “ Performance Testing of Rectangular Parts-Nesting

Heuristics,” International Journal of Production Research, 23, 437-456.

 31

Jajodia, S., Minis, I., Harhalakis, G., and Proth, J.M., 1992, "CLASS: Computerized LAyout

Solutions Using Simulated Annealing," International Journal of Production Research,

30(1):95-108.

Kim, J.J., and Gossard, D.C., 1991, "Reasoning on the Location of Components for Assembly

Packaging," Journal of Mechanical Design, 113: 402-407.

Kirkpatrick, S., Gelatt, C.D., Jr., and Vecchi, M.P., 1983, "Optimization by Simulated

Annealing," Science, 220 (4598): 671-679.

Kolli, A., Cagan, J., and Rutenbar, R.A., 1996, “Packing of Generic, Three Dimensional

Components Based on Multi-Resolution Modeling,” Proceedings of the 22nd ASME

Design Automation Conference (DAC-1479), Irvine, CA, August 19-22.

Landon, M.D. and Balling, R.J., 1994, "Optimal Packaging of Complex Parametric Solids

According to Mass Property Criteria," Journal of Mechanical Design, 116:375-381.

Mortenson, M.E., 1997, Geometric Modeling, John Wiley & Sons, Inc.

Palmer, I.J. and Grimsdale, R.L., 1995, “Collision Detection for Animation Using Sphere-Trees,”

Computer Graphics Forum, 14(2):105-116.

Peitgen, H.O. and Saupe, D., 1988, The Science of Fractal Images, Springer-Verlag, New York.

Rutenbar, R.A., 1989, "Simulated Annealing Algorithms: An Overview," IEEE Circuits and

Devices Magazine, Vol. 5, No. 1, pp. 19-26.

Scheithauer, G. and Terno, J., 1995, “A Branch & Bound Algorithm for Solving One-

Dimensional Cutting Stock Problems Exactly,” Aplicationes Mathematicae,23:2, 151-167.

Schnecke, V., and Vornberger, O., 1996, "An Adaptive Parallel Genetic Algorithm for VLSI-

Layout Optimization," 4th Int. Conf. on Parallel Problem Solving from Nature.

Sechen, C., 1988, VLSI Placement and Global Routing Using Simulated Annealing, Kluwer

Academic Publishers, Boston.

Smith, N., Hills, W. and Cleland, G., 1996, “A Layout Design System for Complex Made-to-

Order Products,” Journal of Engineering Design, Vol. 7, No. 4, 363-375.

 32

Sorkin, G.B., 1991, “Efficient Simulated Annealing on Fractal Energy Landscapes,”

Algorithmica, 6:367-418.

Sorkin, G.B., 1992, Theory and Practice of Simulated Annealing on Special Energy Landscapes,

Ph.D Thesis, University of California at Berkeley.

Szykman, S., 1995, Optimal Product Layout Using Simulated Annealing, Ph.D Thesis, Carnegie

Mellon University.

Szykman, S., and Cagan, J., 1995, “A Simulated Annealing Approach to Three-Dimensional

Component Packing,” ASME Journal of Mechanical Design, 117(2A):308-314.

Szykman, S., and Cagan, J., 1996, "Synthesis of Optimal Non-Orthogonal Routes,” ASME

Journal of Mechanical Design, 118(3):419-424.

Szykman, S., and Cagan, J., 1997, "Constrained Three Dimensional Component Layout Using

Simulated Annealing,” ASME Journal of Mechanical Design, 119(1):28-35.

Szykman, S., Cagan, J., and Weisser, P., 1998, "An Integrated Approach to Optimal Three

Dimensional Layout and Routing,” ASME Journal of Mechanical Design, 120(3):510-512.

Talukdar, S.N. and deSouza, P., 1994, “Insects, Fish and Computer-Based Super-Agents,”

Systems and Control Theory for Power Systems, Vol. 64.

Torczon, V., 1992, “PDS: Direct Search Methods for Unconstrained Optimization on Either

Sequential or Parallel Machines,” CRPC Technical Report: CRPC-TR92206, Center for

Research on Parallel Computing Rice University, Houston, TX

Torczon, V., 1997, “On the Convergence of Pattern Search Methods,” SIAM Journal on

Optimization, 7(1):1-25.

Torczon, V. and Trosset, M., 1997, “From Evolutionary Operation to Parallel Direct Search:

Pattern Search Algorithms for Numerical Optimization,” Computing Science and Statistics,

Vol. 29.

Wang, P.Y. (1983), “Two Algorithms for Constrained Two-Dimensional Cutting Stock

Problems”, Operational Research 31, 573-586.

 33

Wodziak, J.R. and Fadel, G.M., 1994, “Packing and Optimizing the Center of Gravity Location

Using a Genetic Algorithm,” Journal of Computers in Industry.

Wong, D.F., Leong, H.W., and Liu, C.L., 1988, Simulated Annealing for VLSI Design, Kluwer

Academic Publishers, Boston.

Yin, S., and Cagan, J., 2000a, “An Extended Pattern Search Algorithm for Three-Dimensional

Component Layout,” ASME Journal of Mechanical Design, 122(1):102-108.

Yin, S., and Cagan, J., 2000b, “Exploring the Effectiveness of Various Patterns in an Extended

Pattern Search Layout Algorithm,” to appear in Proceedings of the 2000 Design

Engineering Technical Conferences, ASME, DETC2000/DAC-14254, Baltimore, MD,

September 10-13.

Yin, S., Cagan, J., Hodges, P., and Li, X., 1999, “Layout of an Automobile Transmission Using

Three-Dimensional Shapeable Components,” submitted to ASME Journal of Mechanical

Design, also in Proceedings of the 1999 Design Engineering Technical Conferences,

ASME, DETC99/DAC-8564, Las Vegas, NV, September 12-15.

