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Once-per-step control of ankle push-off work
improves balance in a three-dimensional

simulation of bipedal walking
Myunghee Kim and Steven H. Collins*

Abstract—Individuals with lower-limb amputation have high
fall risk, which could be partially due to a lack of stabilizing
control in conventional prostheses. Inspired by walking robots,
we hypothesized that modulating prosthetic ankle push-off could
help improve amputee balance. We developed a three-dimensional
walking model, found limit cycles at two speeds, and designed
state-feedback controllers that made once-per-step adjustments to
ankle push-off work, fore-aft and medial-lateral foot placement,
and ankle roll resistance. To assess balance, we applied increasing
levels of random changes in ground height and lateral impulses
until the model fell down within one hundred steps. Although foot
placement is known to be important to balance, we found that
push-off control was at least twice as effective at recovering from
both disturbances at both speeds. Push-off work affected both
fore-aft and mediolateral motions, leading to good controllability,
and was particularly well-suited to recovery from steps up or
down. Our results suggest that discrete control of ankle push-off
may be more important than previously thought, and may guide
the design of robotic prostheses that improve balance.

Index Terms—Biomechanics, Rehabilitation Robotics, Legged
Robotics, Stability, Human Performance Augmentation

I. INTRODUCTION

INDIVIDUALS with below-knee amputation experience
increased fall rates and reduced balance confidence [1],

which reduces mobility and can cause avoidance of social
activity [2]. Prior research has established a connection be-
tween falling and reduced stability [3]–[6] and has shown
that training amputees in recovery strategies can reduce fall
risk [7]–[9]. Robotic lower-limb prostheses might also prevent
falls by improving stability during walking, although most
development efforts have focused on other aspects of gait such
as average joint kinematics or energy use [10]–[13]. Stability-
related outcomes have been compared across devices in some
cases [14]–[16], but results have been inconclusive.

The best understood methods for stabilizing gait involve
control of foot placement and center of pressure, but these are
difficult to implement in robotic ankle-foot prostheses. Simple
models of walking suggest that foot placement is an efficient
approach to balance, since small adjustments prior to heel
strike can have large effects on the trajectory of the ensuing
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step [17]. This phenomenon is central to ‘capture point con-
trol’, used for disturbance recovery in humanoid robots [18].
Experimental studies with non-amputee subjects [19], [20]
and individuals with below knee amputation [15] suggest that
humans use a similar approach during walking. In humanoid
robotics, control of the center of pressure (often referred to
as the ‘zero moment point’) between the foot and the ground
has also been central to many stable walking algorithms [21].
Humans also seem to modulate center of pressure location
for balance to some degree [22], and individuals with above
knee amputations seem to exhibit increased reliance on this
strategy in the intact limb [23]. These two control approaches
are strongly linked; foot placement constrains the region of
possible center of pressure locations and defines the location
corresponding to zero ankle torque, while center of pressure
adjustment through ankle activity is akin to slightly moving the
foot after contact has been established. Although these forms
of control can be effective and seem to be commonly used
for balance by humans, they would be difficult to implement
with a robotic ankle prosthesis. Foot placement control is most
easily achieved through hip actuation, while center of pressure
control is most effective using a wide, flat foot with multiple
actuated degrees of freedom, neither of which are currently
available in lower-limb prostheses.

Ankle push-off work modulation is a promising alternative
stabilization method. Regulating system energy is necessary
for stable locomotion, and simple two-dimensional models
of gait show that system energy can be strongly affected
by the magnitude of work produced by active plantarflexion
of the trailing ankle during transitions between steps [24].
Modulation of this ankle ‘push-off’, in concert with control
of foot placement, has been used to stabilize simple two-
dimensional walking robots [25], [26]. Three-dimensional
walking seems to be less stable, however, with the least stable
modes corresponding to mediolateral motions [17]. Push-off
work modulation might still be effective in such systems
if ankle push-off were to have some control authority over
mediolateral motion of the body. If ankle push-off control were
found to be effective at stabilizing three-dimensional walking,
it would help explain balance deficits in individuals with
amputation below the hip of the effected limb. It would also
be feasible to implement push-off modulation in active ankle-
foot prostheses, which could improve balance for millions of
individuals with lower-limb amputation.
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Simulations of limit cycle walking could provide well-
controlled comparisons of the effectiveness of push-off work,
foot placement and center of pressure control techniques. Limit
cycle models can capture features of the basic dynamics of
human gait while remaining simple enough to be intellectually
accessible. Such models seem to help explain, for example,
how step length [27] and foot shape [28] relate to energy
use or why crouch gait is typically accompanied by stiff-
knee gait [29]. Simulation models are especially useful for the
study of stability, where they allow a level of precision and
control that can be difficult to achieve experimentally. They
have previously been used to illustrate the utility of active
foot placement as a means of stabilizing three-dimensional
walking [17], with results that are qualitatively consistent with
those from experiments in humans [19], [20], [30]. Limit
cycle models have also been used to design push-off work
controllers for two-dimensional walking robots [26], resulting
in a machine that set the distance record for legged robots
[25]. A comparison of these control techniques with three-
dimensional models of gait is therefore likely to provide useful
qualitative insights into their strengths and weaknesses, and
could lead to the design of improved prosthesis controllers.

The most meaningful measure of stability in this context
seems to be the maximum random disturbance that can be
tolerated without falling. Many other candidate metrics ex-
ist, but do not seem well correlated with the likelihood of
falling under real-world conditions [31]. Maximum Floquet
multipliers are easily obtained by linearizing a dynamic system
around a fixed point, but moderate disturbances often move the
system outside the linear region for which they are relevant.
Basins of attraction capture behavior in full nonlinear regions,
but do not include information about which directions in
state space are likely to be encountered, making interpretation
difficult. Gait sensitivity norms [32] measure a combination
of convergence rate and performance during convergence, but
rely on a gait indicator that must be calibrated against a
more meaningful measure of stability. Maximum allowable
disturbance approaches have none of these issues; they include
nonlinear behavior, implicitly capture the relevance of state
error direction, and need not be calibrated against additional
measures. Maximum allowable disturbance is calculated by
selecting a disturbance relevant to real-world falls, such as
ground irregularity [33] or lateral pushes [30], and gradually
increasing the magnitude of the disturbance until the system
can no longer recover. A disturbance should be applied on
every step so as to penalize solutions that recover slowly and
are therefore susceptible to multiple consecutive disturbances.
This means many walking steps must be simulated to evaluate
each controller. Simulating more steps increases accuracy
but also increases computational cost, and so a minimum
acceptable number of steps must be chosen carefully.

Walking speed can also affect stability, and might interact
with disturbance recovery strategy. Walking speed is correlated
to changes in gait pattern [34], fall risk [35], and ability to
recover from some types of disturbances [36]. Considering dif-
ferent disturbances at different walking speeds would therefore
lend insight into the conditions under which one or another
recovery method is likely to be most effective.

In addition to maximum disturbance rejection, the energy re-
quired to balance at sub-maximal disturbance levels can differ-
entiate control strategies. Active balance during walking seems
to require the expenditure of meaningful amounts of metabolic
energy in humans [30], [37], which increases in the presence of
sensory manipulation or ground height disturbances [19], [38].
Qualitative differences in energy requirements across control
strategies could also be explored in simulation.

Simple, low-order control strategies are preferable when
transferring controllers from a simulation to hardware because
they tend to result in better robustness against errors in the
model and to rely on less sensor information. In simulation,
full-state linear feedback controllers, e.g. derived as linear
quadratic regulators (LQR), are likely to result in effective dis-
turbance rejection. Performance for a nonlinear system can be
further improved using numerical optimization of the feedback
gain matrix, for example using a covariance matrix adaptation
evolutionary strategy (CMA-ES). Simulation models of human
walking are likely to differ from the real system, however,
meaning that control strategies that depend on complex, ac-
curate models are unlikely to translate well. Controllers based
on basic aspects of the system’s dynamics are more likely
to be successful in humans. Measuring some human states
can also be difficult in practice, meaning that some of the
information used by a full-state feedback controller would be
unavailable in a real prosthesis. Controllers that only use local
state information are therefore more desirable for prosthesis
design. Often, full-state feedback control can be approximated
by a simpler controller with similar performance [39], [40].

This simulation study was designed to compare the effec-
tiveness of ankle push-off control against foot placement and
ankle inversion-eversion control in three-dimensional walking.
We hypothesized that ankle push-off control could result
in similar maximum tolerable disturbances and energy con-
sumption as these more widely used strategies, while relying
only upon actuation available to a prosthetic ankle. We also
hypothesized that it would be possible to derive a simple,
robust form of the ankle push-off controller suitable for use
in hardware experiments.

We explored some of these ideas in a preliminary study
using a simpler model and controller, which was presented
at ICORR in 2013 [41]. We substantially expand upon these
results in the present study. We make comparisons of models
that walk at both slow and normal speeds and are subjected
to both ground-height and lateral-impulse disturbances. We
develop new controllers that have been optimized for dis-
turbance tolerance using an evolutionary strategy for each
combination of control input, speed and disturbance. We have
additionally investigated the effects of control type on energy
use. Finally, we developed reduced-order controllers suitable
for implementation in hardware.

II. METHODS

We developed a three-dimensional limit cycle walking
model with hip and ankle actuation and used it to compare the
capacity of foot placement, ankle inversion-eversion control,
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Fig. 1. Model schematic. The model had a finite-width pelvis, two straight
legs, and two massless feet. The hip had a flexion-extension joint (qhf ), and
an abduction angle that could be changed once per step at mid-stance (φha).
The ankle of the stance leg had a plantarflexion joint (qap) and an inversion
(roll) joint (qai). The stance foot was connected to the ground either rigidly,
through a toe pitch joint (qtp), or through both a toe pitch and a toe yaw
joint (qty), depending on phase of the gait cycle. All degrees of freedom
are defined such that, beginning at the ground, positive rotation causes the
subsequent segment to move in the direction indicated by the arrow.

and push-off work control to stabilize gait against ground
height disturbances and lateral impulse disturbances. The
model has finite pelvis width, two straight legs attached to
the pelvis via hip joints, and massless feet connected to the
legs via ankle joints. Hip joints were controlled to modulate
step length and step width, while ankle joints were controlled
to change ankle roll resistance and ankle push-off work.
After developing nominal controllers for the hip and ankle
joints, corresponding to two gait speeds, we designed dis-
crete stabilizing controllers that modulated step-length, step-
width, ankle roll resistance and ankle push-off work once
per step. We compared the performance of each controller
in terms of maximum tolerable random disturbance in ground
height and lateral impulse. Finally, we developed a hardware-
implementable version of the ankle push-off controller and
compared its performance to full state feedback.

A. Model

1) Mathematical model description: We developed a three-
dimensional walking model with a pelvis, two straight legs,
and two feet (Fig. 1). The pelvis and legs were connected via
hip joints that allowed continuous flexion-extension and once-
per-step changes in adduction-abduction angle (as in [17]).
The legs and feet were connected via ankle joints that allowed
both plantarflexion-dorsiflexion and inversion-eversion. The
inversion-eversion degree of freedom makes this system three-
dimensional, allowing it to fall side to side as well as forwards
and backwards. The feet and ground were connected either
rigidly, by a toe pitch joint, or by both a toe pitch joint and a
toe yaw joint, depending on phase of stance.

Mechanical parameters of the model were based on human
anthropometrics [42], [43]. Hip width was 0.3 m and leg length
was 1 m. Foot length from heel to toe was 0.25 m, while the
horizontal distance from ankle to toe was 0.19 m, foot height
from base to ankle was 0.09 m, and foot width (used to check

Heel strike

Toe off

Heel strikeHeel off

Under-actuated Fully-actuated Double support

Fig. 2. Model gait phases. During a walking step, the model went through
at least two of three possible phases: fully-actuated single support, under-
actuated single support, and double support. From the fully-actuated phase,
the model could transition to either double support, if foot strike was detected,
or to under-actuated single support, if stance heel rise was detected. From
the under-actuated phase, the model transitioned to double support when the
swing foot touched the ground. From the double support phase, the model
transitioned to fully-actuated single support when the ground reaction force
at the toe of the stance foot became zero.

center of pressure feasibility) was 0.1 m. Nominal step width,
set by choice of nominal hip abduction angle, was 0.15 m.
The pelvis had a mass of 54 kg, located at its center, and a
rotational inertia of 10 Kg·m2, which together approximated
the mass properties of the head, arms and torso. Each leg had
a mass of 10 kg, with center of mass located 0.3 m from the
hip joint. The feet were treated as massless

2) Dynamics: During each walking step, the model went
through a double support phase, a fully-actuated single support
phase, and, on most steps, an under-actuated single support
phase. During double support (Fig. 2) the leading foot was
rigidly attached to the ground while the trailing toe was
connected to the ground through a two degree of freedom joint
that allowed both pitch and yaw rotations. The yaw degree of
freedom gave the closed-loop kinematic chain two degrees
of freedom, resulting in more natural motions during double
support. Toe off occurred when the vertical component of
the reaction force of the trailing toe went to zero, leading
to single support. During the initial portion of single support,
the stance foot was fixed to the ground, allowing full actuation
of the resulting three degrees of freedom (two at the stance
ankle and one at the hip). Heel rise occurred when the vertical
component of the reaction force of the heel of the stance foot
went to zero, leading to the under-actuated phase. During the
under-actuated phase of single support, the foot was connected
to the ground through a hinge joint that allowed pitch rotation,
with four degrees of freedom in total. Foot strike was detected
when the base of the swing foot reached ground height, after
which the model underwent a perfectly inelastic collision and
transitioned into double support. On most steps foot strike
occurred during the under-actuated phase of single support, but
with large disturbances foot strike sometimes occurred during
the fully-actuated phase of single support.

Equations of motion for each phase were obtained using
the Dynamics Workbench [44], a software program based on
Kane’s method. State trajectories for each step were calculated
using forward numerical integration. The heel strike collision
was modeled using an impulse-momentum approach, in which
post-collision velocities were obtained as a function of pre-
collision states. We modeled the body as an open kinematic
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chain during this collision, and solved for the impulse on the
leading foot that would cause it to have zero velocity following
the collision. We simultaneously solved for the post-collision
velocities of the trailing toe joints, ankle plantarflexion and
inversion-eversion joints, and hip flexion joint by performing
an angular momentum balance about each joint that included
the effect of the impulse on the leading foot.

Limit cycles were found using a gradient search algorithm
that altered initial conditions to minimize error between the
initial and final states of a walking step. Limit cycles were
found at two human-like speeds and step lengths, 1.00 m·s−1

with 0.63 m steps and 1.25 m·s−1 with 0.70 m steps, ap-
proximating the range of preferred speeds and step lengths
of high-activity individuals with lower-limb amputation [45].
Limit cycles with desired characteristics were found using a
nested gradient search approach that altered nominal target
step length and push-off work to minimize error between
desired and observed speed and step length [46].

B. Actuation and control

Hip and ankle joints were controlled in two layers: a
continuous low-level controller achieved target values of step
length, step width, ankle roll resistance and ankle push-off,
while a discrete high-level controller set these targets once
per step (Fig. 3).

1) Low-level, within-step control: Hip flexion-extension
torque was continuously controlled to achieve desired step
length. We used proportional-derivative control of hip flexion
angle, where the set point was φhf and the nominal value
corresponded to the preferred step length for humans. We
chose relatively high stiffness and damping gains, such that
the hip flexion controller settled at target step length within
90% of the stance period at the limit cycle. This resulted in
improved fore-aft stability [47].

Hip abduction-adduction angles were set once per step to
achieve desired step width. We discretely changed the rigid hip
abduction angle paramter, φha, at mid-stance in the manner of
[17]. The nominal value of φha corresponded to the preferred
step width for human walking.

Ankle inversion-eversion torque was continuously con-
trolled to provide desired levels of resistance. Inversion-
eversion torques followed a proportional-derivative control
law, with gains of Kp and Kd and set point angle and angular
velocity of θ0 and θ̇0. The nominal values for Kp and Kd were
both zero, and the nominal values of θ0 and θ̇0 corresponded
to the value of eversion angle and angular velocity just after
heel strike during limit cycle motions.

Ankle plantarflexion torque was continuously controlled to
provide desired levels of ankle push-off work. Torque was
applied as a function of ankle angle and direction of motion,
as depicted in Fig. 3(e), or:

τ = −kank(θ − θ0) +max(0, sign(θ̇)) · τp (1)

where τ is ankle plantarflexion torque, kank is ankle stiffness,
θ is ankle plantarflexion angle, θ0 is nominal ankle angle, θ̇
is ankle angular velocity, and τp is the plantarflexion torque
offset. The values of kank and θ0 were selected so as to

φha
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Ankle angle Ankle angle

Model Human

(a) (b)

(d) (e) (f)

c)(

B. Low-level continuous control

A. High-level once-per-step discrete control

Controller One step+
-

*x un+1 xn

=f( )K Kp d,τai
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*x  :Nominal states  
un+1:Parameter input
x    :States at eventsn
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Fig. 3. Control architecture. Control was performed in two layers: A high-
level, discrete control that used linear state feedback to make adjustments to
low-level parameters once per step, and B low-level control that continually
regulated joint torques in accordance with parameters during the course of
a step. The actuation parameters used in low-level control were: (a) hip
abduction angle, φha, a fixed parameter only changed at mid-stance, which
affected step width, (b) target hip flexion angle, φhf , the set point in a
proportional-derivative controller on hip flexion torque, which affected step
length, (c) ankle inversion-eversion stiffness, Kp, and damping, Kd, gains in
a proportional-derivative controller on ankle inversion-eversion torque, which
affected roll resistance and medial-lateral center of pressure location, and
(d-e) ankle plantarflexion torque offset, τp, an offset in ankle torque during
the phase when joint velocity was positive, which affected ankle push-off
work. (f) Default values of torque offset and ankle stiffness were chosen to
approximate the torque-angle curve observed for humans [48].

approximate the average torque-angle curve of the human
ankle, while the nominal value of τp was set during the search
for a limit cycle with desired speed and step length. The curve
formed by this function in angle-torque space is a work loop,
with the area inside corresponding to net ankle work during a
step. Because peak dorsiflexion angle is relatively consistent,
τp is approximately proportional to net ankle work.

2) High-level, once-per-step control: We developed several
high-level controllers that altered target values of step length,
step width, ankle roll resistance, ankle push-off work, or
combinations of these low-level control parameters once per
step in order to maintain balance. The system was discretized
by sampling states once per step at a Poincaré section, or a
predefined state event. Each high-level controller was discrete
and linear, having the form:

un+1 = u∗ −K(xn − x∗) (2)

where un+1 is a vector of control inputs (some combination
of φhf , φha, Kp, Kd or τp) for the n+1th step, u∗ is the
nominal vector of control inputs corresponding to limit cycle
motion, K is the gain matrix of the discrete linear controller,
xn is the state vector at the end of the nth step, and x∗ is the
state vector corresponding to limit cycle motions. For most
high-level controllers, we used full state feedback, consisting
of the angles and angular velocities of all model joints.



IEEE TRANSACTIONS ON ROBOTICS 5

(b)

(a)

Fig. 4. Disturbances in (a) ground height and (b) lateral impulse. The ground
was modeled as a series of flat surfaces, each centered below the landing foot,
and each with a randomly chosen height with respect to a constant reference.
Possible tripping of the swing foot was not considered. The magnitude of the
disturbance was defined as the maximum possible change in height between
two consecutive steps. Lateral disturbances were applied as an impulse along
the main axis of the pelvis at the instant of heel strike on each step.

High-level control decisions were made at mid-stance for
step length and step width control, and at the instant following
heel strike for ankle roll and push-off control. At mid-stance,
velocities and displacements of the center of mass were well
captured, while sufficient time remained to place the swing
foot [25]. At heel strike, control decisions could be imple-
mented immediately in either the trailing or leading ankle.

We developed discrete linear approximations of the dy-
namics of the model and control inputs and used these
to generate feedback gain matrices with a linear quadratic
regulator approach. We approximated the discrete dynamics as
xn+1 = A ·xn +B ·un, where xn+1 is the state at the end of
the n+1th step, A is the state transition matrix, xn is the state
at the end of the nth step, B is the control input matrix, and
un is the control input on step n, all relative to nominal values
at the fixed point. We used a finite differencing approach to
obtain the A matrix and B matrices corresponding to each set
of control inputs. These models were then used to generate
linear quadratic regulators (LQR), each consisting of a gain
matrix, K, for use in Eq. 2. A finite differencing approach was
also used to calculate linear approximations of other aspects
of system dynamics, such as the effects of disturbances on
system states, to aid interpretation of results.

We found that disturbance rejection could be significantly
improved by refining the gain matrix using a genetic algorithm.
This improvement likely relates to the fact that the LQR result
is only optimal in a narrow linear region, and does not utilize
information about the types of disturbances likely to be en-
countered. The value of K determined using LQR was used as
an initial seed in a covariance matrix adaptation evolutionary
strategy (CMA-ES, [49]). We used the cost function f = 1/h,
where h was the maximum tolerable disturbance for the full
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Fig. 5. Maximum tolerable ground height disturbance versus number of
steps tested. Dots and whiskers are the means and standard deviations of
five tests of maximum allowable disturbance using different random ground
patterns. We fit data with an exponential curve, shown in red. The mean
approached a constant as the number of steps increased, shown as a dashed
line, while standard deviation approached zero. At 100 steps, the mean
maximum tolerable disturbance value was within 2% of the asymptote.

non-linear system. We used a population size of 30 to optimize
computation time. The algorithm typically underwent about
150 to 300 generations before convergence. This process was
repeated for each combination of control input, disturbance,
and gait speed, (requiring the simulation of hundreds of mil-
lions of walking steps). The resulting optimized gain matrices
were used in across-controller comparisons.

C. Stability Measure

We quantified stability as the maximum random floor
height disturbance and the maximum random lateral impulse
disturbance that the model could tolerate for one hundred
steps without falling. Before each walking bout, bounded,
evenly-distributed, random arrays of floor heights and impulses
(Fig. 4) were generated. The magnitude of the floor height
disturbance was defined as the difference between the upper
and lower bounds of possible floor heights. The magnitude of
lateral impulse disturbance was defined as the absolute value of
the largest possible impulse, which could be applied in either
direction. Impulses were applied at the instant of heel strike
on each step. Maximum tolerable disturbance was found by
slowly increasing the magnitude until the model was unable
to complete a predefined number of steps without falling.

To determine an appropriate number of steps, we tried
several values and compared disturbance tolerance. We gen-
erated five sets each of random height distributions having
lengths from 1 to 500 steps, and calculated the mean and
standard deviation of maximum tolerable disturbance at each
length (Fig. 5). We found that maximum tolerable disturbance
appeared to converge to within 2% of the final value when
at least 100 walking steps were tested, and that the standard
deviation across different randomly-generated ground patterns
was also less than 2% for this number of steps. We therefore
used 100 continuous steps in tests of disturbance tolerance.
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D. Energy expenditure measure

We used positive mechanical work performed by hip and
ankle joints to quantify energy use. This system is periodic
and does not, on average, change speed or height. Positive and
negative mechanical work are therefore equal and opposite on
average, with positive joint work replacing negative joint work
and dissipation in plastic collisions. We calculated energy use
for sub-maximal disturbance levels, ranging from no distur-
bance to maximum tolerable disturbance, in order to capture
changes in energy consumption associated with balance.

E. Hardware-implementable control

For the most effective full-state feedback controllers, we de-
veloped reduced-order versions suitable for implementation in
robotic prosthesis hardware. Sensory information was limited
to local measurements only, including step period and ankle
joint angles and velocities. We first used linear regression
to calculate new gain matrices that used reduced sensory
information to reproduce the full-state feedback control inputs
with least squared error. These gains were refined for the non-
linear system using a genetic algorithm (CMA-ES).

F. Simulation experiment

We compared disturbance tolerance among the most effec-
tive high-level controllers. In particular, we compared con-
trollers based on step length and step width (foot placement),
ankle roll resistance (both stiffness and damping), ankle push-
off work, and the combination of all five control inputs. For the
normal walking speed model, we compared energy use across
controllers, and compared full-state feedback controllers with
their reduced-order hardware-implementable analogues.

III. RESULTS

Once per step control of ankle push-off work resulted in
better disturbance rejection than control of foot placement
or ankle roll resistance for both disturbance types and gait
speeds. Performance with push-off work control alone was
nearly as effective as controlling all inputs together (Fig. 6).
Push-off work modulation allowed the model to withstand
random changes in ground height of up to 7.8% of leg length
(0.085 m) compared to 1.5% leg length (0.016 m) with foot
placement, or about five times greater disturbance tolerance,
at a normal walking speed. The push-off controller tolerated
random lateral disturbances of up to ±6.3 N·s, compared to
±2.6 N·s with foot placement, or about twice the disturbance
tolerance. For larger disturbances, the push-off controller
failed to achieve ground clearance with the swing foot in at
least one step in one hundred. For foot placement and ankle
roll resistance controllers, the model fell sideways with higher
disturbances, consistent with prior modeling results [17].

Optimization of gain matrices using a genetic algorithm
improved disturbance tolerance for all controllers, but did not
affect the trend across controllers. For example, maximum
tolerable disturbances using the unmodified gain matrices
derived with LQR were 2.9% and 1.0% of leg length using
push-off work control and step width control, respectively, at
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Fig. 6. Disturbance tolerance versus control approach. (a) Maximum tolerable
ground height disturbance. (b) Maximum tolerable lateral impulse. Bars repre-
sent the maximum, bounded, random, ground-height variation and maximum
absolute value of bounded, random, bidirectional, lateral impulse that the
model could tolerate for 100 steps without falling. Solid bars are for slow
walking (1.0 m·s−1) and patterned bars are for normal walking (1.25 m·s−1).
Four different high-level controllers were tested: Foot placement, based on
φha and φhf ; Ankle roll resistance, based on Kp and Kd; Ankle push-off
work, based on τp; and Combined, based on φha, φhf , Kp, Kd and τp.
Ankle push-off work control led to the greatest disturbance tolerance.

TABLE I
NORMALIZED CENTER-OF-MASS STATE CHANGES AT MID-STANCE

Control input Disturbance
Kp Kd φha φhf τp Ht Imp

St
at

e qai -0.941 -0.822 -0.982 -0.929 0.634 -0.600 0.951
q̇ap -0.013 -0.013 -0.045 0.219 -0.715 0.752 0.016
q̇ai -0.337 -0.569 -0.185 -0.299 0.295 -0.273 0.310

the normal walking speed. A full comparison of results for the
two design methods is provided in the Appendix.

Other candidate measures of stability, including maximum
Floquet multiplier and gait sensitivity norm, did not correlate
well with maximum tolerable random disturbance (although
push-off control was effective by these measures). A compar-
ison of stability metrics is provided in the Appendix.

In the linearized model, ankle push-off had strong control
authority over both mediolateral and fore-aft motions. This
is illustrated by the normalized, weighted effects of each
input on the three states primarily associated with center-of-
mass position and velocity at mid-stance (Table I; detailed
calculation in Appendix). At mid-stance, defined as the instant
the hip passed over the ankle (qap = 0), push-off (τp) strongly
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Fig. 7. Energy expenditure of the normal speed model under the ground
height disturbances as a function of disturbance magnitude. Solid lines
represent total energy use, long-dashed lines the component used at the hip and
short-dashed lines the component used by the ankle. Colors represent different
high-level controllers, with X’s indicating the point at which the model could
no longer tolerate disturbances. Energy used at the hip was unchanged with
increasing disturbance. Ankle energy use increased in the region between
about 2% and 4% of leg length, corresponding with an increase in walking
speed and a shift to a gait pattern in which the model tended to transition
into double support without heel rise in the stance foot.

affected lateral center-of-mass position (qai) and both fore-aft
and lateral center-of-mass velocities (q̇ap and q̇ai). Increased
push-off work led to lateral displacement of the center of
mass and increases in both lateral and forward center-of-mass
velocity at mid-stance. These effects were nearly equal and
opposite to those caused by a step up in ground height (Ht).
Step length (φhf ) had a similar set of effects on center-of-
mass mechanics, but with less weight on forward velocity.
Ankle inversion resistance and step width (Kp, Kd and φha)
had little effect on fore-aft motion, but were well aligned
with the effects of lateral impulses (Imp). Center-of-mass
state was controllable through any input, but push-off led
to the best conditioned controllability matrix. The effects of
push-off on center-of-mass state were linear over a large region
(τp > 100 N·m) compared to the linear regions for other inputs
such as step width (φha ≤ 0.04 rad). The Appendix includes
a more detailed explanation, including comparisons of input-
disturbance alignment, controllability and linearity.

Energy use did not correlate with disturbance magnitude.
For all high-level controllers, changes in positive joint work
were negligible for low levels of ground height disturbance
(below 1% leg length; Fig. 7). In this region, step-by-step
differences in energy use due to control actions canceled
out over many steps. At higher levels of disturbance only
ankle push-off work control was able to maintain balance,
and energy use increased due to a change in walking speed.
As disturbance magnitude increased from around 2% to 4%
leg length, walking speed increased by about 20%, from
1.25 m·s−1 to 1.54 m·s−1. This change in speed arose through
dynamic interactions between the disturbance, resulting state
errors, the optimized gain matrix, and resulting ankle push-off
work. At higher speeds, trailing ankle stiffness, kank, was
too low to cause the stance heel to rise prior to leading leg
collision. This led to a sharp increase in the prevalence of
steps in which heel rise did not occur prior to heel strike,
from 0% of steps with 2% leg length disturbances to more

than 90% of steps with 4% leg length disturbances. With
the stance foot flat on the ground prior to heel strike, the
center of mass velocity was directed more downwards, leading
to greater energy dissipation in the ensuing collision. Over
the same range, overall energy use increased by about 20%,
which was entirely accounted for by a 60% increase in positive
mechanical work at the ankle joint.

We explored many reduced-order control strategies, and
found that reasonable performance could be achieved via
push-off control based on sensed ankle inversion-eversion
velocity alone. Using linear regression, target push-off work
matched that calculated using full-state feedback with about
19.5% root mean squared error. After optimization of the gain
matrix (in this case K ∈ R1) using a genetic algorithm,
the reduced-order push-off work controller tolerated ground
height disturbances of 1.8% leg length. This reduced-order
feedback law essentially stated that when mediolateral velocity
was too low at heel strike, push-off should be increased.
More precisely, the controller commanded push-off work in
proportion to the difference between measured and expected
ankle inversion velocity:

τp = τ∗p −K · (q̇ai − q̇∗ai) (3)

where τp is the torque offset (proportional to net ankle work),
τ∗p is the nominal torque offset, K is a positive scalar, q̇ai
is measured ankle eversion velocity, related to mediolateral
center-of-mass velocity, with positive velocity defined as caus-
ing the model to move side-to-side in the direction of the
leading leg during double support, and q̇∗ai is ankle eversion
velocity at the fixed point of the limit cycle.

IV. DISCUSSION

We compared the effectiveness of once-per-step control of
ankle push-off work, foot placement, and ankle roll resistance
at recovering from random disturbances in ground height and
lateral impulse. Control of push-off work was by far the most
effective approach, tolerating changes in ground height and
lateral impulse that were at least two times greater than any
other strategy, regardless of the speed of the model. This
strongly suggests that ankle push-off work can be an important
contributor to balance maintenance in the presence of the types
of disturbances expected in human environments.

Although most explanations of the role of ankle push-off
have focused on the sagittal plane [50], [51], ankle push-off
also has strong control authority over mediolateral motions.
Under typical conditions, push-off torque leads to both vertical
and mediolateral components of force at the trailing toe
(Fig. 8), contributing to side-to-side accelerations of the center
of mass. Increased ankle push-off work thereby increases
forward, vertical and lateral center-of-mass velocity, leading
to commensurate changes at mid-stance (Table I). This can
be used to aid recovery in both sagittal and frontal planes.
Push-off work may therefore be more important to maintaining
frontal-plane stability than previously thought.

Once-per-step control of push-off work may have been more
effective at recovery from ground height disturbances in part
because the effects of these two inputs on center-of-mass
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mechanics were so similar. Increased push-off work led to
lateral center-of-mass displacement and increased lateral and
forward velocity at mid-stance (Table I). This almost exactly
counteracted the effects of a step up, possibly allowing recov-
ery within a single step. No other inputs were as well-aligned
with ground height disturbances (Table VII).

Once-per-step control of push-off work seems to have been
more effective at recovery from lateral impulses due to better
controllability and a larger linear range than other inputs. The
effects of lateral impulse on center-of-mass state were best
aligned with ankle roll resistance and step width, rather than
push-off work. However, push-off resulted in a center-of-mass
controllability matrix that was six times better conditioned
than ankle roll resistance and sixty times better conditioned
than step width (Table VIII). Appropriate sequences of push-
off work could thereby achieve various changes in state more
easily. For example, an increase in push-off work on one step
followed by a decrease in push-off work on the next step
has nearly the same effect on center-of-mass state as a lateral
impulse; forward velocity is unaffected, while lateral position
and velocity are both increased, because side-to-side velocity
reverses from step to step while forward velocity does not.
The linear range of push-off was also much larger than that of
other control inputs. Torque during push-off could be doubled
or eliminated with predictable effects, while, for example, step
width could only be adjusted by 28% before causing a fall
within one step (Table IX). Greater controllability and a greater
linear region may also have allowed better regulation of system
energy than other inputs. These factors seem to be responsible
for the greater disturbance tolerance achieved with push-off
work control across all conditions tested.

The simplified push-off controller based on ankle inversion
velocity commanded more push-off work when velocity was
reduced at the instant of heel strike. An unexpected step up
leads to lower side-to-side velocity at heel strike because the
swing foot strikes the ground earlier than normal, halting
center-of-mass acceleration toward the leading leg. Pushing off

more helps to recover both mediolateral velocity and fore-aft
velocity, injecting additional energy needed to vault over the
elevated stance leg. In the context of random disturbances in
ground height, this simplified control law could be summarized
as “if you step on a bump, push off more; if you step in a hole,
push off less”. An unexpected lateral impulse increases medio-
lateral velocity, but in this case pushing off less undesirably
decreases forward velocity. With the correct choice of gain,
however, some of the mediolateral disturbance persists into
the next step, this time triggering an increase in push-off work
from the controller. The net effect of pushing off less on one
step and more on the next is a strong change in mediolateral
velocity but not forward velocity. In the context of lateral
impulses, the simplified control law could be summarized as
“if you get pushed toward your swing leg side, push-off a bit
less on this step and a bit more on the next”. What is surprising
is that the most important effects of modulating push-off, for
both disturbances, seem to be on frontal plane dynamics.

Discrete ankle push-off control resulted in the greatest
disturbance tolerance for all gait variations and control design
approaches that we explored. Push-off control performed bet-
ter at both slow and normal speeds, with both random ground
height and random lateral impulses, and with controllers de-
signed using both LQR and CMA-ES. In a model variant with
spring-like hip flexion (described in the Appendix), similar to
those used in prior simple dynamic models [52], disturbance
tolerance was reduced for all high-level controllers (e.g. 0.7%
leg length with push-off control) but had the same trend across
controllers (e.g. 0.1% leg length with step width control). In
a model variant with larger nominal step width (described
in the Appendix), both energy use and maximum tolerable
disturbances increased slightly, as reported in previous stud-
ies [17], but the relative disturbance tolerance of high-level
controllers was the same. The effectiveness of ankle push-off
control across all these circumstances suggests that it may be
an important contributor to balance in human walking.

In this model, there was no increase in mechanical energy
cost associated with control actions to maintain balance in the
presence of increasing disturbances. For small disturbances,
no change in energy use occurred for any control type. For
larger disturbances, push-off control actions tended to increase
walking speed, which led to increased nominal energy cost.
In optimizing the controller, rejection of errors in the more
fall-prone mediolateral direction might have been achieved at
the cost of poorer rejection of errors in the fore-aft direction.
Increased walking speed might also have been a strategy
for improving nominal stability discovered by the genetic
algorithm. Whatever the cause, increased energy use at high
disturbance levels was not due to step-by-step changes in
joint work associated with balance. This bodes well for the
application of push-off control in robotic prostheses, since it
might not require an increase in average power output.

Although we only considered linear state feedback con-
trollers, the results reported here are consistent with prior
simulation studies utilizing nonlinear control of foot placement
or center of pressure. We optimized the gains of our feedback
controllers using a genetic algorithm, resulting in substantial
improvements in disturbance tolerance, but did not alter the
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linear control architecture itself. In general, nonlinear control
encompasses a larger design space and is expected to result
in better performance. It is possible that disturbance tolerance
could be improved more with nonlinear control for approaches
using foot placement and center of pressure than those using
ankle push-off. To provide context, we repeated tests applied
in two previous simulation studies examining stability with
nonlinear control and compared outcomes (see Appendix for
details). We found that the best foot placement controller
derived here tolerated similar maximum downhill slopes as
a prior foot placement approach (-2.5◦ compared to -3◦ slope
in [53]). Similarly, the ankle inversion-eversion resistance
controller derived here tolerated a similar step down as a prior
center of pressure approach (0.057 m compared to 0.025 m
in [54]). These comparisons suggest that the linear controllers
used here do not put foot placement or center of pressure
techniques at a substantial disadvantage. With the addition
of techniques such as LQR trees [55], we would expect
improvements in disturbance tolerance for all control inputs.
Similarly, the addition of planning for imperfectly-anticipated
disturbances would likely lead to improvements for all control
inputs. A more complete model might also have lent insights
into the effectiveness of other balance strategies, such as those
using the arms and torso. Both the trunk [56] and arms [57]
have been suggested as contributors to stability in human gait,
and these should be investigated in future studies.

The finding that ankle push-off work control was more
effective than foot placement and ankle roll resistance control
may be specific to random ground height and lateral impulse
disturbances. In particular, random disturbances on each step
can result in different relative effectiveness of control inputs
than single disturbances. With a single step down, both ankle
push-off and foot placement yielded the same disturbance
tolerance (8.3% leg length), with the limiting factor being
foot clearance on the next step. With a single lateral impulse,
ankle roll resistance tolerated 15% larger disturbances than
ankle push-off (see Appendix for details). Control inputs with
weaker authority may benefit more from the additional re-
covery time allowed by single disturbances, making continual
random disturbances a stronger test of balance. In all cases
we have tested, push-off control has resulted in disturbance
tolerance that was at least comparable to other inputs.

Control of foot placement and push-off work occurred at
different times in the gait cycle, an unavoidable consequence
of the nature of these control inputs that can disadvantage
foot placement. Disturbances took effect at heel strike. The
effects of foot placement control occurred primarily at the next
heel strike, by which time the disturbance had substantially
affected the full state of the system. Push-off work decisions
were made directly after heel strike, at which time only system
velocities had been affected. In the discretized linear system
such differences do not matter; the characteristic delay is one
walking step regardless of the time between disturbances and
control actions within the step. This system, however, is mean-
ingfully nonlinear. Larger disturbances push the state beyond
its approximately linear region, illustrated, for example, by the
improvements obtained by CMA-ES gain tuning after LQR
design. A longer delay between disturbances and corrections

can therefore lead to larger state deviations and more nonlinear
effects. For ground height disturbances such timing discrepan-
cies are unavoidable; the disturbance takes effect at heel strike,
after which foot placement cannot be adjusted because the
foot is already on the ground. Push-off work, by contrast, can
still be modulated during the ensuing double-support period.
For lateral impulse disturbances, applying the impulse just
before mid-stance might advantage foot placement over push-
off work, although this idea remains to be tested.

Delays between control decisions and control actions could
also advantage push-off modulation over foot placement in
some situations, although not in the present simulation. Foot
placement decisions were made at mid-stance, with their pri-
mary effects on system dynamics occurring at the subsequent
heel strike. If additional disturbances were to occur in the
intervening portion of swing, they would not be accounted
for in that foot placement. Such delays are inherent in the
foot placement strategy, but not in push-off work modulation.
Changing leg position with torque- and speed-limited actuators
requires finite time, and these delays frequently limit perfor-
mance in robots with foot placement control strategies [47],
[58], [59]. By contrast, altering trailing ankle push-off work
requires only a change in ankle torque, which can be achieved
much faster. Delays between control decisions and actions
were not an issue in the present study because additional
disturbances did not occur between sensing and action.

As a follow-on to this simulation study, we have recently
conducted and published a study demonstrating that once-per-
step modulation of push-off work in an ankle-foot prosthesis
can improve balance for humans [60]. Our experimental work
provides empirical evidence to support the primary finding of
the present modeling study, which is that control of push-off
work is important to balance for three-dimensional bipeds.

V. CONCLUSIONS

In this study, we have shown that once-per-step control of
ankle push-off work can be more effective than foot placement
and center of pressure control when recovering from random
changes in ground height and random lateral impulses in three-
dimensional bipedal walking. The key to this result seems to
be that push-off provides a useful combination of effects on
both mediolateral and fore-aft motions. A simplified controller
that adjusted push-off based only on ankle inversion-eversion
velocity was also effective, correcting reductions in lateral
velocity at heel strike by commanding more push-off work,
and vice versa. The simplified controller is relatively easy
to implement in a prosthesis because it requires only local
state information and has only one gain that requires tuning.
The technique also requires no additional power on average,
meaning that its incorporation in a mobile device would not
require larger batteries. The theoretical framework presented
here explains our recent success in reducing balance-related
effort for humans using once-per-step control of push-off work
in an ankle-foot prosthesis. This approach could be utilized
in commercial prostheses, possibly leading to devices that
improve balance and reduce fall risk for individuals with
lower-limb amputation.
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APPENDIX

Gain optimization

We examined the maximum tolerable disturbances in ground
height with once-per-step controllers using two different gain
optimization methods, LQR and CMA-ES (Table II). Compar-
isons were made at normal walking speed. CMA-ES resulted
in substantially greater disturbance tolerance for most con-
trollers. The improvement for the foot placement controller
was relatively small (0.002% leg length). For both methods
of gain generation, ankle push-off work modulation was most
effective (other than simultaneously utilizing all inputs).

TABLE II
MAXIMUM TOLERABLE DISTURBANCE VS. GAIN METHOD

Control Measure (% leg length)
Method LQR CMA-ES

Step width 0.96 1.10
Foot placement 1.50 1.50

Ankle roll resistance 0.12 0.78
Ankle push-off work 2.94 7.80

All inputs 3.21 7.98

Stability metrics

We calculated two additional stability metrics, maximum
Floquet multiplier and gait sensitivity norm (Table III), and
compared them to maximum tolerable disturbance. Compar-
isons were performed at normal walking speed using con-
trollers designed by LQR. The maximum Floquet multipliers
were obtained by measuring maximum eigenvalues of the
stabilized, discrete linear model for each controller [61]. Gait
sensitivity norms were calculated from 20 walking steps after
an initial 0.001 m step-down disturbance, using step period
as the gait indicator, in the method of [32]. As in prior
studies, maximum Floquet multipliers did not correlate well
with maximum tolerable disturbance (compare to Table II).
Unlike prior studies, the gait sensitivity norm also did not
correlate well with maximum tolerable disturbance. It may be
that strong correlations observed in prior studies are limited
to, e.g., two-dimensional models, foot-placement based control
strategies or single step-down disturbances.

TABLE III
MAXIMUM FLOQUET MULTIPLIER AND GAIT SENSITIVITY NORM

Control Max. Floquet Gait
Method multiplier sens. norm

Step width 0.513 0.093
Foot placement 0.381 0.073

Ankle roll resistance 0.533 0.114
Ankle push-off work 0.533 0.235

All inputs 0.532 0.308

Linearized system model

To aid in interpreting the primary result of maximum
tolerable disturbance, we performed computations based on
a linearized model of the system. For this linearized model,

the Poincaré section was taken at mid-stance, defined as the
instant that the hip passed over the ankle (qap = 0). This
choice eliminated the states associated with toe yaw (qty), toe
pitch (qtp), ankle pitch (qap), toe yaw velocity (q̇ty), and toe
pitch velocity (q̇tp) from the system, since they are all typically
zero at this instant. For this linearization, the model walked
at normal speed. All matrices describe behavior of the system
about the fixed point, relating deviations from nominal values
on one step to deviations on the subsequent step. We used finite
differencing to calculate the state transition matrix (Table IV),
the control input matrix (Table V), and the disturbance input
matrix (Table VI). To improve readability, the control input
matrix was normalized. This linearized system model was used
to calculate disturbance alignment and controllability.

TABLE IV
LINEARIZED SYSTEM: A – MID-STANCE STATE TRANSITION MATRIX

state: xn
qai qhf q̇ap q̇ai q̇hf

st
at

e:
x
n
+
1 qai -2.400 0.041 0.095 -0.768 -0.006

qhf -1.090 -0.570 0.124 -0.305 -0.022
q̇ap -1.690 -0.942 0.545 -0.459 -0.046
q̇ai -6.230 0.523 0.296 -2.360 -0.007
q̇hf 31.600 16.100 -3.620 8.860 0.633

TABLE V
LINEARIZED SYSTEM: B – MID-STANCE CONTROL INPUT MATRIX

Control input: un
Kp Kd φha φhf τp

st
at

e:
x
n
+
1 qai -0.154 -0.097 -0.076 -0.005 0.005

qhf -0.022 -0.010 -0.035 0.958 -0.035
q̇ap -0.030 -0.020 -0.047 0.015 -0.074
q̇ai -0.745 -0.911 -0.193 -0.020 0.031
q̇hf 0.648 0.399 0.976 0.286 0.996

Norm. factor 5.6e-4 2.9e-4 1.3e-1 1.0e-1 5.5e-1

TABLE VI
LINEARIZED SYSTEM: W – MID-STANCE DISTURBANCE MATRIX

Disturbance input
Ht Imp

st
at

e:
x
n
+
1 qai -0.375 0.285

qhf 4.170 0.014
q̇ap 6.370 0.066
q̇ai -2.310 1.260
q̇hf -118.500 -0.473

Disturbance alignment

To help interpret the reasons that push-off work control
allowed better disturbance tolerance than other control inputs,
we analyzed how well the effects of each input on center-of-
mass state matched those of each disturbance. For this analy-
sis, we used the three input rows corresponding to the states
primarily associated with center-of-mass position and velocity
at mid-stance: qai, q̇ap, and q̇ai. This avoided confounds from
states that could be strongly affected but are unlikely to lead to
a fall, such as swing leg velocity at mid-stance (final swing leg
position was maintained by high-gain feedback). Angle states
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were weighted relative to angular velocity states by the ratio
of the mean standard deviation of angular velocities during
a step to that of angles, which equaled 13.5. This avoided
confounds due to differences in units (rad vs. rad·s−1). The
partial input vectors were then normalized to form unit vectors
(Table I). The dot product of each disturbance unit vector with
each control input unit vector was calculated to determine how
well-aligned inputs were with disturbances (Table VII). Push-
off work (τp) was nearly perfectly aligned with ground height
disturbances (Ht), while the other control inputs were better
aligned with lateral impulses (Imp).

TABLE VII
ALIGNMENT OF INPUTS AND DISTURBANCES

Control input
Kp Kd φha φhf τp

D
is

t. Ht 0.65 0.64 0.61 0.80 1.00
Imp 1.00 0.96 0.99 0.97 0.68

Controllability

To help in interpreting the reasons that push-off work
allowed better disturbance tolerance than other control inputs,
we analyzed the ease with which each input could control
center-of-mass states. We used the same techniques as for
Disturbance alignment, using only the three states associated
with center-of-mass position and velocity and weighting angle
states relative to angular velocity states. We calculated the
center-of-mass controllability matrix for each input, defined
as Ĉ = [B̂ Â·B̂ Â2·B̂], where Â is the (dominant) portion
of the state transition matrix associated with center-of-mass
states and B̂ is the portion of the control input vector asso-
ciated with center-of-mass states for each control input. We
then calculated the condition number of the center-of-mass
controllability matrix (Table VIII) as an indication of how
easily the system could be controlled using different inputs,
robustness against model errors, and the magnitude of inputs
required to recover from worst-case state deviations [62].
Push-off work (τp) resulted in the best-conditioned center-
of-mass controllability matrix, suggesting that, in general,
disturbances to center-of-mass state could be removed most
easily using push-off work modulation.

TABLE VIII
CENTER-OF-MASS STATE CONTROLLABILITY

Control input
Kp Kd φha φhf τp

Condition number: 1,382 2,074 13,909 389 222

Linearity

To aid in interpreting the finding that push-off work control
resulted in the greatest disturbance tolerance, we calculated
the approximate range over which control inputs had a linear
effect on system state (Table IX). We iteratively re-calculated
each control input vector using a finite difference method,
with progressively larger perturbations to the control input.

We defined the linear region as the maximum perturbation for
which the resulting control input matrix was within 10% of
the matrix based on a small perturbation.

The linear range of push-off work was large compared to
other control inputs. The maximum allowable change in push-
off, τp, would result in a change of more than 350 Joules of
mechanical work on a typical step, equivalent the change in
potential energy resulting from an unexpected 0.5 m step up
or down. The maximum allowable changes in ankle resistance
terms, Kp and Kd, would result in a change of about 3 Joules
of work on a typical step, about 1% of the value for push-off.
The maximum allowable changes in foot placement terms, φha
and φhf , would result in a change in step width or length of
about ±0.05 m on a typical step, or about 28% of step width
and 3.5% of step length. All control inputs other than push-
off work were approximately linear up to the point at which
the control input caused a fall before completion of a single
walking step. Push-off work values began to have nonlinear
effects prior to the values that caused a fall within one step.
Push-off allowed inputs with at least one order of magnitude
larger functional effect than other inputs.

TABLE IX
CONTROL INPUT LINEAR RANGE

Control input
Kp Kd φha φhf τp

Order
linear: 20 N·m

rad 600 N·m·s
rad 0.04 rad 0.05 rad 700 N·m

Spring-like hip control comparison

We also compared disturbance tolerance in a model with
spring-like hip actuation, equivalent to low-gain proportional
control, as in [17]. We examined maximum tolerable ground-
height disturbances using each high-level controller, designed
using both LQR and CMA-ES methods, and found similar
trends as in the model with high-gain step length control
(Table X). Ankle push-off work modulation showed the best
performance among individual controllers. Because gains on
step length were low by definition in the spring-like hip model,
once-per-step adjustments in target step length were not very
effective. Foot placement control was therefore nearly identical
to step width control for the spring-like hip model.

TABLE X
DISTURBANCE TOLERANCE WITH SPRING-LIKE HIP MODEL

Control Measure (% leg length)
Method LQR CMA-ES

Step width 0.04 0.13
Foot placement 0.04 0.13

Ankle roll resistance 0.17 0.28
Ankle push-off work 0.41 0.66

All inputs 0.44 0.81

Wider step width model comparison

We examined disturbance tolerance and energy expenditure
for a model with larger step width (0.20 m) and compared
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results to the model with normal step width (0.15 m). We
designed a once-per-step ankle push-off work controller using
LQR for both models and compared maximum tolerable
ground-height disturbance and mechanical energy expenditure.
The model with wider steps walked on terrain with random
height disturbances of up to 4.3% leg length, 46% higher than
with nominal step width (2.9% leg length). With ground height
disturbances of 2.9% leg length, the wide step width model
and nominal step width model used an average of 188.8 J and
182.8 J of energy per step, respectively. As expected [63], the
wide step width model therefore tolerated higher disturbances,
but at a cost of more mechanical work.

Slope and step-down disturbance comparisons

We compared the disturbance tolerance of the foot place-
ment and ankle roll resistance control strategies tested here
to prior results to verify that they were competitive. To our
knowledge no other studies have applied the same stabil-
ity metrics, so we performed additional simulations using
disturbances applied in other studies. We used the model
with normal speed and high-gain step length control, and
derived control gains using LQR. In one test, we used only
foot placement control and approximated downhill walking
using ten equal steps down in sequence. We found that the
foot placement controller tolerated similar maximum downhill
‘slopes’ as a prior foot placement approach (-2.5◦ compared
to -3◦ slope in [53]). In a second test, we used only ankle
inversion-eversion resistance control and applied a single step
down. We found that this approach tolerated similar steps
down as a prior approach based on center-of-pressure control
(0.057 m compared to 0.025 m in [54]).

Maximum one-time lateral impulse comparison

We compared maximum tolerable lateral impulse, applied
only once rather than randomly on each step, for three control
inputs with high mediolateral control authority: push-off, step
width and inversion-eversion resistance. We used the model
with normal speed and control gains derived using LQR.
We incrementally increased the lateral impulse applied on
the first step until the model fell within 20 walking steps.
Once-per-step modulation of push-off work, step width, and
inversion-eversion resistance resulted in tolerance of impulses
of 0.48 N·s, 0.11 N·s, and 0.55 N·s, respectively. While
inversion-eversion control resulted in the greatest one-time
lateral impulse tolerance, push-off work control resulted in
comparable performance.
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