Design using Material Selection (with side-note on Technical Writing)

24-370 - Spring 2011 Professor Steve Collins

Announcements

- Project 1 parts due... now :-D
- Project 1 report due Wednesday
- HW2 answer key online

Technical Writing

- Goal: Transfer knowledge efficiently
 - Unambiguous, unique, concise descriptions
 - Shorter, woloc, is better
 - Very difficult, requires iteration
 - Takes practice
- Project 1 application
 - Description (100 words)
 - Reasoning (200 words)
 - Failure mode prediction (15 words)

Technical Writing Exercises

 Edit this sample sentence (reasoning):
 "Steel is a good material for this design because it is not very expensive and it has good mass properties and is also simple for

machinists to work with."

 One possible improved version:
 "We chose steel because it is dense, cheap, and easily machined."

Technical Writing Exercises

- Edit this sample topic sentence (description):
 "A cylinder, made of steel, with a hole along a radial line and located a small distance from one end of the cylinder, is the part that will be used as the testing mass."
- One possible improved version:
 "The testing mass comprises a steel cylinder with a radial hole through one end."

Technical Writing Exercises

- Edit this sample sentence (failure mode):
 "The part will yield."
- One possible improved version:
 "Yielding will occur at the contact between the wire rope and the hole."

Design using Material Selection

- Designer's perspective...
- Review of material properties
 - A little on their modification
- Finding material properties
- Analytical approaches to material selection
- Common materials and uses
- Other considerations

Review of Material Properties

- Elastic modulus, E
- Yield strength, S_v
- Ultimate strength, S_u
- Ductility
- Resilience, u_R
- Toughness, u_T
- Hardness
- Density, ρ

Processing that Affects Strength

- All about crystals
- Alloying (metallurgy)
- Cold working

Processing that Affects Strength

- All about crystals
- Alloying (metallurgy)
- Cold working
- Annealing
- Quenching
- Tempering

Processing that Affects Strength

- All about crystals
- Alloying (metallurgy)
- Cold working
- Annealing
- Quenching
- Tempering
- Case Hardening
- E, ρ, unchanged

Condition	Tensile strength, kpsi	Yield strength, kpsi	Reduction in area, %	Elongation in 2 in, %	Brinell hardness, Bhn
Normalized	200	147	20	10	410
As rolled	190	144	18	9	380
Annealed	120	99	43	18	228

Finding Specific Material Properties

- Manufacturer specifications
- Standardization, e.g. AISI, ASTM, UNS
- Databases, e.g. MatWeb: www.matweb.com

Material Properties Exercise

- What is the yield stress of 7075-T6 Aluminum?
- Elongation at failure of 6061-T6 Aluminum?
- Is Acrylic ductile or brittle?
- Elastic modulus of ABS?
- Ultimate strength of 440C stainless?
- Inverse look-up → selection
 - E.g., find material with high strength, low density
 - Harder problem...
 - Two solutions: chart analysis and intuition

Using Material Charts

- First, analytically determine desired property
 - E.g., high elastic modulus, E
 - Or, high root strength to weight ratio, $S_v^{\frac{1}{2}} \rho^{-1}$
- Then, use a material chart
 - E.g. Ashby (some reproduced in Shigley)
- Other considerations...

Example: Optimal Beam Material

- Gut check (to test our intuition)
- Symbolic derivation
 - Equation for peak stress
 - Rearrange to see material property effects
- What is ideal form of Unobtainium?
- Compare to chart
- First cross-section: I-Beam
- Second cross-section: Cylinder
- Other considerations?

Selection vs. Continuum Design

- E.g., material selection vs. geometric variation
- Discrete set of options
- Messy, discontinuous space
- Rote knowledge, not generalizable principles
- Finding sources a non-trivial task

Intuition and Knowledge

- Materials that are good for common designs
- Gets you started
- Let me pass on my experience to you...
 - Reflects my biases:
 - Robotics
 - Human-scale forces
 - High-cost prototypes

Common Engineering Materials: Aluminum

- Properties overview
 - Good machinability
 - Mid-to-high-strength, ductility, stiffness
 - Good density ratios
 - Good corrosion resistance, anodize-able
- When to use:
 - Multifeatured, medium-high load parts (manifolds)
 - Bending loads
- Common grades:
 - 6061 -- General purpose
 - 7075-T6 -- High strength

Common Engineering Materials: Steel

- Properties overview
 - Good machinability (unless heat treated, stainless)
 - Mid-to-high strength, ductility, stiffness
 - Infinite fatigue life possible
- When to use:
 - Compact, high-load parts (e.g. shafts)
 - Contact stresses (e.g. ball bearings)
 - High FOS, high ductility, fatigue (e.g. bridge truss)
- Common grades: too many to list
 - Carbon steel -- general purpose
 - 302 or 18-8 stainless steel -- general purpose

Common Engineering Materials: Plastics

- Properties overview: high variety
 - Good machinability, moldability
 - Low-to-medium strength and stiffness
 - Low cost, low friction possible
- When to use:
 - Rapid prototyping
 - Plain bearings
 - Cheap mass-produced parts
- Common types: too many to list
 - ABS good strength, heat formable
 - Acrylic decent strength, laser cuttable ;)

Other Common Engineering Materials

- Composites
 - Great properties, though hard to estimate
 - Hard to work with (layup, machining)
 - S-Glass (fiberglass) makes good springs
 - Carbon fiber is light & strong
 - When to use: simple, high-strength, low-mass parts
- Titanium
 - Good strength to weight
 - High cost, poor machinability
 - When to use: complex, costly, high-stregth, low-mass

Other Considerations

- Temperature
- Strain rate
- Manufacturing processes available
- Surface treatments available
 - Paint adherence
 - Tactile properties
- Cost

