
SketchSketch--based Template Creation based Template Creation SketchSketch based Template Creation based Template Creation
for Early Automotive Stylingfor Early Automotive Styling
L B k K & K ji Shi dLevent Burak Kara & Kenji Shimada
Carnegie Mellon University
D b 2007December 2007

IntroductionIntroductionIntroductionIntroduction
Support early automotive styling

D k h l h d◦ Designers sketch early in the design
◦ Cannot realize the concept in 3D

Create 3D shape from 2D sketches
◦ Rapidly convert sketches into 3D shape

N d f d d d li kill◦ No need for advanced modeling skills

Approachpp
◦ User marks points on a sketch
◦ Modify a 3D template to match the sketch

3D D th t l t ◦ 3D Draw on the new template

Major Advances since July 2007Major Advances since July 2007Major Advances since July 2007Major Advances since July 2007
Renewed car templates
Improved camera calibration algorithm
Optimization-based template deformation
Edge design using pen strokes
Simplified vertex/tangent manipulation
Post-Dimensioning
Curve creation and styling on template
Case examples for sedan/hatchback/minivan
Paper submitted to CAD 08 conference

System OverviewSystem OverviewSystem OverviewSystem Overview
User marks fiducial points

Template alignment

Template Deformation

Impose continuity and shape constraintsImpose continuity and shape constraints

Edge manipulation

Dimensioning

Styling

Automotive TemplatesAutomotive TemplatesAutomotive TemplatesAutomotive Templates

Generic car shapes without detailsp
◦ Fiducial nodes, including wheel centers (red)
◦ Cubic edges (black)g ()
◦ Bi-cubic surface patches (gray)

39 fiducial nodes
62 edges
28 surface patches

41 fiducial nodes
66 edges
30 surface patches

User InputUser InputUser InputUser Input

User marks fiducial points on the sketchp
◦ UI widget guides the user
◦ User specifies only visible fiducialsp y
◦ Skips invisible ones

Marked fiducials

Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Align the template with the sketchg p
◦ Match template fiducials with users markers
◦ Template is not deformedp

Uses N-point camera calibration
◦ Best camera in the “Least Squares” senseBest camera in the Least Squares sense

Input sketch and markers Template with uncalibrated camera Template with calibrated camera

Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Formulation [1][]
◦ User marks N fiducial points in the sketch (pp)
◦ We know the corresponding 3D nodes (PP) p g ()
◦ Estimate camera properties

N4133333N3 xxxxx][1 PTRΚp ⋅⋅⋅=Camera Model N4133333N3 s xxxxx][PTRΚp

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

= .
.

21

21

x N

N

N3 vvv
uuu

p ⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
.
.

21

21

21

x4
N

N

N

N zzz
yyy
xxx

P
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ⋅−

=
sin

0

cot

0

0

3x3 v

u

θ
β

θαα

K

Camera Model

⎥
⎥
⎦⎢

⎢
⎣ 1.11

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ 1.11
.21 Nzzz

⎥
⎥
⎦⎢

⎢
⎣ 100

sinθ

2D fiducial points 3D fiducial pointsIntrinsic camera properties (unknown)

β l f i d di i (k)R, TR, T rotation/translation matrices (unknown)

s scale factor (unknown)

α, β scale factors in u and v directions (unknown)

u0,v0 camera center (unknown)

θ skew (radians) between u and v axes (unknown)

Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Introduce matrix MM:][1
xxx4x 1333333 s

TRΚM ⋅⋅=

Compute MM from pp and PP using LDT [2]
Rewrite MM:

s

][xx4x 13333 bAM =Rewrite MM:
Identify unknowns from A A and bb [3]

][xx4x 13333 bAM

Where aa11, a, a22, a, a33 are the column vectors of AA.33

If ttz <0 , switch ss and reevaluate.

Template Alignment ExamplesTemplate Alignment ExamplesTemplate Alignment ExamplesTemplate Alignment Examples

Template AlignmentTemplate AlignmentTemplate AlignmentTemplate Alignment

Our new template alignment approach p g pp
provides much improved results
compared to old, Bounding Box-based p g
approach

However, we are still looking ways to
further improve thisfurther improve this

Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Elastically deform the templatey p
◦ Adjust template nodes in 3D such that:

(1) Template nodes match user’s markers in 2D
(2) The template has an acceptable 3D shape

3D template node
2D user markers2D user markers

Original, undeformed template Deformed template: red points match well with green points

Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Cost function to minimize:

∑∑
==

−+−=
n

j
jj

m

i
ii

11

')'P(Η VVVsF βα

Minimizes mismatch in 2D Minimizes deviation from undeformed template

3
1 },...,{ Rn ∈= vvV

3
1 }',...,'{' Rn ∈= vvV

3D positions of original wireframe nodes

3D positions of deformed wireframe nodes. This is what we are trying to
1 }, ,{ n

'}',...,'{' 1 VvvVs ⊂= m nm ≤

2
1 },...,{ Rm ∈= ffF

determine

3D wireframe nodes whose fiducial points are marked by the
user

2D screen coordinates of user’s fiducial points
1 }{ m

23:P RR → Function that projects 3D world coordinates to 2D image coordinates
using the current projection matrix.

Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

Cost function to minimize:

∑∑
==

−+−=
n

j
jj

m

i
ii

11

')'P(Η VVVsF βα

◦ First term in H ensures that red dots match
green dots in image plane.green dots in image plane.
◦ Second term ensures that deformed template

deviates minimally from undeformed template. y p
◦ We scale the two terms to make them

magnitude-wise comparable.g p
◦ We take α=β=0.5

Template DeformationTemplate DeformationTemplate DeformationTemplate Deformation

There are 3n optimization parameters p p
(x,y,z for each node) where n is the
number of template fiducials (i.e., redp (
nodes)

We use Sequential Quadratic
Programming (SQP) technique to solve Programming (SQP) technique to solve
the optimization problem.

Optimization ConstraintsOptimization ConstraintsOptimization ConstraintsOptimization Constraints

Symmetry constraints – Type Iy y yp
◦ For each symmetric node pair (15 pairs

below), we have 3 linear equality constraints:
va.x = - vb.x

va.y = vb.y

va.z = vb.z y

x

v

vb

z
va

Optimization ConstraintsOptimization Constraints

Symmetry constraints – Type II

Optimization ConstraintsOptimization Constraints

y y yp
◦ For each node on symmetry plane (9 nodes

below), we have 1 linear equality constraint:

vc.x = 0.00
y

x

zvc

Optimization ConstraintsOptimization Constraints

Shape soundness constraints

Optimization ConstraintsOptimization Constraints

p
◦ Optimization-based deformation can break

common-sense rules about car shape
Inaccurate, cluttered markers (e.g. markers far from
the camera) can yield erroneous shapes

Potentially inaccurate /
unreliable markersunreliable markers

Optimization ConstraintsOptimization Constraints

Shape soundness constraints

Optimization ConstraintsOptimization Constraints

p
◦ Shape soundness constraints prevents non-

sensical shapes
> yz

vd.z > ve.z
ve.z > vf.z
vf.z > vg.zx

y
vd

ve vh
g

vh.z > vf.z
vi.z > vg.z

vf

vg

vi

◦ Similar constraints exist for rest of the car
◦ These constraints can be abandoned if desired

Edge RepresentationEdge RepresentationEdge RepresentationEdge Representation

Edges are represented as Cubic Beziers*g p
We maintain two interchangeable forms:
◦ (1) Four control polygon nodes, or(1) Four control polygon nodes, or
◦ (2)Two end nodes + two end tangents

vp vq

vs ve

q

ts
te

e

* Conventionally, Bezier curves are represented with 4 absolute points. In our case, the above interchangeable
representation has been adopted for computational convenience.

vs ve

GG11 ConstraintsConstraintsGG ConstraintsConstraints

Certain edges maintain G1 continuity at g y
all times
This enables natural looking curvess e ab es atu a oo g cu ves

Colored Curves consist of G1 continuous edges

colinear

colinear

colinear

GG11 ConstraintsConstraintsGG ConstraintsConstraints

Algorithm for imposing G1:g p g
◦ Compute a weighted average direction:

)(,)1(avrgbaavrg normalize uttu −+=

◦ Adjust ta and tb to lie on uavrg, while
maintaining their original magnitudes

t
,)1()(

,)(

avrgbb

avrgaa

mag

mag

utt

utt

⋅−⋅←

⋅←

ta

tb

uavrg ta

tb

uavrg

tb b

Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

We impose certain constraints p
immediately after template deformation

These constraints yield better shapes

G1 only G1 + DSC

Shapes immediately after template deformation

Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

Rounding DSCg

π/6
π/6 Rotation axis{-1,0,1}

π/6

/8
π/6

π/8

π/8

Rotation axis{1,0,-1}
y

x
z

Side panel edges are pulled out Front and rear corner edges are
pulled out

Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)Default Shape Constraints (DSC)

Coplanarity DSCp y

t2

•t3 forced to lie on the plane defined by t1 and t2
t1

2

t3 Si l t l ll ph i l t3

t4

Simulates a locally spherical corner

•Then, t4 forced to be coplanar with t3

Applied to two front and two rear corner edges

Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

Edges can be modified from arbitrary g y
viewpoints by sketching desired shape

Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

Edges can be modified from arbitrary g y
viewpoints by sketching desired shape

Edge ManipulationEdge ManipulationEdge ManipulationEdge Manipulation

For edge modification, we use a minimum g
surprise method similar to [1]
Algorithm:go t :
◦ Identify the intended curve to be modified

◦ Create a 3D surface S that starts at eye, extends into screen passing through pen strokes.

◦ Project points u=1/3 and u=2/3 of original 3D cubic curve onto S

◦ Use a four-point Hermite interpolation [4] to reconstruct the new cubic curve

S (invisible from the viewing point)

u=0/3
u=1/3 u=2/3

u=3/3 u=0/3

u=1/3 u=2/3

u=3/3u 0/3 u 3/3

Node/tangent ManipulationNode/tangent ManipulationNode/tangent ManipulationNode/tangent Manipulation

Template nodes can be manually adjusted p y j
by simple point-and-drag

N d ll l t t i l◦ Nodes move parallel to current image plane
◦ Edge tangents are kept unchanged (by design)

S i ll d◦ Symmetry automatically preserved

Node/tangent ManipulationNode/tangent ManipulationNode/tangent ManipulationNode/tangent Manipulation

Tangents can be manually adjusted by g y j y
simple point-and-drag

◦ Tangent tips move parallel to image plane
◦ G1 preserved with neighboring edge
◦ Symmetry automatically preserved

Edge BeautificationEdge BeautificationEdge BeautificationEdge Beautification

Disfigured edges can be beautified by g g y
automatically applying:
◦ (1) “annealing” (fit a simple, cubic chain to n() g (p

nodes)
◦ (2) default shape constraints (DSC)

Template node positions are not modified, only the tangent vectors.

Disfigured edges Annealed edges Annealed + DSC edges

Surface RepresentationSurface RepresentationSurface RepresentationSurface Representation

Bicubic Coons patches [5]p []
◦ Hi

3: Cubic Hermite interpolants

)()0(uu bcx =)()1(uu tcx =)()0(vv l ftcx =)()1(vv i htcx =]10[∈vu)()0,(uu bottomcx =)()1,(uu topcx =)(),0(vv leftcx =)(),1(vv rightcx =]1,0[, ∈vu

),(),(),(),(vuvuvuvu cddc hhhp −+=

),1()(),1()(),0()(),0()(),(3
3

3
2

3
1

3
0 vuHvuHvuHvuHvu uuc xxxxh +++=

3333

Points on surface

)1,()()1,()()0,()()0,()(),(3
3

3
2

3
1

3
0 uvHuvHuvHuvHvu uud xxxxh +++=

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
)(
)(
)(

)1,1()1,1()0,1()0,1(
)1,0()1,0()0,0()0,0(

)1,0()1,0()0,0()0,0(

)(
)(
)(

),(3
2

3
1

3
0

3
2

3
1

3
0

vH
vH
vH

uH
uH
uH

vu
uuvuvu

uuvuvu

vv
T

cd xxxx
xxxx
xxxx

h

⎥
⎥
⎦⎢

⎢
⎣⎥
⎥
⎦⎢

⎢
⎣⎥

⎥
⎦⎢

⎢
⎣)(

)(
)1,1()1,1()0,1()0,1()(

)(
3
3

2
3
3

2
vHuH vv

uuvuvu
xxxx

)0,1()()0,0()()0,(3
3

3
0 vvv uHuHu xxx +=)1,1()()1,0()()1,(3

3
3
0 vvv uHuHu xxx += Blending function for cross-boundary

derivatives. Similar functions for xu(.,.)

W t k t i t t () 0We take twist vectors xuv(.,.) = 0

Surface RepresentationSurface RepresentationSurface RepresentationSurface Representation

G1 edge continuity produces smoothly g y p y
blended surface patches

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Allows user to specify key dimensionsp y y
Preserves shape as much as possible
5 dimensions can be set WD: width5 dimensions can be set WD: width

HG: Height
LN: length
FO: Front overhang
WB: Wheel base

LN

WB: Wheel base

HG

WBFOWD

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

User enters desired values
Shape is automatically updated

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (1) Non-uniform scaling with WD, HG, LN

All nodes, edges and surfaces are scaled taking (0,0,0) as the origin
Ed d l B f (b l Edges are converted to conventional Bezier form (absolute positions
of 4 control points) to take advantage of affine invariance

y news WD
=

x

y

z
old

xs
WD

=

old

new
ys

HG
HG

=

LN

HG
oldHG

old

new
zs

LN
LN

=

WD Template.Scale(double sx, double sy, double sz)

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

Idea: 1D, Cubic Free-Form Deformation
Move P1 and P2 parallel to z-axis to obtain FO and WB
Deform the volume together with P1 and P2

zFFD lattice zFFD lattice

P0 P2P1 P3

A B

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

P0, P1,P2,P3 form a 1D cubic Bezier curve

P0 P2P1 P3Initial config.

Aold Bold

LN

|P0P1|= |P1P2| = |P2P3| = LN/3

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Performed in two steps:p
◦ (2) Soft deformation with FO and WB

P0, P1,P2,P3 form a 1D cubic Bezier curve

Final config. P0 P2
*P1

* P3
FO WB

Anew Bnew

LN

FO = |P0Anew| , WB = |AnewBnew|

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Algorithmg
◦ Find parametric coordinates: uA = |Aold-P0|/LN, uB = |Bold-P0|/LN
◦ Find points P1

* and P2
* such that Aold Anew, Bold Bnew

**)()()()(PBPBPBPBA

33
*

22
*

1100

33221100

)()()()(

)()()()(

PuBPuBPuBPuBB

PuBPuBPuBPuBA

BBBBnew

AAAAnew

+++=

+++=

⎥
⎤

⎢
⎡ −−

⎥
⎤

⎢
⎡
⎥
⎤

⎢
⎡ 3300

*
121)()()()(PuBPuBAPuBuB AAnewAA

* *

⎥
⎦

⎢
⎣ −−

=
⎥
⎥
⎦⎢

⎢
⎣
⎥
⎦

⎢
⎣ 3300

3300
*

2

1

21

21
)()(
)()(

)()(
)()(

PuBPuBBPuBuB BBnew

AAnew

BB

AA

◦ We can analytically solve P1
* and P2

*

◦ Using P1
* and P2

*, we apply a FFD [7] to the
l 1 1 3 l i template on a 1x1x3 lattice structure

PostPost--DimensioningDimensioningPostPost DimensioningDimensioning

Results in smooth deformations

StylingStylingStylingStyling

After surface template is designed, the p g
user can sketch on it

Curves are first smoothed using Savitzky-
Golay smoothing [6] in image plane, then
projected onto template surface

ResultsResultsResultsResults

ResultsResultsResultsResults

ResultsResultsResultsResults

ResultsResultsResultsResults

ResultsResultsResultsResults

Ideas for Improving Ideas for Improving ShrinkWrapShrinkWrapIdeas for Improving Ideas for Improving ShrinkWrapShrinkWrap

ShrinkWrap method wraps a sphere on a p p p
wireframe via shrinking and subdivision.

Shrinkwrap has difficulty with concave
iregions.

Ideas for Improving Ideas for Improving ShrinkWrapShrinkWrapIdeas for Improving Ideas for Improving ShrinkWrapShrinkWrap

Anchor shrinkwrap vertices to wireframe p
nodes
◦ Detect shrinkwrap vertices S that are far from wireframe.

◦ Detect wireframe vertices W that are far from S and have normal vectors similar to those in S.Detect wireframe vertices W that are far from S and have normal vectors similar to those in S.

◦ Anchor S W.

◦ Continue shrinking
Shrinkwrap normals

S

Wireframe normals

S

anchor

W

ReferencesReferencesReferencesReferences
[1] Levent Burak Kara, Chris D'Eramo, Kenji Shimada (2006) Pen-based Styling Design of 3D
Geometry Using Concept Sketches and Template Models. ACM Solid and Physical Modeling
Conference (SPM) 2006.

[2] ABDEL-AZIZ, Y., AND KARARA, H. 1971. Direct linear transformation from comparator
coordinates into object space coordinates in close-range photogrammetry. In Symposium on
Close-Range Photogrammetry, American Society of Photogrammetry,1.18.

[3] FORSYTH, D. A., AND PONCE, J. 2003. Computer Vision: a Modern Approach. Prentice Hall.

[4] Mortenson, M. E. 1985 Geometric Modeling. John Wiley & Sons, Inc.

[5] Farin, G. 2002 Curves and Surfaces for CAGD: a Practical Guide. 5th. Morgan Kaufmann
Publishers Inc.

[6] Levent Burak Kara, Kenji Shimada, Sarah D. Marmalefsky (2007). An Evaluation of User Experience
with a Sketch-based 3D Modeling System. Computers & Graphics. Volume 31, Issue 4, August 2007,
Pages 580-597

[7] Sederberg, Thomas and Parry, Scott. "Free Form Deformation of Solid Geometric Models."
SIGGRAPH, Association of Computing Machinery. Volume 20, Number 4, 1986. 151-159.

