Processing 3D Laser Scanner Data for Automotive Styling Design

Ph.D. Thesis Proposal

Miguel Vieira

May 6, 2005

- Dr. Kenji Shimada (Adviser)
- Dr. Martial Hebert
- Dr. William Messner
- Dr. Burak Ozdoganlar

Laser Scanner Technology

- Can quickly measure
 3D surface coordinates
 without contact
- Accurate and easy to use

http://www.steinbichler.de

- Used in automotive styling design to digitize models
- Scanned data can be used for:
 - Testing engineering requirements
 - Aesthetic interrogation
 - Surfacing the final part

Problem Statement

- Laser-scanner data often needs significant preprocessing before it is useful
- Automotive styling design issues are not addressed by existing algorithms
 - How to remove geometric noise from the data without deforming it or smoothing sharp edges?
 - How to group the points into regions closely approximated by single surfaces?
 - Can we create a piecewise-smooth reconstruction of the part that satisfies both aesthetic and engineering constraints?

Automotive Design Requirements

- Design Constraints
 - Scanner accuracy
 - Tolerances required for design and manufacture
 - These bound the deformation of the data and the accuracy of surface fitting and surface reconstruction
- Aesthetic Constraints
 - A k differentiable surface has k-1 differentiable reflection lines: smooth reflection lines require a twice differentiable surface
 - Character lines are sharp edges that create a distinctive shape these sharp edges must be preserved
 - Principle of simplest shape: the resulting surface must be free of unnecessary undulations

Thesis Contributions

- Mesh Smoothing
 - Creates an aesthetically pleasing surface
 - Minimizes mesh deformation
 - Preserves sharp edges
- Surface Extraction
 - Estimates curvatures and noise levels on the data
 - Detects sharp edges
 - Segments data into regions approximated by single surfaces
 - Fits surfaces to a specified tolerance
- Surface Reconstruction (proposed)
 - Will reconstruct objects with large smooth surfaces, smooth blends between surfaces, and sharp edges
 - Will bound the accuracy and geometric continuity of the reconstructed object

Algorithms

- Mesh Smoothing
- Surface Extraction from Meshes
- Surface Extraction from
 Point-Sampled Data
- Surface Reconstruction Proposal
- Summary

Problem Statement

- Goal: remove geometric noise from a mesh with edge preservation and minimal deformation
- Deformation must be within laserscanner and design tolerances
- Result must be smooth over large scales with sharp edges preserved
- The smoothed mesh will be used for aesthetic interrogation and patch fitting for design

Computer Integrated Engineering Laboratory Carnegie Mellon

Existing Smoothing Methods

- Diffusion: move each vertex to a weighted average of the positions of its neighbors [1]
- Curvature Flow: move each vertex in its normal direction a distance equal to the mean curvature [2]
 - Both these methods can cause distortion, so using them requires a compromise
- Normal Maps: smooth the normals first, then find vertex positions that satisfy the normal field [3]

[1] Kobbelt, et al., Geometric Modeling Based on Polygonal Meshes (tutorial), EUROGRAPHICS 2000.
[2] Desbrun, et al., Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow, SIGGRAPH 99.
[3] Tasdizen, et al., Geometric Surface Smoothing via Anisotropic Diffusion of Normals, IEEE Visualization 2002.

Polynomial Fitting Solution

- Each vertex is moved onto a polynomial surface approximating its neighborhood
- User can control polynomial order, neighborhood size, and threshold angle
- Method converges for non-planar geometries
- Creates smooth reflections, curvature plots
- Preserves edges and character lines

Differential Geometry

- The neighborhood of every point on a smooth surface is defined by a 2D Taylor series in a local coordinate system: $h(u,v) = \sum_{k=2}^{n} \frac{1}{k!} \left(u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v} \right)^{k} h(0,0)$
- The Taylor series determines the differentiability of the surface at the point
- We find the coefficients of truncated approximation of the Taylor series

$$h(u,v) = a_{00} + a_{10}u + a_{01}v + a_{20}u^2 + a_{11}uv + a_{02}v^2$$

• Approximating polynomial is found with a linear leastsquares problem solved by Cholesky decomposition

Vertex Neighborhoods

- Create a neighborhood by adding vertices with positions and normals close to that of the target vertex
- This creates pseudo-planar neighborhoods that don't include sharp edges

Implementation

- For each vertex
 - Grow a neighborhood using breadth-first search with distance and normal-deviation constraints
 - Find neighborhood vertex positions in local coordinate system
 - Least squares fit a polynomial to the vertices in the local coordinate system
 - Move the target vertex onto the polynomial
- User selects neighborhood width, polynomial order, and threshold angle

SLR Body

606,254 vertices

Original

Smoothed

Algorithms

- Mesh Smoothing
- Surface Extraction from Meshes
- Surface Extraction from
 Point-Sampled Data
- Surface Reconstruction Proposal
- Summary

Problem Statement

- Must create a concise surface-based representation of the object from the scanned data
- This is a manually intensive and time-consuming procedure
- How can we automatically segment a dense, noisy mesh into groups of vertices approximated by single surfaces and then output the surfaces themselves?
 - Segments should be as large as possible
 - Surface approximations must be accurate
- A designer can easily modify the extracted surfaces to create a final design

Algorithm Summary

- Approximate vertex neighborhoods with polynomials
 - Estimate surface curvatures
 - Estimate noise levels
 - Detect sharp edges
- Filter curvatures and label vertices by curvature-signs
- Contract labeled regions to create seed regions
- Grow seed regions by iterating between region growing and surface fitting
- Regions are grown by testing vertices for geometric compatibility with the approximating surfaces

Related Work

- Besl and Jain introduced region growing for images and range data [1]
 - We generalize this approach to dense, noisy, unstructured data
- Direct segmentation: hierarchical subdivision by testing neighborhoods for compatibility with increasingly complex analytic surfaces [2]
 - Not clear how to use with freeform surfaces
- Recover-and-select: simultaneously grow randomly placed regions while culling non-optimal models [3,4]
 - We place seed regions carefully for computation efficiency

[1] Besl and Jain. Segmentation Through Variable-Order Surface Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988.

[2] Benkő and Várady. Segmentation Methods for Smooth Point Regions of Conventional Engineering Objects. Computer-Aided Design Journal, 2004.

[3] Leonardis, et al. Superquadrics for Segmenting and Modeling Range Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997.

Noise and Curvature Estimation

• We approximate the points within a ball centered at each vertex with a quadric polynomial

$$h(u, v) = a_{00} + a_{10}u + a_{01}v + a_{20}u^2 + a_{11}uv + a_{02}v^2$$

- From this polynomial we calculate the Gaussian, mean, and principal curvatures
- The G^0 noise is calculated by $\varepsilon_i^0 = |a_{00}|$
- The G^1 noise is calculated by $\varepsilon_i^1 = \cos^{-1}(\mathbf{n} \cdot \mathbf{n}_i)$
- For the G⁰ and G¹ noise, we find the value that is larger than that of a certain percentage of the other vertices
- These values will be the compatibility thresholds for region growing

Sharp Edge Detection

- If the smallest radius of curvature at a vertex is small compared to the mesh density, a sharp edge is indicated
- We do not grow regions from sharp edges
- Mathematically, a sharp edge is likely if

<10 *l*_{avg, i}

Surface-Type Labeling

- We apply median and mean filters to the curvatures to despeckle and smooth them
- Then we use the signs of the filtered Gaussian and mean curvature to label the vertices

	K > 0	K = 0	<i>K</i> < 0	
$H \leq 0$	Peak	Ridge	Saddle Ridge	
H = 0	(none)	Flat	Minimal Surface	
H > 0	Pit	Valley	Saddle Valley	

- Region growing is most effective when vertices on the boundary of the growing region are geometrically compatible with those already in the region
- Cluster points with the same surface-type labels
- Contract these clusters to form seed regions

Region Growing

- Seed regions lie within large groups of vertices with identical geometric properties
- A surface approximating the seed region likely approximates the nearby vertices well

Geometric Compatibility

- We fit a surface to the seed region
- Given a point x and a parametric surface $\mathbf{b}(u,v)$
 - **x** is G⁰-compatible if $\|\mathbf{x} \mathbf{b}(\overline{u}, \overline{v})\| < \varepsilon^0$
 - **x** is G¹-compatible if $\cos^{-1}(\mathbf{n},\mathbf{n_h}) < \varepsilon^1$

Computer Integrated

Carnegie Mellon

Surface Fitting

- The region-growing algorithm can be used with any class of surfaces that allows
 - approximation (surface fitting)
 - differentiation
 - point projection (testing geometric compatibility)
- We use bicubic Bézier surfaces

$$\mathbf{b}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{p}_{i,j} B_i^3(u) B_j^3(v), \quad 0 \le u, v \le 1$$

- First we get an initial parameterization for the region
- Then we iterate between surface fitting and parameterization to get a good fit

- Simulated reflection lines on the raw mesh show how noisy the geometry is
- The estimated curvatures are shown on the right

- We label vertices using the signs of the Gaussian and mean curvatures
- Then we contract the labeled regions to form seed regions

- Each color corresponds to a region of vertices approximated by a single surface
- As a last step, we remove holes in the segmentation caused by outlier noise

Results

- Here we projected the segmented vertices onto the extracted surfaces
- Note the smooth reflection lines on the extracted surfaces

Algorithms

- Mesh Smoothing
- Surface Extraction from Meshes
- Surface Extraction from Point-Sampled Data
- Surface Reconstruction Proposal
- Summary

Motivation

- Using a mesh for surface extraction requires too much computer memory
- Can we modify the algorithm and reduce the data representation so we can process very large models?
- When the data is very dense, we can replace topology with spatial proximity!

Algorithm

- Grow regions from seed points in in order of increasing surface variation
- Region Growing
 - Use points near the seed point to fit an initial surface approximation for region growing
 - Grow the region by adding points that are geometrically compatible with the underlying surface
 - Once all compatible points have been added, fit a new surface to the region to improve the approximation
 - Use the new surface to re-grow the region
- Repeat until region size stops increasing

Surface Variation

- Estimates local surface properties on point clouds
- Like finding the mean and variance of a 1D distribution
- Let $N(x_i)$ be the *k*-nearest neighbors of a point x_i
- Then the covariance matrix of the points is

$$\mathbf{C} = \sum_{\mathbf{y} \in \mathbf{N}(\mathbf{x}_i)} (\mathbf{y} - \overline{\mathbf{x}}) \cdot (\mathbf{y} - \overline{\mathbf{x}})^T$$

- The eigenvalues of this matrix measure the variance of N(x_i) in the directions of the eigenvectors
- The surface variation is

$$\sigma_k(\mathbf{x}_i) = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2}$$

Surface Variation

Input point cloud (200,000 points)

Surface variation using few nearest neighbors

Surface variation using many nearest neighbors

- If x_i has already been assigned to a region, skip it
- Otherwise, construct a seed region $S(x_i)$ of all the unlabeled points within a radius ρ_S of x_i

$$\mathbf{S}(\mathbf{x}_i) = \left\{ \mathbf{x} \in \mathbf{X} \mid \| \mathbf{x} - \mathbf{x}_i \| < \rho_{\mathbf{S}} \text{ and } \mathbf{x} \text{ is unlabeled} \right\}$$

Results

- We used a threshold distance of 0.3 mm
- Uses about 80 bytes per point, a fraction of the RAM required for processing a mesh
- Processes very large models in a few minutes

Model	Num. Points	Thresh. Angle	Peak RAM	Time (secs)
C-pillar	99,790	5°	25 MB	24
Golf Club	209,779	5°	33 MB	25
Rear Fender	1,065,886	6°	90 MB	255
Front Door	1,497,459	5°	125 MB	288

Computer Integrated Engineering Laboratory Carnegie Mellon

Results – Rear Fender

- 1,065,886 points
- 90 MB peak RAM
- 255 secs

Results – Rear Fender

• Simulated reflection lines on raw data and extracted surfaces

Algorithms

- Mesh Smoothing
- Surface Extraction from Meshes
- Surface Extraction from
 Point-Sampled Data
- Surface Reconstruction Proposal
- Summary

Motivation

- Can we blend and intersect the extracted surfaces?
- Can we create a piecewise-smooth reconstruction?
- The reconstructed model must:
 - Approximate the data to engineering tolerances
 - Be free of unnecessary undulations (principle of simplest shape)
 - Preserve sharp edges and character lines
- Reconstruction useful for: aesthetic interrogation, engineering analysis, manufacturing

Proposed Work Outline

- Extract surfaces from point data
- Subdivide the object's bounding box into cells
- Find surface approximations in each cell
- Convert surfaces into an implicit representation
- Intersect surfaces at sharp edges
- Use the Partition of Unity Method to blend the approximations in each cell
- Reconstructed surface is the solution of a single implicit equation
- Established methods to polygonize the surface

Related Work

- An implicit surface is the locus of 3D points such that *F*(**x**)=0 for some scalar-valued function *F*(**x**)
- Blending and intersecting surfaces becomes trivial [1]
- Used to create meshes from point clouds [2,3]:
 - Compute a signed distance function as the distance from each point to the tangent plane of the closest point in the point cloud
 - Extract the surface by meshing the zero level set of the signed distance function
- Implicit representations have also been used to create *C*¹-smooth reconstructions with B-splines [4]

^[1] Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, 1997.

^[2] Hoppe, et al. Piecewise Smooth Surface Reconstruction, SIGGRAPH 94.

^[3] Curless & Levoy. A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 96.

^[4] Bajaj, et al. Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans, SIGGRAPH 95.

Related Work - RBFs

- Approximate the points around various centers near the point cloud with a polynomial h(u,v) and set $g_i(\mathbf{x})=w-h(u,v)$
- Sum the products of these local approximations with radial basis functions

$$f(\mathbf{x}) = \sum_{i} [g_{i}(\mathbf{x}) + \lambda_{i}] \phi_{\sigma}(\|\mathbf{x} - \mathbf{p}_{i}\|)$$

Ohtake, Y., Belyaev, A., and Seidel, H.-P. A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions. Shape Modeling International 2003, pp. 153-161.

Related Work - PUM

- Partition of unity methods integrate locally defined approximations into a global approximation
 - Partition the global domain into small subdomains
 - Approximate the data in each subdomain
 - Blend the local solutions together with smooth weights that sum to one everywhere on the domain
- Originally developed to solve PDEs
- Used for computer graphics [1,2]
- Uses local representations that can be created and evaluated quickly

[1] Ohtake, et al. Multi-Level Partition of Unity Implicits, SIGGRAPH 2003.
[2] Tobor, et al. Efficient Reconstruction of Large Scattered Geometric Datasets using the Partition of Unity and Radial Basis Functions, WSCG 2004.

Related Work Summary

- We need to blend and intersect extracted surfaces
 - Difficult to automate with explicit representation
 - Impossible with RBFs
- Methods developed for computer graphics ignore constraints of automotive styling design
- Can we use partition of unity methods to satisfy accuracy or geometric continuity constraints?
- How can we ensure that the surfaces and edges of the reconstructed object satisfy the principle of simplest shape?

Partition of Unity Method

On a bounded domain Ω, we want a set of nonnegative functions {φ_i} with compact support such that

$$\sum_{i} \varphi_i = 1 \text{ on } \Omega$$

• Given a local approximation $V_i(x)$ in each subdomain, the global approximation is

$$f(x) = \sum_{i} \varphi_i(x) V_i(x)$$

- Given a set of nonnegative compactly supported functions {w_i(x)} that cover the domain
 Ω ⊂ U_i supp(w_i)
- This equation generates the partition of unity functions

$$\varphi_i(x) = \frac{w_i(x)}{\sum_j w_j(x)}$$

PUM – 1D Example

• Consider three $V_i(x)$ on the domain $\Omega = (5,5)$

• How can we easily blend and intersect them?

PUM – 1D Example

• The partition of unity functions $\{\varphi_i\}$ are generated from the C^1 function

- We can use any positive functions with compact support
- The reconstruction inherits the continuity of the $\{\varphi_i\}$

PUM – 1D Example

• The blended global approximation is simply

• We can control the strength of the blending by changing the parameter *R* of the *w_i*(*x*,*R*)

PUM – Implicit 1D Example

- Replace the $V_i(x)$ with y- $V_i(x)$ to define the blended function implicitly
- Now it's trivial to intersect the functions

 $\frac{\min[w_1(y-V_1), w_1(y-V_2)] + w_2(y-V_2) + \min[w_3(y-V_2), w_3(y-V_3)]}{w_1 + w_2 + w_3} = 0$

PUM – 2D Example

• These ideas extend to 2- and 3-dimensions

 16 cubic surfaces approximating synthetic noisy data • C² blend of the 16 surfaces

Proposed Research – Domain Subdivision

- First step is to subdivide the domain into small cells
- Cubical Grid

Octree Subdivision

Proposed Research – Domain Subdivision

- Geometry-adaptive cells
 - Quality of the reconstructed surface varies with the size and orientation of the subdivision cells
 - We can use local geometry information to determine the size and orientation of the cells on the point cloud

Proposed Research – Domain Subdivision

- Questions we will address:
 - Can we make cells that vary in size and orientation according to the object geometry?
 - How do we ensure the cells overlap?
 - How do we integrate them with the rest of the domain?
 - Will the computational cost and difficulty of finding the geometry-adaptive cells by justified by the improved quality of the reconstruction?

Proposed Research – Local Approximations

- Then we use the following information to determine the local approximations in each cell
 - Does it contain less than a certain number of points?
 - How many extracted surfaces are defined inside it?
 - Does it contain a sharp edge or corner?

Proposed Research – Local Approximations

- Questions we will address:
 - How can we integrate geometry-adaptive cells with this approach?
 - What recursive subdivision rules will give the best results?
 - How will we deal with outlier noise?
 - How reliably can we detect sharp edges or corners and fit separate surfaces to the points around them?

Proposed Research – Isosurface Extraction

- The reconstructed surface is the zero level set of a signed distance function
- Extract isosurfaces from implicit functions
- Convert the approximation in each cell to implicit forms
- Multiply the approximations by the partition of unity functions and sum them over the domain
- For cells that do not contain points, we can estimate the signed distance function by finding the nearest point to the cell and examining its normal

Algorithms

- Mesh Smoothing
- Surface Extraction from Meshes
- Surface Extraction from
 Point-Sampled Data
- Surface Reconstruction Proposal
- Summary

Expected Contributions

- Mesh Smoothing
 - Creates an aesthetically pleasing surface
 - Minimizes mesh deformation
 - Preserves sharp edges
- Surface Extraction
 - Estimates curvatures and noise levels on the data
 - Detects sharp edges
 - Segments data into regions approximated by single surfaces
 - Fits surfaces to a specified tolerance
- Surface Reconstruction (proposed)
 - Will reconstruct objects with large, smooth surfaces, smooth blends between surfaces, and sharp edges
 - Will bound the accuracy and geometric continuity of the reconstructed object

Publications

Mesh Smoothing

- M. Vieira, K. Shimada, and T. Furuhata. Local Least Squares Fitting for Surface Mesh Fairing in Automobile Panel Design, ASME DETC / DAC. 2002, Montreal, Canada.
- M. Vieira, K. Shimada, and T. Furuhata. Smoothing of Noisy Laser Scanner Generated Meshes Using Polynomial Fitting and Neighborhood Erosion, ASME Journal of Mechanical Design, May 2004.

Surface Extraction

- M. Vieira, K. Shimada. Segmentation of Noisy Laser-Scanner Generated Meshes With Piecewise Polynomial Approximations, ASME DETC / DAC. 2004, Salt Lake City, Utah. (Winner DAC Best Paper Award)
- M. Vieira, K. Shimada. Surface Mesh Segmentation and Smooth Surface Extraction Through Region Growing, Computer Aided Geometric Design Journal, (accepted; submitted July 2004).
- M. Vieira, K. Shimada. Surface Extraction from Point-Sampled Data through Region Growing, International Journal of CAD/CAM, (submitted).

