Toward Parameterized Verification of Synchronous Distributed Applications

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sagar Chaki, James Edmondson
July 21, 2014
Motivation

Distributed algorithms have always been important
- File Systems, Resource Allocation, Internet, ...

Increasingly becoming safety-critical
- Robotic, transportation, energy, medical

Prove correctness of distributed algorithm implementations
- Pseudo-code is verified manually (semantic gap)
- Implementations are heavily tested (low coverage)

Model Checking Distributed Applications
http://mcda.googlecode.com
Synchronous Distributed Algorithm (SDA)

Node 0 = \(f_0() \)
Shared Variables: \(\overrightarrow{GV} = GV[0], GV[1] \)
Node 1 = \(f_1() \)

Round 1

\(GV_1[0] = f_0(GV_0) \)
\(GV_1[1] = f_1(GV_0) \)

Round 2

\(GV_2[0] = f_0(GV_1) \)
\(GV_2[1] = f_1(GV_1) \)

Round \(i \)

\(GV_{i}[0] = f_0(GV_{i-1}) \)
\(GV_{i}[1] = f_1(GV_{i-1}) \)
SDA Syntax

Program with \(n \) nodes : \(P(n) \)
- Each node has a distinct \(id \in [1,n] \)
- Array \(GV \) has \(n \) elements, \(GV[i] \) writable only by node with id \(i \)

Each element of \(GV \) is a bit-vector of width \(W \in \mathbb{N} \)
- Of those, the first \(Z \in [0,W] \) bits are initialized non-deterministically
- The remaining \(W - Z \) bits are initialized to \(\bot \)

In each round, node with id \(id \) executes function \(\rho \) whose body is a statement

\[
\begin{align*}
stmt & := \text{skip} | \ lval = exp \quad \text{(assignment)} \\
& \quad | \ ITE(exp stmt stmt) \quad \text{(if, then, else)} \\
& \quad | \ ALL(IV stmt) \quad \text{(iterate over nodes : use to check existence)} \\
& \quad | \ \langle stmt^+ \rangle \quad \text{(iteration of statements)}
\end{align*}
\]

\[
\begin{align*}
lval & := GV[id][w] \quad \text{(lvalues)} \\
exp & := \top | \bot | lval | GV[iv][w] | id | IV | \diamond (exp^+) \quad \text{(expressions)}
\end{align*}
\]
SDA Semantics and Verification

States are possible values of GV : denoted A

Initial states : $I \subseteq A = \{ a \mid \forall i \in [1, n]. \forall x \in [Z + 1, W]. a[i][x] = \bot \}$

Transition Relation : $R \subseteq A \times A = \{ (a, a') \mid \forall i \in [1, n]. a'[i] = \rho(a) \}$

Specification (1-index property) $\phi := \forall i. \Psi(i)$

- $\Psi(i)$ is an expression with i as only free variable
- $a \models \phi$ defined in a natural manner

Model Checking: $P(n) \models \phi \iff \forall a \in A. \forall a_I \in I. (a_I, a) \in R^* \Rightarrow a \models \phi$

Parameterized Model Checking: $PARMDCCK(P, \phi) \equiv \forall n \in \mathbb{N}. P(n) \models \phi$
Key Results

Theoretical

1. \(\text{PARMODCK}(P, n) \) is undecidable
 - By reducing Post’s Correspondence Problem to it

2. \(\text{PARMODCK}(P, n) \) is undecidable even if \(Z = 1 \)
 - Each node has just one bit of non-determinism available
 - Reduce SDA with \(Z \geq 1 \) to a SDA with \(Z = 1 \)

3. *Even if* \(Z = 0 \), \(\text{PARMODCK}(P, n) \) *has not cutoff*

Empirical

1. *Solving* \(\text{PARMODCK}(P, n) \) *by reduction to array – based systems*
 - Experimental results with MCMT and CUBICLE
Post’s Correspondence Problem (PCP)

Input: Two sequences of strings $U = \langle u_1, ..., u_m \rangle$ and $V = \langle v_1, ..., v_m \rangle$
Solution: sequence of indices $I = \langle i_1, ..., i_p \rangle$ with each $i_x \in [1, m]$ s.t.

- $u_{i_1} \cdot \cdots \cdot u_{i_p} = v_{i_1} \cdot \cdots \cdot v_{i_p}$

Question: Does a solution exist?

Example 1: $U = \langle a, ab, bba \rangle$ $V = \langle baa, aa, bb \rangle$
- Solution $= \langle 3,2,3,1 \rangle$: $bba \cdot ab \cdot bba \cdot a = bbaabbbaa = bb \cdot aa \cdot bb \cdot baa$

Example 2: $U = \langle aa, aab, baaa \rangle$ $V = \langle a, bb, abb \rangle$
- No solution: each u_i longer than corresponding v_i

Known to be undecidable in general
Result 1: Reducing PCP to PARMODCK (1)

Use nodes to construct a solution
Each node guesses four numbers: \(idu, posu, idv, posv \)
- Logically, it represents \(posu^{th} \) letter of \(u_{idu} \) and \(posv^{th} \) letter of \(v_{idv} \)
- Check if this is a legal solution

Example: \(U = \langle a, ab, bba \rangle \) \(V = \langle baa, aa, bb \rangle \) Solution = \(\langle 3, 2, 3, 1 \rangle \)
Result 1: Reducing PCP to PARMODCK (2)

Example: \(U = \langle a, ab, bba \rangle \) \(V = \langle baa, aa, bb \rangle \) Solution = \(\langle 3,2,3,1 \rangle \)

<table>
<thead>
<tr>
<th>id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>idu</td>
<td>–</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>posu</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>idv</td>
<td>–</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>posv</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Checks:

(Round 1) \(id \neq 1 \Rightarrow 1 \leq idu \leq m \land 1 \leq posu \leq |u_{idu}| \)

(Round 1) \(id \neq 1 \Rightarrow 1 \leq idv \leq m \land 1 \leq posv \leq |v_{idv}| \)

(Round 1) \(id \neq 1 \Rightarrow u_{idu}[posu] = v_{idv}[posv] \)

(Round 2) \(id = 2 \Rightarrow (posu = 1 \land posv = 1) \)

(Round 3) \(id > 2 \Rightarrow (if \ I \ start \ a \ string, \ then \ previous \ node \ ends \ a \ string, \)

else previous node is the previous letter in my string)

(Unbounded Rounds) Sequence of idu's = Sequence of idv's

– Protocol using a token that is passed from left to right

– Succeeds iff the two sequences match
Result 2: Undecidability with $Z = 1$

Possible to simulate a $P(n)$ with $Z > 1$ with a $\tilde{P}(Zn)$ with $Z = 1$

Consider the set of nodes of \tilde{P} with id 1, $Z + 1, 2Z + 1, \ldots$
 • Denote this set of nodes by \tilde{N}

In the first round, every node in \tilde{N} copies the single non-deterministic bit from the $Z − 1$ nodes following it
 • Essentially gives every node in \tilde{N} access to Z non-deterministic bits

Subsequently every node in \tilde{N} simulates the corresponding node of P
 • Other nodes of \tilde{P} stutter

For any specification ϕ, $\text{PARMODCK}(P, \phi) \Leftrightarrow \text{PARMODCK}(\tilde{P}, \phi)$
Result 3: No Cutoff even with $Z = 0$

Theorem: For every $K \in \mathbb{N}$ there exists a specification ϕ and a program P with $Z = 0$ such that $P(K) \models \phi \land P(K + 1) \not\models \phi$.

Proof: Consider P where each element of GV is initialized to 0 (completely deterministic) and ρ is:

$$
if \ (id > K) \ GV[id] = 2; \ else \ GV[id] = 1;
$$

Consider specification $\phi := \forall i. \ GV[i] \neq 2$. Clearly, $P(n) \models \phi \iff n \leq K$.

Open Problem: Is $PARMODOCK(P, \phi)$ decidable when $Z = 0$?
Empirical Result

Can reduce each P to an array-based system (ABS)
- ABS = \{array of arbitrary size, set of guarded commands\}
- Each step: enabled command selected non-deterministically and applied
 - Command updates one array element
 - Challenge: how to implement a round
 - all elements must be updated

Solution: based on two phase commit protocol
- Implement a “barrier” using “universal guards”
- Implement Two-Phase-Commit using barrier
- Each transaction is a round
- Experimental results (preliminary, more work needed) in paper
QUESTIONS?
Contact Information Slide Format

Sagar Chaki
Senior Member of Tech Staff
SSD/CSC
Telephone: +1 412-268-1436
Email: chaki@sei.cmu.edu

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257