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Figure 3-18

Transverse shear stresses in a
rectangular beam.

If we now use this value of I for Eq. (3-32) and rearrange, we get
3v y?
= (1-Z4 3-33
"= 2 ( 2 (3-33)

We note that the maximum shear stress exists when y; = 0, which is at the bending neu-
tral axis. Thus

£1%

max = T 3-34
fmax = 574 ( )

for a rectangular section. As we move away from the neutral axis, the shear stress
decreases parabolically until it is zero at the outer surfaces where y; = %£c, as shown
in Fig. 3—18c. Horizontal shear stress is always accompanied by vertical shear stress
of the same magnitude, and so the distribution can be diagrammed as shown in
Fig. 3—18d. Figure 3—18c shows that the shear 7 on the vertical surfaces varies with
y. We are almost always interested in the horizontal shear, 7 in Fig. 3184, which is
nearly uniform over dx with constant y = y;. The maximum horizontal shear occurs
where the vertical shear is largest. This is usually at the neutral axis but may not be
if the width b is smaller somewhere else. Furthermore, if the section is such that b
can be minimized on a plane not horizontal, then the horizontal shear stress occurs
on an inclined plane. For example, with tubing, the horizontal shear stress occurs on
a radial plane and the corresponding “vertical shear” is not vertical, but tangential.

The distributiens of transverse shear stresses for several commonly used cross sec-
tions are shown in Table 3-2. The profiles represent the VQ/Ib relationship, which is a
function of the distance y from the neutral axis. For each profile, the formula for the
maximum value at the neutral axis is given. Note that the expression given for the
I beam is a commonly used approximation that is reasonable for a standard I beam with
a thin web. Also, the profile for the I beam is idealized. In reality the transition from the
web to the flange is quite complex locally, and not simply a step change.
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Table 3-2 Beam Shape Formula Beam Shape Formula
Formulas for Maximum _v 3V 2V
5 ST T T g Tmax = = Tmax = ——
Transverse Shear Stress 2A A
from VQ/Ib ;
Rectangular . Hollow, thin-walled round
_4v T .V
Tmax = a web % Trmax = m
Ciroular Structural | beam (thin-walled)
It is significant to observe that the transverse shear stress in each of these common
Cross sections is maximum on the neutral axis, and zero on the outer surfaces. Since this
is exactly the opposite of where the bending and torsional stresses have their maximum
. and minimum values, the transverse shear stress is often not critical from a design
perspective,
Let us examine the significance of the transverse shear stress, using as an example
a cantilever beam of length L, with rectangular cross section b X i, loaded at the free end
with a transverse force F. At the wall, where the bending moment is the largest, at a dis-
(3-33) tance y from the neutral axis, a stress element will include both bending stress and
transverse shear stress. In Sec. 5—4 it will be shown that a good measure of the com-
\g neu- - bined effects of multiple stresses on a stress element is the maximum shear stress.
Inserting the bending stress (My/D) and the transverse shear stress (VQ/Ib) into the
maximum shear stress equation, Eq. (3-14), we obtain a general equation for the max-
(3-34) imum shear stress in a cantilever beam with a rectangular cross section. This equation
can then be normalized with respect to L/h and y/c, where c¢ is the distance from the
stress _ neutral axis to the outer surface (h/2), to give
shown .
‘ 2
stress = (3) + 2= S s - i
s with
vich is To investigate the significance of transverse shear stress, we plot 7., as a function
ccurs of L/h for several values of ¥/c, as shown in Fig. 3-19. Since F and b appear only as
not be linear multipliers outside the radical, they will only serve to scale the plot in the verti-
that b cal direction without changing any of the relationships. Notice that at the neutral axis
ccurs where y/c = 0, T,y is constant for any length beam, since the bending stress is zero at
1rs on the neutral axis and the transverse shear stress is independent of L. On the other hand,
ntial. on the outer surface where y/c = 1, Ty increases linearly with L/h because of the
S Sec- bending moment. For ¥/ c between zero and one, Tpmay is nonlinear for low values of L/h,
hisa but behaves linearly as L/h increases, displaying the dominance of the bending stress
or the ] as the moment arm increases. We can see from the graph that the critical stress element
or the (the largest value of 7,,) will always be either on the outer surface (y/c = 1) or at the
1 with neutral axis (y/c = 0), and never between. Thus, for the rectangular cross section, the
m the transition between these two locations occurs at L/h = 0.5 where the line for yice=1
crosses the horizontal line for y/c = 0. The critical stress element is either on the outer
b
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Torsion

Any moment vector that is collinear with an axis of a mechanical element is called a
torque vector, because the moment causes the element to be twisted about that axis. A
bar subjected to such a moment is also said to be in torsion.

As shown in Fig. 3—21, the torque T applied to a bar can be designated by drawing
arrows on the surface of the bar to indicate direction or by drawing torque-vector arrows
along the axes of twist of the bar. Torque vectors are the hollow arrows shown on the
x axis in Fig. 3-21. Note that they conform to the right-hand rule for vectors.

The angle of twist, in radians, for a solid round bar is

T!
6= o7 (3-35)
where T = torque
{ = length
G = modulus of rigidity
J = polar second moment of area

Shear stresses develop throughout the cross section. For a round bar in torsion,
these stresses are proportional to the radius p and are given by

Tp
== 3-36
r= (3-3¢)
Designating r as the radius to the outer surface, we have
Tr
Tmax = 7 (3_37)

The assumptions used in the analysis are:

* The bar is acted upon by a pure torque, and the sections under consideration are
remote from the point of application of the load and from a change in diameter.

¢ The material obeys Hooke’s law.

» Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.
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Figure 3-29

Thin plate in tension or simple
compression with a transverse
central hole. The net tensile
force is F = owt, where ¢ is
the thickness of the plate. The
nominal stress is given by

F - w

Nt w=a°

/
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A theoretical, or geometric, stress-concentration factor K, or K, is used to relate
the actual maximum stress at the discontinuity to the nominal stress. The factors are
defined by the equations

K, = Omax K = Tmax (3_ 48)
00 To

where K, is used for normal stresses and K, for shear stresses. The nominal stress og or
7y is the stress calculated by using the elementary stress equations and the net area, or
net cross section. Sometimes the gross cross section is used instead, and so it is always
wise to double check the source of K, or K, before calculating the maximum stress.

The stress-concentration factor depends for its value only on the geometry of the
part. That is, the particular material used has no effect on the value of K,. This is why :
it is called a theoretical stress-concentration factor. ”

The analysis of geometric shapes to determine stress-concentration factors is a
difficult problem, and not many solutions can be found. Most stress-concentration
factors are found by using experimental techniques.” Though the finite-element
method has been used, the fact that the elements are indeed finite prevents finding the
true maximum stress. Experimental approaches generally used include photoelasticity,
grid methods, brittle-coating methods, and electrical strain-gauge methods. Of course,
the grid and strain-gauge methods both suffer from the same drawback as the finite-
element method.

Stress-concentration factors for a variety of geometries may be found in
Tables A—15 and A-16.

An example is shown in Fig. 3-29, that of a thin plate loaded in tension where the
plate contains a centrally located hole.

In static loading, stress-concentration factors are applied as follows. In ductile
materials (e > 0.05), the stress-concentration factor is not usually applied to predict
the critical stress, because plastic strain in the region of the stress is localized and
has a strengthening effect. In brittle materials (e; < 0.05), the geometric stress-
concentration factor K, is applied to the nominal stress before comparing it with

strength. Gray cast iron has so many inherent stress raisers that the stress raisers intro-

duced by the designer have only a modest (but additive) effect.
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9The best source book is W. D. Pilkey and D. F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed.,
John Wiley & Sons, New York, 2008.
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Table A-18 Part 1 Properties of Sections

Geometric Properties A =area

G = location of centroid

L = f y? dA = second moment of area about x axis

I, = / x% dA = setond moment of area about y axis

Ly = [ xy dA = mixed moment of area about x and y axes

Jg =fr2dA=f(x2+y2)dA=1x+Iy
= second polar moment of area about axis through G
k2 = I, /A = squared radius of gyration about x axis

X

Rectangle

A=0bh

Circle

Hollow circle




Table A-18

Geometric Properties
(Continued)

Useful Tables 1037

Right triangles
bh?
abh b
2 36
Right triangles
A bh bh?
2 36

Quarter-circles

Quarter-circles

(continued)
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Table A-18 Part 2 Properties of Solids (p = Density, Weight per Unit Volume)
Geometric Properties Rods
(Continued)

nd?lp

m=—-
4g

Round disks

wd’tp

m=—-
4g

Rectangular prisms

abcp m
m = L I = — b2 2
g x z 12( +c)
Cylinders
_ wd’lp
=%

Hollow cylinders

@+d) IL=L= Z’% (32 + 3d2 + 4%)

m=————— Ix=




