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Overview

Goal

Understand the challenges in Linear Temporal Logic model checking, and
how visualization can help mitigate the challenges.
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What is LTL?

Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal temporal logic that allows ability
to reason about events that happen over time.

Example scenarios in software systems where we want to reason about
time:

Every request will eventually lead to a response.

Events a and b cannot happen at the same time.
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Inductive Definition of LTL

Φ ::= a, b, c (atoms)

| ¬Φ (negation)

|Φ ∨ Φ (disjunction)

|Φ ∧ Φ (conjunction)

|Φ → Φ (implication)

|2Φ (always)

|3Φ (eventually)

| XΦ (next)

|ΦU Φ (until)

2Φ = Φ is Always true
3Φ = Φ is Eventually true
XΦ = Φ is true in the Next time step
ΦU Ψ = Φ is true Until Ψ is true
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Example LTL Formula

Example: Liveness

2(request → 3response)

“Every request will eventually lead to a response.”

Example: Mutal Exclusion

2(¬(a ∧ b))

“Events a and b cannot happen at the same time.”
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LTL formulas are commonly thought as time lines

· · ·aU b

a ∧ ¬b a ∧ ¬b a ∧ ¬b b arbitrary

· · ·2a

a a a a a

· · ·3a

¬a ¬a ¬a a arbitrary
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LTL Model Checking
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Model Checking

A software system can be described as a finite state model M.

A specification can be described as an LTL formula Φ.

Question to answer: does model M satisfies specification Φ?
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Model Checking

Natural language
specification

LTL formula
specification

Check against
system model

Step 1 Step 2

Step 2 has elegant algorithms, proven correct[3].

Step 1 remains a human effort.
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Can you tell the difference?

A NASA Rocket Scientist was given this English specification:
“p oscillates every time step”
She wrote two possible LTL formulas:

Φ = Always ((p ∧ Next ¬p) ∨ (¬p ∧ Next p))

Ψ = Always ((p ∧ Next ¬p) ∧ (¬p ∧ Next p))

Which one is correct?
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A canonical approach

p Xp ¬p X¬p p ∧ X¬p ¬p ∧ Xp Φ Ψ

T T F F F F F F
T F F T T F T F
F T T F F T T F
F F T T F F F F

What can we do better?
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What can we do better?

If only there is a way to intuitively know whether the LTL formula matches
up the timeline we have in mind.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 13 / 32



LTL Visualization
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Which one is correct?

¬p pstart

p

¬p p

Figure: Timeline for Φ = 2((p ∧ X¬p) ∨ (¬p ∧ Xp)).

start

Figure: Timeline for Ψ = 2((p ∧ X¬p) ∧ (¬p ∧ Xp)) (a single “start” means
every time step is ⊥).
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LTL to Timeline Conversion

Our contribution: an algorithm and a tool that converts any LTL formula
into its corresponding timeline visualization

1 LTL to state-based Nondeterministic Buchi Automata (NBA)

2 NBA to ω-regular expression

3 Heuristics based ω-regular expression simplification

4 ω-regular expression to timeline
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LTL to state-based Buchi Automata (BA)

Büchi Automata: the normal automata you know, except for the accepting
condition

Figure: Example Buchi Automata for 2((p ∧ X¬p) ∨ (¬p ∧ Xp))

This step is very well-studied [1] and our tool uses Spot.
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BA to ω-regular expression

Definition

Regular expression and ω-regular expression

A ::= ϵ | ∅ | p(∈ Σ) | AA | A+ A | A∗

B ::= Aω | AB | B + B

Our Σ is the set of propositional logic formula.

Example

abω

represents an ω-regular expression whose first word is a and all (infinite)
remaining words are b.
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BA to ω-regular expression

Definition

A0
(s,f ) represents the regular expression that corresponds to all paths from

state s reaching state f for the first time
A1
(f ,f ) represents the regular expression that corresponds to all paths from

state f to itself

B =+
f ∈F

A0
(s,f )(A

1
(f ,f ))

ω
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BA to ω-regular expression

B =+
f ∈F

A0
(s,f )(A

1
(f ,f ))

ω

Figure: Example Büchi Automata for 2((p ∧ X¬p) ∨ (¬p ∧ Xp))

Example

Generated ω-regular expression:

(p(¬pp)ω) + (¬p(p¬p)ω)
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ω-regular expression to timeline
Every ω-regular we generate is the form of

A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n

A1 A2

A3 A4

...

A2n−1 A2n

start

Figure: Generic timeline construction of A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 21 / 32



ω-regular expression to timeline
Every ω-regular we generate is the form of

A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n

A1 A2

A3 A4

...

A2n−1 A2n

start

Figure: Generic timeline construction of A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 21 / 32



Heuristics based ω-regular expression simplification

The ω-regular expression generated may not be the “simplest” to visualize.

Idea

Regular expression equivalence forms a congruence: therefore we can
replace regular expressions with equivalent “simpler” ones everywhere.

Syntactical equivalence: equivalent by algebraic laws

Semantical equivalence: equivalent by representing the same set of
words
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Heuristics based ω-regular expression simplification

r1 + r1r
∗
2 =⇒ r1r

∗
2

r + r =⇒ r

r1 + r∗2 r1 =⇒ r∗2 r1

(r∗)ω =⇒ rω

(r1r
∗
2 )r

ω
2 =⇒ r1r

ω
2

(r1r2)r
ω
2 =⇒ r1r

ω
2

r∗rω =⇒ rω

rrω =⇒ rω
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Heuristics based ω-regular expression simplification

Example

Φ = 2(a → 3(¬a))

¬a

a
a

repeats 0 - ∞ ¬a

start

¬a

a
a

repeats 0 - ∞ ¬a

Figure: Timeline visualization for ((¬a)|(aa∗(¬a)))((¬a)|(aa∗(¬a)))ω.

¬a

a
a

repeats 0 - ∞ ¬a

start

Figure: Timeline visualization for ((¬a)|(aa∗(¬a)))ω.
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Tool showcase

Example

“[i]f a TSAFE command is sent to an aircraft, controller/AutoResolver
should then hand off the control of this aircraft.”[4]

2(tsafe.TSAFE command1 ∧ controller.CTR control 1

→X (¬controller.CTR control 1))

¬a ∨ ¬b

a ∧ b ¬b

¬b
¬a ∨ ¬b

repeats 0 - ∞ a ∧ b

start

¬a ∨ ¬b
repeats 0 - ∞ a ∧ b

Figure: Timeline for 2(a ∧ b → X (¬b)).
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Tool showcase

Example

Random LTL formula generated by [2]:

p2 ∧ (32p0 U X (2p1 ∧ (((p0 → p2) ∧ (p2 → p0))U 3p0)))

p1

p0 ∧ p1

start

p2

p2

p2

p0 ∧ p1

¬p0 ∧ p1
¬p0 ∧ p1

repeats 0 - ∞
p0 ∧ p1

⊤
⊤

repeats 0 - ∞

Figure: Timeline for p2 ∧ (32p0 U X (2p1 ∧ (((p0 → p2) ∧ (p2 → p0))U 3p0))).
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Artifact
Our artifact is available online.

https://github.com/EULIR/ltl-explainability

Figure: Open Research Object Badge

Figure: Research Object Reviewed Badge
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Conclusion and future work

We present an algorithm and a tool to visualize LTL formula, in attempt
to make LTL-based formal verification more intuitive and accessible.

Future work

User study to gather data from a representative audience of system
engineers regarding what timeline visualizations help most with
formula validation.

More, faster implementation optimizations over simplification
algorithms.
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Thinking about visualization

From anonymous reviewer

This paper takes an interesting approach, being based in the es-
sential mathematical theory of the objects being visualised, rather
than just ad hoc accidental properties of software artefacts.
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