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Chapter 3

Stress Analysis for Design

As a student in Mechanical Engineering or a similar field, you will have taken a
course or courses covering the fundamentals of stress and strength of materials.
In this chapter, we will apply these concepts in the context of the analysis of
a candidate component. Although this chapter reviews some concepts of stress
and strength, uninitiated readers are encouraged to first read a book dedicated to
the subject, such as Mechanics of Materials by Steif [2012]. Such texts provide
a wider set of analytical tools for mechanical design problems, and provide the
technical foundation for developing intuition for component strength.

3.1 Simplified Stress Analysis

We will use the term “simplified stress analysis” to refer to analysis using sim-
ple, established analytical models. This approach quickly develops fundamental
relationships between peak stresses and design parameters using hand analysis of
(drastically) simplified models. These relationships can be inverted to find an-
alytically optimal design parameters, providing a strong foundation for detailed
design. It is most commonly used early in the design process and at the initial
phases of re-design iterations.

3.2 Detailed Stress Analysis

We will use the term “detailed stress analysis” to refer to analysis using detailed
computational models. This approach addresses nearly the full complexity of a
design, typically using Finite Element Analysis (FEA) software tools, allowing
for iterative refinement of design details. It is most commonly used later in the
design process, after simple analysis and before prototyping.
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3.3 Example: This Old I-Beam
In this example, we will perform simple and detailed stress analysis on an I-beam
(Figure 1) and compare the answers. An accompanying SolidWorks part file can
be found on Blackboard. In this exercise we will make the following assumptions
and definitions:

• Cantilever loading: rigidly supported on one end, load = F at the other

• I-beam length = L, height = h, base width = b, and thickness = t

• Holes along center of the web have diameter = D

• Holes along the flanges have diameter = d

• Material: Alloy Steel ASTM A36, a ductile material

Figure 1. Left: image of the I-beam. Right: diagram of the I-beam’s cross-section.
Bottom: free body diagram of the beam in cantilever loading.

3.3.1 Simple Stress Analysis
Intuition check: Where will the stresses be highest in this I-beam? Chew this over
for a moment before continuing.

Models to be used: Based on our familiarity with the cantilevered beam prob-
lem, we see quickly that the Euler-Bernoulli approximation (σ = M · y/I) will be
helpful here. This model suggests that stresses will be highest near the cantilever
point, at the upper and lower edges of the I-beam. We also recognize that the
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holes will cause some form of stress concentration, for which we can look up a
concentration factor. This suggests the highest stress will be at the edge of a hole
on the flange near the fixed end.

Analysis objective: This is the type of problem you’ve encountered many times as
an engineering student. For known geometric parameters (h,b, t,D), loading (F),
and material properties (σy), what is the Factor of Safety (F.O.S.)?

Design objective: This is a new problem, specific to design. What should the
parameters be? For example, if we assume material properties, loading, F.O.S.,
and some geometric parameters, what should the other geometric parameters be?
Which parameters have the most influence over outcomes, such as beam mass?
We will see how simple analysis results can be inverted to answer these questions.

Step 1: Approximate bending stress

Let’s use a simple model of stress in a beam loaded in bending to get a first order
approximation of the peak stress in our I-beam. The peak stress can be estimated
using Euler–Bernoulli beam theory [e.g. Budynas and Nisbett, 2006]:

σm ≈ Mmax · ymax
I

(3.1)

Load analysis with a Free Body Diagram would show that the maximum bending
moment is Mmax = F ·L on the fixed end. The maximum distance from the cen-
troid is ymax = h/2. I is the area moment of inertia of the beam. Unfortunately,
we don’t know a simple formula for this shape, so we will have to come up with a
decent approximation ourselves.

Step 1.b: Area moment of inertia of the I-beam

Let’s try to derive I for our I-beam. The second moment of area of a rectangular
region about its neutral axis is [e.g. Budynas and Nisbett, 2006]:

Irect =
1

12
w ·h3

where w and h are the width and height of the rectangle respectively. Of course,
the I-beam cross section includes at least three rectangles, two of which do not
share a centroid with the beam as a whole. The parallel axis theorem [e.g. Beer
et al., 2009], tells us that the second moment of area of a shape about an axis
parallel to its neutral axis is:

I = Ineutral +A ·d2,
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where Ineutral is the area moment of inertia about the shape’s neutral axis, A is
the area of the shape and d is the distance between the shape’s neutral axis and the
desired axis (here the centroid of the beam).

Treating each rectangle that comprises the cross-section separately, the combined
I-beam area moment of inertial is therefore:

Itotal = 2 ·

[
1

12
b · t3+

(
h
2
− t

2

)2
·b · t

]
+

1
12

t(h−2t)3

where the first term captures the flanges and the second accounts for the web.

While strictly correct, this solution is complex. That makes it hard to interpret
and difficult to manipulate or invert. Let’s severely reduce the problem until we
get a very simple equation that captures the most fundamental relationships and is
accessible to further hand analysis. We will use the assumptions that t � b, t � h,
that b is of similar magnitude to h, and even neglect terms with smaller constants:

Itotal = 2 ·

[
1

12
b · t3+

(
h
2
−

�
��
t
2

)2
·b · t

]
+

1
12

t(h−��2t)3

(on the basis that h will dominate these terms)

≈ 2 ·

[
�
�
�
�1

12
b · t3+

(
h
2

)2
·b · t

]
+

1
12

t(h)3

(since t3 will be small)

≈ 1
2

tbh2+
�
�

��1
12

th3

(because the coefficient is smaller)

≈ 1
2

bth2

(3.2)
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This is now a simple approximation of I suitable for further hand analysis. Let’s
substitute Equation (3.2) back into Equation (3.1) to obtain a complete symbolic
relationship in terms of our design parameters:

σmax ≈
F ·L · 1

2h
1
2bth2

=
F ·L

b · t ·h
. (3.3)

Step 2: Factor of Safety

Recall that the factor of safety is the ratio of the capacity of the system (numera-
tor) to the expected operating conditions (denominator), in this case the ratio of
the failure stress to the expected maximum stress. We do not wish our beam to
plastically deform, therefore exceeding the yield stress, σy, would not be accept-
able. In other words:

F.O.S.=
σy

σmax

Combining with Equation (3.2) we have:

F.O.S.=
σy ·b · t ·h

F ·L
(3.4)

Reflect and interpret: The above equation tells us the relationship between a crit-
ical outcome, F.O.S., the material chosen, σy, the applied load, F , and the most
basic geometric parameters of our design. We can see that increasing b, t, or h
would all equally increase the factor of safety, which might contradict your in-
tuition prior to this analysis (e.g. that h would dominate). In keeping with our
intuition, we also see that minimizing L will maximize the safety factor. But what
if we have a target factor of safety in mind? We will return to this question mo-
mentarily...

Recriminations: What about shear stress?

So far, we have plunged forward on the assumption that bending stresses domi-
nate. But isn’t the beam experiencing shear loading as well? Let’s calculate peak
shear and compare to the stresses estimated by our bending model. The average
shear stress can be expressed simply as

τavg =
F
A
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If we calculate the combined cross-sectional area and simplify, we have

A = 2 ·b · t + t · (h−2t)

≈ 2bt +ht −�
�2t2.

Thus,

τavg ≈ F
2b · t +h · t

A slightly more accurate peak shear stress in an I-beam can be calculated based
on the cross-sectional area of the web alone [Budynas and Nisbett, 2006]

τmax ≈ F
Aweb

≈ F
h · t

(3.5)

We can see that τavg is lower than τmax (there is an additional term of 2bt in the
denominator), making τmax a more conservative estimate.

But how does the peak shear stress compare to the peak bending stress? If we
divide Equation (3.3) by Equation (3.5), and set aside differences between shear
and axial stress, we obtain a ratio of bending to shear stress in the beam of

σmax
τmax

≈
F ·L
b·t·h

F
t·h

=
L
b

Reflect and interpret: Since we expect our beam to be longer than it is wide, the
above relationship tells us to expect the axial stresses induced by bending to be
larger than those due to shear loading. Interestingly, because the I-beam is well-
designed to withstand bending (i.e. to have a large area moment of inertia for a
small amount of material), shear actually plays a bigger role than it would in a
beam with rectangular cross section, where the ratio would work out to 6 ·L ·h−1.

In other words, as you optimize for one failure mode, perhaps counter-intuitively,
secondary failure modes become more relevant.

Part 3: Stress concentrations from holes in the beam

Does it matter that our old I-beam has a bunch of holes in it? As a first approx-
imation (Steps 1 & 2), no. However, we can increase the accuracy of our stress
estimate, with only a minor increase in model complexity, by considering these
holes as stress concentrators. We recall from our stress course that a theoretical, or
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geometric, stress-concentration factor, Kt [e.g. Dieter and Schmidt, 2009] relates
the maximum stress at a discontinuity to the nominal stress:

Kt =
σmax
σnom

.

Checking our texts [e.g. Beer et al., 2009, Budynas and Nisbett, 2006, Steif, 2012]
for a relevant look-up chart, we find the following:

Judging from Figure 1, we guess that for the holes of interest (those along the top
and bottom flanges) the key ratio is d/b ≈ 0.1. This gives us Kt ≈ 2.7, no small
multiplier.

Part 4: Substitutions

Notice that we have learned quite a lot without substituting numerical values into
any of our equations! Of course, to complete the analysis portion of our exercise,
we need to calculate factors of safety. Let’s use the following reasonable values to
generate numerical answers. Let’s assume the beam is constructed of ASTM A36
alloy steel, a ductile material with sigmay ≈ 36,000 psi; a load F = 5,000 lbf was
applied; and the beam has L = 100 in., h = 10 in., b = 5 in., t = 0.5 in., D = 5 in.,
and d = 0.5 in. Using the bending model and neglecting stress concentrations, we
have:

σm ≈ 20,000
lb

in2 = 20 ksi,
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thus the Factor of Safety based on the maximum bending stress is

F.O.S.=
σy
σm

≈ 36 ksi
20 ksi

≈ 1.8

If we include the stress concentration factor, we have

F.O.S.∗ ≈
σy

Kt ·σnom
=

36
2.7 ·20

=
36
54

≈ 0.7.

Reflect and interpret: Once provided with numerical values, we quickly deter-
mined a factor of safety. However, these numbers do not contain the rich rela-
tionships available in our symbolic equations and do not allow inverse analysis
for design, so it’s a good thing we didn’t substitute too early. Between the two
factors of safety we did calculate, which is more accurate or useful? There will be
stress concentrations due to the holes on the flanges, and so including Kt results
in a more accurate estimate of peak stress. However, in the case of a ductile ma-
terial undergoing static (non-cyclic) loading, we can most likely neglect the stress
concentrators when calculating factor of safety, since strain hardening and local
plastic deformations will both act against failure at the concentrator.

3.3.2 Detailed stress analysis
These same analyses can be performed on a detailed computational model of the
I-beam, for example using the Simulation feature in SolidWorks. Accompany-
ing this document, you will find a SolidWorks part model that includes such an
analysis. Below are screen shots of the results of this analysis.

Figure 2. Solid model of the I-beam with fixtures (green arrows at left) and load-
ing (pink arrows at right) shown.
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Figure 3. Stress analysis results for the I-beam without holes. The peak stress is
just below 20 ksi (red on the scale at right), similar to the value from our simplified
analysis.

Figure 4. Close-up of the peak stress region for the beam without holes. The peak
stress occurs on the top and bottom edges of the flange near the cantilever point,
as expected from our simple model.
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Figure 5. Stress analysis results for the I-beam including holes. The peak stress
has increased to above 47 ksi, slightly lower than the 54 ksi predicted by our
stress concentration factor analysis. The red arrow on the color legend indicates
the expected yield stress for the material we have applied to this part, a near-literal
’red flag’ for most design problems.

Figure 6. Close-up of the holes on the flange nearest the cantilever. The peak
stress in the beam occurs at the edge of these holes, as expected based on our
simple analysis of beam bending and stress concentrations.
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Reflect and interpret: Note that the results of the detailed stress analysis match
nicely with those of our simple analysis, despite the ruthless simplifications we
made. But imagine now that we were aiming for a particular factor of safety.
We would need to either guess and check iteratively or use a software tool (such
as ‘design optimization’ in SolidWorks) to tune selected parameters in a more
structured way. Either of these processes would require significant time for com-
putation and would not provide a deeper understanding of how design parameters
interact with outcomes of interest. Could we do better using our analytical models,
which seem reasonably accurate at predicting key outcomes?

3.3.3 Design using inverse analysis

Instead of assuming we are given all the parameters of our design, let’s consider
the case where only some parameters are constrained and we are left to select the
best values for remaining parameters according to some desired outcome.

For example, assume the beam must span a given distance (L is fixed), support
a given load (F is fixed), and provide mounting holes for preset components (d
is fixed and Kt can be approximated). Further, let us for now restrict ourselves
to the same material (σy is set), and assume a domain with well-understood risks
and rewards (F.O.S. is set). Rearranging Equation (3.4) and including the stress
concentration factor, we have:

b · t ·h ≈ F.O.S. ·Kt ·F ·L
σy

(3.6)

The terms on the left hand side of Equation (3.6) are free design parameters, while
those on the right hand side are design requirements. Since we have one equation
and three free parameters, this design problem is under-constrained; there are in-
finite possible solutions that all satisfy our requirements equally well.

What to do? Whenever you have an under-constrained system, it’s time to look
for more equations or constraints. One possibility is to look to additional well-
defined outcomes that interact with our design parameters. A common example
would be the total mass of the I-beam. Let’s calculate the mass as density times
volume, and make simplifying assumptions:
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m = ρ ·L ·
[
2bt + t(h−��2t)

]
(again assuming the t2 term will be small)

m ≈ ρLt(2b+h).

(3.7)

Now we can combine Equations 3.6 and 3.7 to reduce the design space. We will
have to pick one parameter to substitute, and therefore eliminate, in the new equa-
tion. Perhaps in this design, looking at additional outcomes of interest, we might
discover that there are good reasons to set b and h to certain values, while setting
t a priori does not help as much. We might then rearrange as:

t ≈ FoS ·Kt ·F ·L
b ·h ·σy

(3.8)

We can then combine the equation for an outcome we wish to minimize (mass)
with that for an outcome we wish to set (factor of safety) to reduce the design
space:

m ≈ ρ ·FoS ·Kt ·F ·L2

σy
· 2b+h

bh
, (3.9)

The first term on the right hand side of the equation is set by our design con-
straints, while the second term reveals the relationship between our free design
parameters, b and h, and the outcome we wish to minimize, mass. In this case,
you can prove to yourself that (2b+h)/bh is minimized as b and h go to infinity.
In other words, if we want the beam to be light, we want it to be tall, wide, and
(noting that we have implicitly set t by the substituted relationship) thin.

Reflect and interpret: Using inverse analysis, we have quickly generated an under-
standing, in the form of Equation 3.9, of the relationship between design param-
eters, design requirements and design objectives to be optimized in this problem.
Considering this relationship informs our intuition more quickly and accurately
than guessing and checking with a CAD model. The derived relationship also
allows for rapid analytical optimization of design parameters, not only valid for
one set of parameters but for all variations of this qualitative problem, a feature
that is very helpful when iteratively re-designing components, e.g., during design
of an assembly. In this way we have taken up the models that we came to think
of as static equations for analysis of existing scenarios and repurposed them as
powerful tools for developing our intuition and optimizing new designs.
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