
SketchSketch--based Template Creation based Template Creation SketchSketch based Template Creation based Template Creation 
for Early Automotive Stylingfor Early Automotive Styling
L  B k K  & K ji Shi dLevent Burak Kara & Kenji Shimada
Carnegie Mellon University
D b  2007December 2007



IntroductionIntroductionIntroductionIntroduction
Support early automotive styling

D  k h l   h  d◦ Designers sketch early in the design
◦ Cannot realize the concept in 3D 

Create 3D shape from 2D sketches
◦ Rapidly convert sketches into 3D shape

N  d f  d d d li  kill◦ No need for advanced modeling skills

Approachpp
◦ User marks points on a sketch
◦ Modify a 3D template to match the sketch

3D D   th   t l t  ◦ 3D Draw on the new template 



Major Advances since July 2007Major Advances since July 2007Major Advances since July 2007Major Advances since July 2007
Renewed car templates
Improved camera calibration algorithm
Optimization-based template deformation
Edge design using pen strokes
Simplified vertex/tangent manipulation
Post-Dimensioning
Curve creation and styling on template
Case examples for sedan/hatchback/minivan
Paper submitted to CAD 08 conference



System OverviewSystem OverviewSystem OverviewSystem Overview
User marks fiducial points

Template alignment

Template Deformation

Impose continuity and shape constraintsImpose continuity and shape constraints

Edge manipulation

Dimensioning

Styling



Automotive TemplatesAutomotive TemplatesAutomotive TemplatesAutomotive Templates

Generic car shapes without detailsp
◦ Fiducial nodes, including wheel centers (red)
◦ Cubic edges (black)g ( )
◦ Bi-cubic surface patches (gray)

39 fiducial nodes
62 edges
28 surface patches

41 fiducial nodes
66 edges
30 surface patches



User InputUser InputUser InputUser Input

User marks fiducial points on the sketchp
◦ UI widget guides the user
◦ User specifies only visible fiducialsp y
◦ Skips invisible ones

Marked fiducials



Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Align the template with the sketchg p
◦ Match template fiducials with users markers
◦ Template is not deformedp

Uses N-point camera calibration
◦ Best camera in the “Least Squares” senseBest camera in the Least Squares  sense

Input sketch and markers Template with uncalibrated camera Template with calibrated camera



Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Formulation [1][ ]
◦ User marks N fiducial points in the sketch (pp)
◦ We know the corresponding 3D nodes (PP) p g ( )
◦ Estimate camera properties

N4133333N3 xxxxx ][1 PTRΚp ⋅⋅⋅=Camera Model N4133333N3 s xxxxx ][ PTRΚp
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2D fiducial points 3D fiducial pointsIntrinsic camera properties (unknown)

β l  f  i  d di i  ( k )R, TR, T rotation/translation matrices (unknown)

s scale factor (unknown)

α, β scale factors in u and v directions (unknown)

u0,v0 camera center (unknown)

θ skew (radians) between u and v axes (unknown)



Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Introduce matrix MM: ][1
xxx4x 1333333 s

TRΚM ⋅⋅=

Compute MM from pp and PP using LDT [2]
Rewrite MM:

s

][ xx4x 13333 bAM =Rewrite MM:
Identify unknowns from A A and bb [3]

][ xx4x 13333 bAM

Where aa11, a, a22, a, a33 are the column vectors of AA.33

If ttz <0 , switch ss and reevaluate.



Template Alignment ExamplesTemplate Alignment ExamplesTemplate Alignment ExamplesTemplate Alignment Examples



Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Our new template alignment approach p g pp
provides much improved results 
compared to old, Bounding Box-based p g
approach

However, we are still looking ways to 
further improve thisfurther improve this



Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Elastically deform the templatey p
◦ Adjust template nodes in 3D such that:

(1) Template nodes match user’s markers in 2D
(2) The template has an acceptable 3D shape

3D template node
2D user markers2D user markers

Original, undeformed template Deformed template: red points match well with green points



Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Cost function to minimize:
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Minimizes mismatch in 2D Minimizes deviation from undeformed template
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3D positions of original wireframe nodes

3D positions of deformed wireframe nodes. This is what we are trying to 
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determine

3D wireframe nodes whose fiducial points are marked by the 
user

2D screen coordinates of user’s fiducial points 
1 }{ m

23:P RR → Function that projects 3D world coordinates to 2D image coordinates 
using the current projection matrix.



Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Cost function to minimize:
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◦ First term in H ensures that red dots match  
green dots in image plane.green dots in image plane.
◦ Second term ensures that deformed template 

deviates minimally from undeformed template.  y p
◦ We scale the two terms to make them 

magnitude-wise comparable.g p
◦ We take α=β=0.5



Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

There are 3n optimization parameters p p
(x,y,z for each node) where n is the 
number of template fiducials (i.e., redp (
nodes)

We use Sequential Quadratic 
Programming (SQP) technique to solve Programming (SQP) technique to solve 
the optimization problem.



Optimization ConstraintsOptimization ConstraintsOptimization ConstraintsOptimization Constraints

Symmetry constraints – Type Iy y yp
◦ For each symmetric node pair (15 pairs 

below), we have 3 linear equality constraints:
va.x = - vb.x

va.y =    vb.y

va.z =    vb.z y

x

v

vb

z
va



Optimization ConstraintsOptimization Constraints

Symmetry constraints – Type II

Optimization ConstraintsOptimization Constraints

y y yp
◦ For each node on symmetry plane (9 nodes 

below), we have 1 linear equality constraint:

vc.x = 0.00
y

x

zvc



Optimization ConstraintsOptimization Constraints

Shape soundness constraints

Optimization ConstraintsOptimization Constraints

p
◦ Optimization-based deformation can break 

common-sense rules about car shape
Inaccurate, cluttered markers (e.g. markers far from 
the camera) can yield erroneous shapes

Potentially inaccurate / 
unreliable markersunreliable markers



Optimization ConstraintsOptimization Constraints

Shape soundness constraints

Optimization ConstraintsOptimization Constraints

p
◦ Shape soundness constraints prevents non-

sensical shapes
> yz

vd.z > ve.z
ve.z > vf.z
vf.z > vg.zx

y
vd

ve vh
g

vh.z > vf.z
vi.z > vg.z

vf

vg

vi

◦ Similar constraints exist for rest of the car
◦ These constraints can be abandoned if desired



Edge RepresentationEdge RepresentationEdge RepresentationEdge Representation

Edges are represented as Cubic Beziers*g p
We maintain two interchangeable forms:
◦ (1) Four control polygon nodes, or(1) Four control polygon nodes, or
◦ (2)Two end nodes + two end tangents

vp vq

vs ve

q

ts
te

e

* Conventionally, Bezier curves are represented with 4 absolute points. In our case, the above interchangeable 
representation has been adopted for computational convenience. 

vs ve



GG11 ConstraintsConstraintsGG ConstraintsConstraints

Certain edges maintain G1 continuity at g y
all times
This enables natural looking curvess e ab es atu a  oo g cu ves

Colored Curves consist of G1 continuous edges

colinear

colinear

colinear



GG11 ConstraintsConstraintsGG ConstraintsConstraints

Algorithm for imposing G1:g p g
◦ Compute a weighted average direction:

)(,)1( avrgbaavrg normalize uttu −+=

◦ Adjust ta and tb to lie on uavrg, while 
maintaining their original magnitudes

t
,)1()(

,)(

avrgbb

avrgaa

mag

mag
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uavrg ta
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Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

We impose certain constraints p
immediately after template deformation

These constraints yield better shapes

G1 only G1 + DSC

Shapes immediately after template deformation



Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

Rounding DSCg

π/6
π/6 Rotation axis{-1,0,1}

π/6

/8
π/6

π/8

π/8

Rotation axis{1,0,-1}
y

x
z

Side panel edges are pulled out Front and rear corner edges are 
pulled out



Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

Coplanarity DSCp y

t2

•t3 forced to lie on the plane defined by t1 and t2
t1

2

t3 Si l t   l ll  ph i l t3

t4

Simulates a locally spherical corner

•Then, t4 forced to be coplanar with t3

Applied to two front and two rear corner edges



Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

Edges can be modified from arbitrary g y
viewpoints by sketching desired shape



Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

Edges can be modified from arbitrary g y
viewpoints by sketching desired shape



Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

For edge modification, we use a minimum g
surprise method similar to [1]
Algorithm:go t :
◦ Identify the intended curve to be modified

◦ Create a 3D surface S that starts at eye, extends into screen passing through pen strokes.

◦ Project points u=1/3 and u=2/3 of original 3D cubic curve onto S

◦ Use a four-point Hermite interpolation [4] to reconstruct the new cubic curve

S (invisible from the viewing point)

u=0/3
u=1/3 u=2/3

u=3/3 u=0/3

u=1/3 u=2/3

u=3/3u 0/3 u 3/3



Node/tangent ManipulationNode/tangent ManipulationNode/tangent ManipulationNode/tangent Manipulation

Template nodes can be manually adjusted p y j
by simple point-and-drag

N d   ll l t  t i  l◦ Nodes move parallel to current image plane
◦ Edge tangents are kept unchanged (by design)

S  i ll  d◦ Symmetry automatically preserved



Node/tangent ManipulationNode/tangent ManipulationNode/tangent ManipulationNode/tangent Manipulation

Tangents can be manually adjusted by g y j y
simple point-and-drag

◦ Tangent tips move parallel to image plane
◦ G1 preserved with neighboring edge
◦ Symmetry automatically preserved



Edge BeautificationEdge BeautificationEdge BeautificationEdge Beautification

Disfigured edges can be beautified by g g y
automatically applying: 
◦ (1) “annealing” (fit a simple, cubic chain to n( ) g ( p

nodes)
◦ (2) default shape constraints (DSC)

Template node positions are not modified, only the tangent vectors.

Disfigured edges Annealed edges Annealed + DSC edges



Surface RepresentationSurface RepresentationSurface RepresentationSurface Representation

Bicubic Coons patches [5]p [ ]
◦ Hi

3: Cubic Hermite interpolants
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Surface RepresentationSurface RepresentationSurface RepresentationSurface Representation

G1 edge continuity produces smoothly g y p y
blended surface patches



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Allows user to specify key dimensionsp y y
Preserves shape as much as possible
5 dimensions can be set WD: width5 dimensions can be set WD: width

HG: Height
LN: length
FO: Front overhang
WB: Wheel base

LN

WB: Wheel base

HG

WBFOWD



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

User enters desired values
Shape is automatically updated



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (1) Non-uniform scaling with WD, HG, LN

All nodes, edges and surfaces are scaled taking (0,0,0) as the origin
Ed   d  l B  f  ( b l   Edges are converted to conventional Bezier form (absolute positions 
of 4 control points) to take advantage of affine invariance

y news WD
=

x

y

z
old

xs
WD

=

old

new
ys

HG
HG

=

LN

HG
oldHG

old

new
zs

LN
LN

=

WD Template.Scale(double sx, double sy, double sz)



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

Idea: 1D, Cubic Free-Form Deformation
Move P1 and P2 parallel to z-axis to obtain FO and WB
Deform the volume together with P1 and P2

zFFD lattice zFFD lattice

P0 P2P1 P3

A B



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

P0, P1,P2,P3 form a 1D cubic Bezier curve

P0 P2P1 P3Initial config.

Aold Bold

LN

|P0P1|= |P1P2| = |P2P3| = LN/3



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

P0, P1,P2,P3 form a 1D cubic Bezier curve

Final config. P0 P2
*P1

* P3
FO WB

Anew Bnew

LN

FO = |P0Anew| ,  WB = |AnewBnew|



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Algorithmg
◦ Find parametric coordinates:   uA = |Aold-P0|/LN, uB = |Bold-P0|/LN
◦ Find points P1

* and P2
* such that Aold Anew, Bold Bnew
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◦ We can analytically solve P1
* and P2

*

◦ Using P1
* and P2

*, we apply a FFD [7] to the 
l    1 1 3 l i  template on a 1x1x3 lattice structure



PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Results in smooth deformations



StylingStylingStylingStyling

After surface template is designed, the p g
user can sketch on it

Curves are first smoothed using Savitzky-
Golay smoothing [6] in image plane, then 
projected onto template surface



ResultsResultsResultsResults



ResultsResultsResultsResults



ResultsResultsResultsResults



ResultsResultsResultsResults



ResultsResultsResultsResults



Ideas for Improving Ideas for Improving ShrinkWrapShrinkWrapIdeas for Improving Ideas for Improving ShrinkWrapShrinkWrap

ShrinkWrap method wraps a sphere on a p p p
wireframe via shrinking and subdivision.

Shrinkwrap has difficulty with concave 
iregions.



Ideas for Improving Ideas for Improving ShrinkWrapShrinkWrapIdeas for Improving Ideas for Improving ShrinkWrapShrinkWrap

Anchor shrinkwrap vertices to wireframe p
nodes
◦ Detect shrinkwrap vertices S that are far from wireframe.

◦ Detect wireframe vertices W that are far from S and have normal vectors similar to those in S.Detect wireframe vertices W that are far from S and have normal vectors similar to those in S.

◦ Anchor S W.

◦ Continue shrinking
Shrinkwrap normals

S

Wireframe normals

S

anchor

W
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