Assignment 3: The Geometry-Strength-Mass Design Loop

24-370 Engineering Design |
Due @ 12:30, Wednesday February 9" 2011

Part A: Intuitive part sketching

Using the loading and support sketches on the following pages as a guide, sketch conceptual designs for
mass-optimal component structures that could meet pre-defined strength requirements, such as factor of
safety. Start with stick figures, then flesh out the structures to enable them to bear compressive, tensile, or
bending loads, or to prevent excessive deflection or buckling. For this sketching exercise, imagine that the
parts are relatively small, and therefore difficult to design as trusses. In other words, they should be single
continuous components, with no super-small features. If you have a strong intuition in trusses, think of solid
sections of material as representing planes of triangular linkages in the truss. These exercises are meant to
help you to develop your intuition, so spend as much or as little time as you think will benefit you. Grades are
for completion, with feedback proportional to answer content.

Part 1: Scratch-Paper Design of a Rod in Tension

Design the diameter of a cylindrical member in tension to achieve minimum mass while meeting a factor of
safety requirement.

The Miller sign at Billy Bob’s Place got busted again, and he has come to you to try to design a more
permanent solution: raising the sign up and out of harm’s way. It seems he wants the sign to be supported
by a single cylindrical rod. One end of the cylinder will be rigidly fixed to the ceiling, while the other will be
rigidly attached to the neon sign weighing 50 pounds. Billy Bob is light on cash and wants to use the least
amount of steel possible. What rod diameter, D, do you prescribe?

1.a - Load analysis. Draw a Free Body Diagram of the rod, including the load, F, and any reaction forces
and/or moments. It should be possible to balance forces and/or moments for this static FBD.

1.b - Symbolic derivation. What is the peak stress, op,, in the cylinder, as a function of D?

1.c - Inverse problem. The local machine shop has bundles of plain carbon steel rods lying around, with a
yield stress of o, = 30,000 psi. Using a factor of safety, fos, of 10 (after all, we don’t want anyone hit with a
falling Miller sign) determine the minimum rod diameter D, to three significant digits.

1.d - Reality strikes. The only rod diameters available at the shop are in integer multiples of 1/32 of an inch.
What rod diameter should you choose? Please report your answer in fractional form, i.e. x/32.

1.e - Numerical validation. Model the part in SolidWorks and perform a Simulation to determine the factor
of safety. Use SolidWorks’ built-in material “Plain Carbon Steel”. You may find it helpful to create a factor of
safety plot: after you have run the simulation, right click on Results and select Define Factor Of Safety Plot.
Please report the minimum fos to two significant digits.



1.f - Interpretation. Billy Bob thinks the sign will be out of reach, but some of his customers look like they
might get creative in their attempts to get his goat. How might this part fail, if the loading conditions were
not as expected? Please give a qualitative type of loading, in five words or less (e.g. “normal stress”).

Part 2: Analytical Optimization of a Height-Varying Beam in Bending

Design the length-varying cross-section of a cantilevered beam to achieve minimum mass within constraints
on factor of safety, material and manufacturing.

The consulting firm you work for is helping a civilian contractor to design a search and rescue robot for
disaster sites. You are currently designing a gripper to remove debris from the robot’s path. You have
decided that the main structural component of the gripper will be a set of calipers constructed from 7075-
T73 Aluminum. You decide to model the front half of the calipers cantilevered beams, with a force at the tip
due to the reaction force from the gripped object. The mass of the gripper is critical, since it must be carried
by the machine and lifted by the proximal robotic arm joints. To withstand bending loads with low mass,
the component will have an I-beam cross section, with thickness t, base width b, and overall height h. The
beam must have length L, due to the size of objects to be carried, and will be loaded with force F, to
produce sufficient friction to lift the desired objects. The machining process will require a minimum
thickness, t,in = 0.05 inches, in all places. Because moments are low near the loading point and high near
the cantilever, we may want to vary the beam height along its length. But what is the best way to do this?

1.a - Load analysis. Determine the reaction moment, M, as a function of the axial position, x, along the
beam. Define x = 0 as the loaded end of the beam, and x = L as the cantilever point.

1.b - Symbolic derivation: stress vs position. First, determine the peak stress along the beam, o, as a
function of the axial position, x, assuming constant cross-section parameters t, b, and h. Use the simplified
l-beam area moment of inertia equation derived in class: | = % b t h>. Next, try linearly increasing the beam
height as it approaches the cantilever. Substitute a length-varying height, h(x) = k*x, in for h, and simplify
the resulting equation.

1.c - Inverse problem: base as function of k. Since we aim to minimize mass, the beam should not be any
wider than necessary for a given height parameter. To find out what beam width is needed, first substitute
a combination of the material’s yield stress, g,, and the desired factor of safety, fos, for o,,. We now have
an equation with only b, t, and k as free parameters. Solve for b. (Later, we will set t and vary k to see the
effects on mass.)

1.d - Symbolic derivation: beam mass. Now determine the mass, m, of the resulting beam geometry. First,
derive the mass of a small slice of the beam, dm, for a slice thickness of dx along the length of the beam.
Use the simplified I-beam cross-sectional area equation derived in class: A = t (2 b + h), and material
density, p. Next, substitute h(x) = k-x for h, since this will affect our integration. You should now have an
equation with two terms, in p, t, b, k, x, and dx. Perform definite integration over the range x = [0, L] to find
the total beam mass. Finally, substitute your answer from part 1.c for b to obtain an equation for the beam
mass with only two free parameters, t and k.



1.e - Numerical solution: mass vs height factor k. Now we will determine the optimal values for thickness
and height constant for our beam. Let us first assume that the minimum allowable thickness is optimal, and
test this assumption later. This leaves only the beam height factor, k, as a free parameter in our
optimization problem. In Matlab, enter the following values for constants: rho =0.3; F = 100; fos = 2;

L = 2; sigma_y = 50000; t = 0.05;. Next create a vector of possible values for k, ranging from 0.1 to 1.0, in
increments of 0.001: k = [0.1:0.001:1];. Finally, solve for mass m = [your equation here];. You will probably
need to use the “./” command (the “dot slash” operator, which divides vectors element by element rather
than as whole matrices) or similar. Plot your result using the commands: figure(1); plot(k,m); xlabel(‘k’);
ylabel(‘m’);. Please print your plot and report your answers to three significant digits:

1.e.i - What is the minimum value of m? Use the command [v,i] = min(m), where v is the minimum

value and i is the index of that value.
1.e.ii - What is the minimizing value of k? Use k(i) to find out.
1.e.iii - What is the corresponding value for b? Use your equation from part 1.c to find out.

1.e.iii - Finally, test the assumption that mass is minimized with minimum allowable thickness t,;,. Set
t =0.1; and re-calculate m. What is the new minimum mass m?

1.f - Interpretation. Will the optimal height factor k,,: change if the load F is changed? Please answer “yes”
or “no”. Are there any obvious problems with the beam cross-section we have defined, at the extremes for
instance? Please answer in 10 words or less.

Part 3: Fatigue Design of a Cyclically-Loaded Shaft in Torsion
Design a steel shaft to have the desired (infinite) fatigue life, using feature geometry.

The medical device company you work for is designing a novel shaker for agitating biological and chemical
emulsions, and you are currently working on the design of the central drive shaft. This component will have
a motor on one end and a circular steel test-tube rack on the other end, which the motor will rotate back
and forth cyclically, producing a dynamic, cyclical torsional load with peak torque T =195 in Ibf on the shaft.
The shaft is to be constructed from 440C Stainless Steel, which has a yield strength S, = 180 ksi, and an
ultimate strength S, = 240 ksi. The outer diameter of the shaft is D = 0.500 inches, but you also need a
groove for a retaining ring just outside the main bearing. The diameter of the shaft inside the groove is d =
0.476 inches, and the machining process to be employed will result in internal radii at the corners r=0.036
inches. Most of the shaft will be polished, but in the critical retaining ring groove the surface will be
machined. Customers will use the device at room temperature, and it is expected that neither heat from
the motor nor internal energy dissipation from the shaft will change the shaft temperature significantly.
The medical staff using the product expects very high quality, high-reliability components, so you aim for a
reliability of 99.9% and an infinite fatigue life.

Use appropriate portions of Shigley’s “Road Map” for fatigue analysis, copied in the appendix below for
your convenience, to answer the following questions:



3.a - Endurance strength. Calculate the endurance strength, S, of the shaft under these conditions. Please
calculate all modification factors separately, and record them to two significant digits, before performing
your final calculations (with the rounded numbers). Please neglect the miscellaneous-effects factor.

3.b - Peak stress and factor of safety. Calculate the peak stress, T, including the fatigue concentration
factor. You might find chart A-15-15 useful. For simplicity, please approximate S, as 200 ksi and r as 0.04 in
when calculating g (use the correct values for all other calculations.) What is the factor of safety, fos? Note
that you have already converted to shear when calculating S, due to k..

3.c - Design for fatigue. Describe the design process you would use to achieve a given fos for minimum D,d.
Part 4: Guess-and-Check method for a Column in Compression
Determine the minimum diameter of a column in compression that will prevent buckling.

You are the in-house mechanical engineer at an electronics start-up whose goal is to put a Squig™ in the
home of every American parent. What is the Squig™? Something to do with early development of
mathematics skills through the pushing of multicolored buttons, but don’t worry about that right now. The
main problem with the Alpha prototypes is failure due to toddlers using the Squig™ as a seat or stepping
stool. It flattens like a pancake. To strengthen the design for the Beta version, you decide to add a set of
internal posts, which rigidly connect opposite faces to one another. The opposing faces are not very stiff
relative to one another. In other words, there are no external constraints on the motion of the top of the
column with respect to a reference frame fixed at the bottom. The posts will be approximately circular in
cross-section, with diameter D and length L = 2 in, molded from ABS (Acrylonitrile Butadiene Styrene) with
E = 290 ksi. The maximum toddler load, F, is about 50 pounds force.

4.a - CAD guess and check. Being the SolidWorks maestro that you are, you decide to skip the pencil and
paper stage and simply model this thing and tweak it to get the parameters right. Hey, guess and check can
help build your intuition too, right? Fire up SolidWorks, throw in an initial guess for D, use the buckling
analysis tool in Simulation, and tweak D until you obtain a Load Factor of 2 + 0.1. What diameter did you
arrive at? About how many iterations did you go through?

4.b - Analytical validation. Now use the formula presented in class to solve for the diameter analytically.
Please give your answer for D to three significant digits (this should be slightly different from the
SolidWorks solution). Which process used more time? Which process would be faster if you found out that
the elastic modulus E of the material had to be changed to 340 ksi?

Part 5: Analysis of a Post and Ring in Contact
Demonstrate use of CAD tools to perform contact stress analysis in an assembly.

You are a Mechanical Engineering student that has been assigned a design project that involves contact
between a custom part and a set of pegs. Being the awesome, can-do, go-getter that you are, you decide to
go the extra mile in your project and consider contact stresses during your design process. But first, you
need to play around with the FEA tool that will allow you to analyze them. Using the method we discussed



in class, please model a post in contact with a hole in a block. You may use any dimensions and loads that
obtain qualitatively interesting results, but please give your block a unique and distinguishing feature of
some kind. Please print a screen shot (use Save As --> File Type: JPEG) of the stress distribution result plot,
using a deformation constant that makes important features visible.

Bonus Question A: SolidWorks Parallel-End Buckling Analysis [Completely optional]

Demonstrate a buckling simulation for a cylindrical shaft in compression, where the base and
ceiling portions of the beam are able to move vertically but are constrained in both rotation and
horizontal translation. This corresponds to C = 4, or part (b) of the figure on buckling presented in
lecture. Please provide a screen shot of the deformed geometry, along with a brief description of
the fixtures and loads you applied. [In addition to showing up your sad old Prof, earn up to 10
extra points!]

Bonus Question B: Leaf Spring Design [Completely optional]

You are designing a biomimetic robot joint that utilizes a series-elastic actuator with a leaf spring. The leaf
spring is a beam rigidly connected to one limb and loaded by a cable at a distance of about 5 inches from the
joint. For simplicity (in modeling and manufacturing) try a rectangular cross-section. Derive the relevant design
equations, involving geometry, material properties, factor of safety, linear stiffness at the endpoint, and mass.
Using material properties for Gordon Composites’ GC-67-UB bar stock and a desired stiffness of 600 Ibs in™,
determine the spring mass and cross-section parameters. How does mass change with cross-section and
length? In addition to establishing your supreme awesomeness, earn up to 15 extra points.]
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Appendix: Fatigue Analysis Equations & Tables
Reproduced from Shigley’s Mechanical Engineering Design, Budynas & Nisbett

6—18

Table 6-2

Parameters for Marin
surface Modification
Factor, Eq. (6-19)

Road Maps and Important Design Equations
for the Stress-Life Method

As stated in Sec. 6-15, there are three categories of fatigue problems, The important
procedures and equations for deterministic stregs-life problems are presented here.

Completely Reversing Simple Leading
1 Determine 5, either from test data or

0.585u Sy = 200 kpsi (1400 MPa)
p. 282 § =1 100kpst S, = 200kpsi (6-8)
700 MPa S, > 1400 MPa

2 Modify S] to determine S,.

p- 287 Se = kpkphohegloks S, (6-18]
ky=as? [6-19)
Factor a Exponent
Surface Finish St kpsi S, MPaq b
Ground 1.34 1.58 =085
Machined or cold-drawn 2.70 4.51 —.265
Hot-rolled 14.4 57.7 ~0.718
As-forged 39.9 272, —.995
Rotating shaft. For bending or torsion,
(d/0.3)"M7 = 08794 2" p11l<d <2in
0.914-%157 2<d=10in
p. 288 ky = 01w 0.107 _ (6-20)
(d/7.6207"" = 1244 279 <d =51 mm
1.514~%157 51 < 254 mm
For axial,
by =1 (6-21)

Nonrotating member. Use Table 6-3, p. 290, for d, and substitute into Eq. (6-20)
for d.

| bending
p. 290 k.= § 0.85 axial [6-24)
0.59  torsion
p. 291 Use Table 6-4 for kg, or
kg = 0.975 4+ 0.432(107) T — 0.115(107%) J’f
+0.104(10~H) T3 — 0.595(107") 1} (6-27)



Table 6~5

Reliability Factor k.
Corresponding to

8 Percent Standard
Deviation of the
Endurance Limit

pp. 292-293, L,

Reliability, % Transformation Variate z, Reliability Factor k.
1] 0 1.000
o 1.288 0.897
85 1.645 (.568
09 2376 0.814
99.9 3.091 0.753
99 949 3,714 0,702
09,090 4265 0.659
99,9000 4753 (.620

pp. 293-294, Ky

3 Determine fatigue stress-concentration factor, Ky or Ky, . First, find K, or K;, from
Table A-15.

p. 295 Ky=1+4q(K;,—1) or Kp=1+g(K,;— i) i6-3‘2:|

Ohbtain ¢ from either Eig. 6-20 or 6-21, pp. 295-296.

Alternatively,
K =1

=1
p. 296 K =14 17

{6-33)

For +/a in units of +/in, and §,, in kpsi
Bending or axial: +/a = 0.246 — 3.08(107)8,, + 1.51(107°) 55, — 2.67(107%)$,
(6-354q)
Torsion: /@ = 0.190 — 2.51(107%)5,, + 1.35(107°) 82, — 2.67(107%) 52, (6-35b)
4 Apply Ky or Ky, by either dividing S, by it or multiplying it with the purely
reversing stress, not both.

5 Determine fatigue life constants a and b. If Sy = 70 kpsi, determine f from
Fig. 6-18, p. 285.If 5, = 70 kpsi, let f = 0.9.

p. 285 a=(f Sul/Se (6-14)
b= —[log(f Su/5:)1/3 (6-13)
6 Determine fatigue strength Sy at N cycles, or, N cycles to failure at a reversing
SITESS Troy
(Note: this only applies to purely reversing stresses where o = ().
p. 285 S =aN"® (6-13)

N = (O /@) (6-16)
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Table 6-3

Ap.use Areas of Common
Monrotating Stroctural
Shapes.

Table 6-4

-Efﬂ:ct of Operating
Ternperature on the
| Tensite Sirength of
gieel.* (5r = lensile
srrengih ai operating
tempesatne;
Spy = tensile Htrength
al roomm lemperatiire;
0.099 < & = 0.110%

Apgse = 00104642

iy = 03704
Angse = 0054
d. = 0.808/Rb
0. 10air
Apasa = ‘

0.05ba  t; > 0.025a

(05 b

A =
57 7 | 0.052xa + 01506 = x)

axis 1-1
axis 2-2

axiz 1-1
axis 2«1

250

3s0
400
450
00
550
600

sr.-"IsE'r

1000
.00
1.020
L0235
1023
L.000
0875
0,943
0.%00
0843
0,768
0632
3544

Temperature, “F

T
L0
00
300
41K}
500

TO0
B0
Qi
1000
116}

1.000
108
100
1.024
Lis
(v G5
0963
0.927
0872
0.797
0.698
0567

[ source: Fig, 2-9.



Figure 6-19

The fafhare of a case-hardened
pert in bencding o torsicn. In
this example, failurd Qrcurs in
fhye core.

e 5, [ease) |

Miscellaneous-Effects Factor k;

Though the factor &y s intended to ageount for the reduction in endurance limit due to
abl other effects, it is really mtepded as ¢ reminder that these mnst be accounted for,
because actual values of & are not always availahle.

Resichial stresges may either improve the endurance limit or affect it adversely.
Generatly, if the residwal steess in the surface of the part is compression, the endurance
limit is improved. Fatigue failures appear to be tensile failures, or at least to be caused
by tensile stress, and so anything that redices tensile stress will alse seduce the possi-
hility of a fatigue failure. Operations such as shot peening, hammering, and cold relling
build compressive steesses into the swrface of the part and improve the endurance Jimit
significantly, Of coursz, the material must not be worked 1o exhawstion,

The endurance limits of parts that are made from rolled or drawn sheets or bars,
as well 45 parts that are forged, may be affected by the so-called directiorul character-
istics of the operation Rolled or drawn parts, for example, have an endurance Timit
im the transverse direction that may be 10y to 20 percent less than the enduranice limit in
the longitudinal direction.

Parts that are case-nardened may £ail at the surface or 4l the maximum core radins,
depending upon the stiess gradient. Figure 6-19 shows the typical triangular stress dis-
tribiition of a bar under bending or torsion. Also plotted as a heavy line in this figure are
the endurance limits &, for the case and core. For this examphe the endurance linat of the
core riles the design bacause the figure shows that the stress o of 7, whichever applies,
af the cuter <ore Tadius, i$ appreciably larger than the core endurance limit, '

Corrositn

It is to be expected that parts that operate in a corosive atmosphere will have a lowereg
fatigue resistance. This is, of course, true, and it is due o the rolghening of pitting of
the surface by the corrosive material, But the problem is not so simple as the one of
finding the endurance limit of a specimen that has been cornoded. The reason for this jg
that the corrosion and the stressing occur at the same tite. Basicafly, this means that in
time any part will fail when subjected to repeated stressing in a cosrosive atmosphere,
Theze is no fatigue limit. This the designer's problem is to attempt to minimize the fac-
tors that affect the fatigoe life; these are:

« Mean or static sinEss

+ Altermating stress _

» Electrofyte concentration

+ Diggolved oxygen in electrolyte

» Material properties and composition

+ Temperature

» Cyclic frequency

« Fluid flow rate sround specimen

» Local crevices



Electrolytic Plating

Metallic comtings, such as chromium plating, nickel plating, or cadmium plating, reduce
the endurance limit by as mrich as 50 percent. In some cases the feduction by coatings
has heen so severe thet it hes been necessary to climinate the plating process, Zine
plating does niot affect the fatigue strength. Anodic oxidation of light alloys reduces
bending endurance limits by as much as 39 percent but has no effect on the torsional
endurance limit.

Mietal Spraying
Metal sprayimg results in surface imperfections that can iniliate cracks. Limited dests
show reductions of 14 percent in the fatigue strength.

Cyclic Frequency

If, for any reason, the fatigue process becomes time-dependent, then it also hecomes
frequency-dependent. Under normal conditions, Fatigwe failure is indepertdent of fre-
quency. But when comosion or high temperatures, of both, are encountered, the cyclic
rate becomes importatt. The slower the frequency and the higher the lemperature, the
higher the crack propagation rate and the shorter the fife at a given stress level.

Frettage Corrosion

The phenomenon of Tettage corrosion is the result of microscopic motions of tightly
fitting parts or structires. Bolted joints, bearing-race fits, wheel hubs, amd any set of
tightly fitted parts are examples. The process involves sugface discoloration, pitting, and
eventual fatigue. The frettage factor &, depends upon the material of the mating pairs
and ranges from 0.24 1w 0.90,



Table A-15
Charts of Theoretical Stress-Concentration Factors K7

Figure A-15-1 10

Bar in tension or simple
comprassion with a transverse 18—
hole. ap = FFA, where

A = (w — d)r and ¢ i5 the
thickness,
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Figure A-15-2

Rectangular bar with a
transverse hobe in bending,
ag = Mefl, whers

I =(w—aiiiz.

Figure A-15-3

Motched rectangular bar in
lension or simple compression,
op = FyA, where A = dr and 1
Ix the thickness,

s .10 15 020 .25 0%
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Table A=15
Charts of Theoretical Stress-Concentration Factors & [Contirued)

Figure A-15-4

Moiched rectanguiar bar in
bemding. oy = Mo/l , where
c=df2, [ =ra¥12, and 1t is
the thickness.
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Figure A-15-5

Rectangalar filleted bar in
tension or simple compression.
o = FfA, whete 4 = df and
i the thickness.

I.nﬂ nas U_:iﬂ' L8 3 30 .25 a0
i
Figure A-15-6 o 3 T
Rectangular filleted b in 'I 1 | —
-t 2o\ NN TR

thickness, 21 ;:\!i‘{ ; | e ..
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& \\A] 4 :
I. - -
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I“-"-__h-: _-‘-;-‘- ..........
L4t D=1 m_..___a‘:__.-fh?:.‘;__‘f‘:‘&
' 005 iRt [YE 520 .15 0.20
el (wontinued )

*Factors from B. E. Poterson, “Design Factors for Stress Concentration,” Mach ine Design, vol. 23, no, 2, Febroary 1951, e 169, no. 3, March
1951, p. 160, no, 5, May 1951, p. 15% no. 6, June 1957, p. 173 no., 7, July 1951, p, 155, Reprinted with permission from Machine Design,
a Pemton Media Imc. publication,



Table A-15

Charts of Theoretical Stress-Concentration Factors K7 (Contined)

Figure A-15-7

FRound shaft with shoulder fillet
in tenskon. ap = FA, wheee
A= md*a.

Figure A=15=8

Feound shaft with shoulder filket
in torsion. Ty = e, whers
c=d/2and J = md®iiL

Figure A-15-9

Round shaft with shoulder filket
in bending, o = Ml whers
e=df2and I = maiod.

18
22
E LB
I
1.4 i
l'uu .05 010 1% 1] 0.25 ]
Hd
in
T.. ,, _____ | B
5 \ :
i
" P -
1': WENVIVIS J99ee 1
K, llqt:\ ..... % — l |
! %ﬁ I T N N
14 \ xﬁ"""':-..qﬁm’*z..; s |
| - o ]
e T
10 i é 1 1
o A 0.1 0.15 0.30 0.25 .40
i

(R R]

0.20



Table A-15

Charts of Theoretical Stress-Concentration Factors K, (Continued)

Figure A-15-10

Round shaft in torsion with
tramsverse hinle,

24 i ; i k]
(i o o1 013 0,20 ns FE
i
Figure A-15-11 3.-":.\ : ——
Round shaft in bending A _ | - .
with a transverss hale, oy = 16 N | ]
M{1im DY32) = (d DY), \H 1 -
E arrsately. H | ‘ ‘»
il S |
3 : T o
—
18
JA U S— — s e -
1. - :
I"ll:l 0.5 LA L] IR E] 0.2 025 ]
i
Figure A-15-12 n— \ N S E B B B
I E —
Phate loaded in tension by a ; + - - s i |
pin through a hole. oy = F/A, 9l : 'ﬁ,‘ ! _‘.'_"3, i
where A = (1 — d)r. When M =035 |—:{--—~ T
clefrance exists, increass &) 5 \. i Fab -+Fﬂ -
35 1o 50 percent. (M. M. Frock w0 —L
and H. N Hill, “Stress- K |- ‘\ | 1 —
Canceniration Factors armnd 5l "“\\\‘ Y
a Central Clreular Hole in a o - L0 T
Plate Lowded through a Pin in H'"h-._: I = 0.50
Hale," §. Appi. Mechanics, i s -1
B = 110 —
vol 7, no. 1, March 1940, . ek “'-—?._
poA-5) | |

0 0.1 0z 03 04 0.5 L 0T 0.8
afw feontinued )

*Factors from B E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, Pebruary 1951, p. 16%; no. 3, March
1951, p, 161, no. EF May 1951, p. 159 no. &, June 1951, p. I73; no. 7, July 1951, p. 155, Reprinted with permission from Machine Design, a
Penton Media Inc. publication.



Table A=15

Charts of Thearetical Stress-Concentration Factors K75/ Continued)

Figure A-15-13

Grocved rownd bar in teasign
oy = FfA, wheme A = =d %4,

o nos [0 013 020 0% 030

Figure A-15-T4

Grooved rilind bar in berding.
ap = Mo/l whepe e = df2
and [ = mdlyed,

] oS ik has o.M ' .23 0.

Figure A-15-15

Lireovgd round bar in Worsion,
T ow Tefd, where ¢ = df2 andl
J =%z,

0 o5 0lno .13 20 02% 0,50

*Factors from K. B Peterson, “Design Factors for Siress Concentration,” Maching Diesign, vol. 23, e, 2, Februany 1951, p. 164 no. 3, Masch 1051,
P 161, no. 5, My 1851, g 139 po. 6, Fune 1951, p. 173; oo, 7, July 1951, p. 155, Reprinted with permissien from Machine Design, & Penton
Meafin Inc. publication,
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Table A-15

Charts of Theoretical Stress-Concentration Factors K5 {Continued)
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Figure 6-20

Motch-sensitivity charts for
steels and UNS AU20Z4-T
wrought aluminum alloys
subjected 1o reversed bending
or reversed axiol loads. For
farger noteh radii, use the
values of ¢ corresponding

o the r e 01630 (4-mien)
ordinmte. (From Gearge Sines
angl J. L. Wsismamn feds. ), Metal
Fatigue, MfeGram-Hill, New
York Copyright € 1960 by The
Mcliraw. Hill Comparsies, fec.
Reprinted by permiszion.)

Stress Concentration and Notch Sensitivity

In See. 3-13 it was poirted out that the existence of irregularites or discontinuities,
such as holes, grooves, or motches, in a part increases the theoretical stresses signifi-
cantly in the immediate vicinity of the discontinuity. Equation (3—48) defined a stress-
concentration factor K jor Ky), which is used with the nominal stress to obtain the
maximum resulting stress due to the irregulanty or defect. It tums out that some mate-
rials ate aot fully sensitive fo the presence of notches and hence, for these, a reduced
value of K, can be used. For these materials, the effective maximum stress in fatigue is,

(6—30)

where Ky is a reduced value of K and &, is the nominal stress. The factor K ¢ is com-
monly ealled a fatigue sress-concentration factor, and hence the subseript £ So it is
convenient to think of Kras a stress-concentration factor reduced from K, because of
lessened sensitivity to notches. The resulting factor is defined by the equation

Omax. = K pomp or T = KT

_maximum stress in notched specimen

Ky = stress in notch-free specimen fal
Netch sensitivity g is defined by the equation
- = l|
ko1 % Eew = {6=31)

where g is usually between zero and unity. Equation (6-31) shows that if ¢ = 0, then
Ky =1, and the materiel has no sensitivity to notches at all. On the other hand, if
g =1, then Ky = K., and the material has full noich sensitivity. In analysis or design
work, find K, first, from the geometry of the part. Then specify the material, find g, and
solve for Ky from the equation

Ep=14gK, =1} o Kp=1% gaea(K;—1 (6=32)

Notch sensitivities far specific materials are obtained experimentally. Published
experimental values are limited, but some values are available for steels and aluminum,
Trends for notch sensitivity as a function of notch radins amd ultimate strength are
shown in Fig. 6-20 for reversed bending or axial loading, and Fig. 621 for reversed

Matc h radbes &, mmn
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Figure 6=21

Match-senaitivity curves for
materials in reversad torsion.
For larger noich radii,

uge the viles of Gues
coerespending to r e 0,06 i
(4 mm).

Mostich radbus «, fmen

0 s 1.0 L5 ] 5 10 15 40
2
% 04 [—-r = —
.fJ Steels
=
! —=== Alm. alloy
r-‘ ¥ T
02| :
1 E l :
A I
] i :
* 0 0o noe  OE el 00T 004 006

Mntch radias r, Gn

torsion. In using these charts it is well to know that the actual test results from which
the curves were derived cxhibit a large amount of scatter, Because of this seatter itis
always safe to wse Ky = K, if there is any doubt about the true value of g. Also, note

that g is not far from unity for large notch radii.
Figure 6-20 has as its basis the Neuber equation, which is given by

Kp=14—
F= 14+ Jajr
where JJ/a is defined as the Neuber constant and is a malerial constant. Equating
Egs. (631} and (6-33) yields the notch sensitivity equation
1

{6-33)

= (6-34)

S

1+

4

comelating with Figs. 6-20 and 0-21 &3

Bending or axial: /@ = 0.246 — 3.08(107°)8,, + 1L.51(107%) 5}, — 2.67(107%) §,
{6-350}

Torsion: /@ = (0190 = 2.51(107%)8,, + 1.35(107%) 5%, — 2.67(107%)S;, (6-35b}

where the equations apply o steel and 5, is in kpsi. Equation (6-34) used in conjunction
with Eq. pair (+-35) is equivalent to Figs. (6-20) and (6-21). Az with the graphs, the
results from the curve fit equations provide only approximations to the experimental data.

The notch sensitivity of cast irons is very low, varying from O to about (.20,
depending upon the tensile strength. To be on the conservative side, it is recommendad
that the value § = 0.20 be used for all grades of cast iron.

Figure 6-18 ;g \5
H

Fatigue strengzth raction, f,
of 5 8t 107 cycles for
5, = 85 = 0580 #t 10% cyeles.
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