
What’s in a Name?
Linear Temporal Logic Literally Represents Time Lines

Visualization of Linear Temporal Logic

Runming Li†

j.w.w. Keerthana Gurushankar†, Marijn Heule†, and Kristin-Yvonne Rozier‡

Carnegie Mellon University† Iowa State University‡

October 2, 2023

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 1 / 32

Overview

Goal

Understand the challenges in Linear Temporal Logic model checking, and
how visualization can help mitigate the challenges.

1 Linear Temporal Logic (LTL)

2 LTL Model Checking

3 LTL Visualization

4 Conclusion

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 2 / 32

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 3 / 32

What is LTL?

Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal temporal logic that allows ability
to reason about events that happen over time.

Example scenarios in software systems where we want to reason about
time:

Every request will eventually lead to a response.

Events a and b cannot happen at the same time.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 4 / 32

What is LTL?

Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal temporal logic that allows ability
to reason about events that happen over time.

Example scenarios in software systems where we want to reason about
time:

Every request will eventually lead to a response.

Events a and b cannot happen at the same time.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 4 / 32

Inductive Definition of LTL

Φ ::= a, b, c (atoms)

| ¬Φ (negation)

|Φ ∨ Φ (disjunction)

|Φ ∧ Φ (conjunction)

|Φ → Φ (implication)

|2Φ (always)

|3Φ (eventually)

| XΦ (next)

|ΦU Φ (until)

2Φ = Φ is Always true
3Φ = Φ is Eventually true
XΦ = Φ is true in the Next time step
ΦU Ψ = Φ is true Until Ψ is true

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 5 / 32

Inductive Definition of LTL

Φ ::= a, b, c (atoms)

| ¬Φ (negation)

|Φ ∨ Φ (disjunction)

|Φ ∧ Φ (conjunction)

|Φ → Φ (implication)

|2Φ (always)

|3Φ (eventually)

| XΦ (next)

|ΦU Φ (until)

2Φ = Φ is Always true
3Φ = Φ is Eventually true
XΦ = Φ is true in the Next time step
ΦU Ψ = Φ is true Until Ψ is true

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 5 / 32

Example LTL Formula

Example: Liveness

2(request → 3response)

“Every request will eventually lead to a response.”

Example: Mutal Exclusion

2(¬(a ∧ b))

“Events a and b cannot happen at the same time.”

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 6 / 32

Example LTL Formula

Example: Liveness

2(request → 3response)

“Every request will eventually lead to a response.”

Example: Mutal Exclusion

2(¬(a ∧ b))

“Events a and b cannot happen at the same time.”

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 6 / 32

Example LTL Formula

Example: Liveness

2(request → 3response)

“Every request will eventually lead to a response.”

Example: Mutal Exclusion

2(¬(a ∧ b))

“Events a and b cannot happen at the same time.”

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 6 / 32

Example LTL Formula

Example: Liveness

2(request → 3response)

“Every request will eventually lead to a response.”

Example: Mutal Exclusion

2(¬(a ∧ b))

“Events a and b cannot happen at the same time.”

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 6 / 32

LTL formulas are commonly thought as time lines

· · ·aU b

a ∧ ¬b a ∧ ¬b a ∧ ¬b b arbitrary

· · ·2a

a a a a a

· · ·3a

¬a ¬a ¬a a arbitrary

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 7 / 32

LTL Model Checking

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 8 / 32

Model Checking

A software system can be described as a finite state model M.

A specification can be described as an LTL formula Φ.

Question to answer: does model M satisfies specification Φ?

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 9 / 32

Model Checking

Natural language
specification

LTL formula
specification

Check against
system model

Step 1 Step 2

Step 2 has elegant algorithms, proven correct[3].

Step 1 remains a human effort.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 10 / 32

Model Checking

Natural language
specification

LTL formula
specification

Check against
system model

Step 1 Step 2

Step 2 has elegant algorithms, proven correct[3].

Step 1 remains a human effort.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 10 / 32

Model Checking

Natural language
specification

LTL formula
specification

Check against
system model

Step 1 Step 2

Step 2 has elegant algorithms, proven correct[3].

Step 1 remains a human effort.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 10 / 32

Can you tell the difference?

A NASA Rocket Scientist was given this English specification:
“p oscillates every time step”
She wrote two possible LTL formulas:

Φ = Always ((p ∧ Next ¬p) ∨ (¬p ∧ Next p))

Ψ = Always ((p ∧ Next ¬p) ∧ (¬p ∧ Next p))

Which one is correct?

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 11 / 32

Can you tell the difference?

A NASA Rocket Scientist was given this English specification:
“p oscillates every time step”
She wrote two possible LTL formulas:

Φ = Always ((p ∧ Next ¬p) ∨ (¬p ∧ Next p))

Ψ = Always ((p ∧ Next ¬p) ∧ (¬p ∧ Next p))

Which one is correct?

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 11 / 32

A canonical approach

p Xp ¬p X¬p p ∧ X¬p ¬p ∧ Xp Φ Ψ

T T F F F F F F
T F F T T F T F
F T T F F T T F
F F T T F F F F

What can we do better?

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 12 / 32

A canonical approach

p Xp ¬p X¬p p ∧ X¬p ¬p ∧ Xp Φ Ψ

T T F F F F F F
T F F T T F T F
F T T F F T T F
F F T T F F F F

What can we do better?

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 12 / 32

What can we do better?

If only there is a way to intuitively know whether the LTL formula matches
up the timeline we have in mind.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 13 / 32

LTL Visualization

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 14 / 32

Which one is correct?

¬p pstart

p

¬p p

Figure: Timeline for Φ = 2((p ∧ X¬p) ∨ (¬p ∧ Xp)).

start

Figure: Timeline for Ψ = 2((p ∧ X¬p) ∧ (¬p ∧ Xp)) (a single “start” means
every time step is ⊥).

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 15 / 32

LTL to Timeline Conversion

Our contribution: an algorithm and a tool that converts any LTL formula
into its corresponding timeline visualization

1 LTL to state-based Nondeterministic Buchi Automata (NBA)

2 NBA to ω-regular expression

3 Heuristics based ω-regular expression simplification

4 ω-regular expression to timeline

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 16 / 32

LTL to state-based Buchi Automata (BA)

Büchi Automata: the normal automata you know, except for the accepting
condition

Figure: Example Buchi Automata for 2((p ∧ X¬p) ∨ (¬p ∧ Xp))

This step is very well-studied [1] and our tool uses Spot.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 17 / 32

BA to ω-regular expression

Definition

Regular expression and ω-regular expression

A ::= ϵ | ∅ | p(∈ Σ) | AA | A+ A | A∗

B ::= Aω | AB | B + B

Our Σ is the set of propositional logic formula.

Example

abω

represents an ω-regular expression whose first word is a and all (infinite)
remaining words are b.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 18 / 32

BA to ω-regular expression

Definition

Regular expression and ω-regular expression

A ::= ϵ | ∅ | p(∈ Σ) | AA | A+ A | A∗

B ::= Aω | AB | B + B

Our Σ is the set of propositional logic formula.

Example

abω

represents an ω-regular expression whose first word is a and all (infinite)
remaining words are b.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 18 / 32

BA to ω-regular expression

Definition

A0
(s,f) represents the regular expression that corresponds to all paths from

state s reaching state f for the first time
A1
(f ,f) represents the regular expression that corresponds to all paths from

state f to itself

B =+
f ∈F

A0
(s,f)(A

1
(f ,f))

ω

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 19 / 32

BA to ω-regular expression

Definition

A0
(s,f) represents the regular expression that corresponds to all paths from

state s reaching state f for the first time
A1
(f ,f) represents the regular expression that corresponds to all paths from

state f to itself

B =+
f ∈F

A0
(s,f)(A

1
(f ,f))

ω

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 19 / 32

BA to ω-regular expression

B =+
f ∈F

A0
(s,f)(A

1
(f ,f))

ω

Figure: Example Büchi Automata for 2((p ∧ X¬p) ∨ (¬p ∧ Xp))

Example

Generated ω-regular expression:

(p(¬pp)ω) + (¬p(p¬p)ω)

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 20 / 32

ω-regular expression to timeline
Every ω-regular we generate is the form of

A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n

A1 A2

A3 A4

...

A2n−1 A2n

start

Figure: Generic timeline construction of A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 21 / 32

ω-regular expression to timeline
Every ω-regular we generate is the form of

A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n

A1 A2

A3 A4

...

A2n−1 A2n

start

Figure: Generic timeline construction of A1A
ω
2 + A3A

ω
4 + · · ·+ A2n−1A

ω
2n.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 21 / 32

Heuristics based ω-regular expression simplification

The ω-regular expression generated may not be the “simplest” to visualize.

Idea

Regular expression equivalence forms a congruence: therefore we can
replace regular expressions with equivalent “simpler” ones everywhere.

Syntactical equivalence: equivalent by algebraic laws

Semantical equivalence: equivalent by representing the same set of
words

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 22 / 32

Heuristics based ω-regular expression simplification

The ω-regular expression generated may not be the “simplest” to visualize.

Idea

Regular expression equivalence forms a congruence: therefore we can
replace regular expressions with equivalent “simpler” ones everywhere.

Syntactical equivalence: equivalent by algebraic laws

Semantical equivalence: equivalent by representing the same set of
words

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 22 / 32

Heuristics based ω-regular expression simplification

r1 + r1r
∗
2 =⇒ r1r

∗
2

r + r =⇒ r

r1 + r∗2 r1 =⇒ r∗2 r1

(r∗)ω =⇒ rω

(r1r
∗
2)r

ω
2 =⇒ r1r

ω
2

(r1r2)r
ω
2 =⇒ r1r

ω
2

r∗rω =⇒ rω

rrω =⇒ rω

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 23 / 32

Heuristics based ω-regular expression simplification

Example

Φ = 2(a → 3(¬a))

¬a

a
a

repeats 0 - ∞ ¬a

start

¬a

a
a

repeats 0 - ∞ ¬a

Figure: Timeline visualization for ((¬a)|(aa∗(¬a)))((¬a)|(aa∗(¬a)))ω.

¬a

a
a

repeats 0 - ∞ ¬a

start

Figure: Timeline visualization for ((¬a)|(aa∗(¬a)))ω.
Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 24 / 32

Tool showcase

Example

“[i]f a TSAFE command is sent to an aircraft, controller/AutoResolver
should then hand off the control of this aircraft.”[4]

2(tsafe.TSAFE command1 ∧ controller.CTR control 1

→X (¬controller.CTR control 1))

¬a ∨ ¬b

a ∧ b ¬b

¬b
¬a ∨ ¬b

repeats 0 - ∞ a ∧ b

start

¬a ∨ ¬b
repeats 0 - ∞ a ∧ b

Figure: Timeline for 2(a ∧ b → X (¬b)).
Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 25 / 32

Tool showcase

Example

Random LTL formula generated by [2]:

p2 ∧ (32p0 U X (2p1 ∧ (((p0 → p2) ∧ (p2 → p0))U 3p0)))

p1

p0 ∧ p1

start

p2

p2

p2

p0 ∧ p1

¬p0 ∧ p1
¬p0 ∧ p1

repeats 0 - ∞
p0 ∧ p1

⊤
⊤

repeats 0 - ∞

Figure: Timeline for p2 ∧ (32p0 U X (2p1 ∧ (((p0 → p2) ∧ (p2 → p0))U 3p0))).

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 26 / 32

Artifact
Our artifact is available online.

https://github.com/EULIR/ltl-explainability

Figure: Open Research Object Badge

Figure: Research Object Reviewed Badge

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 27 / 32

https://github.com/EULIR/ltl-explainability
https://github.com/EULIR/ltl-explainability

Conclusion

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 28 / 32

Conclusion and future work

We present an algorithm and a tool to visualize LTL formula, in attempt
to make LTL-based formal verification more intuitive and accessible.

Future work

User study to gather data from a representative audience of system
engineers regarding what timeline visualizations help most with
formula validation.

More, faster implementation optimizations over simplification
algorithms.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 29 / 32

Conclusion and future work

We present an algorithm and a tool to visualize LTL formula, in attempt
to make LTL-based formal verification more intuitive and accessible.

Future work

User study to gather data from a representative audience of system
engineers regarding what timeline visualizations help most with
formula validation.

More, faster implementation optimizations over simplification
algorithms.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 29 / 32

Thinking about visualization

From anonymous reviewer

This paper takes an interesting approach, being based in the es-
sential mathematical theory of the objects being visualised, rather
than just ad hoc accidental properties of software artefacts.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 30 / 32

Acknowledgements

We thank anonymous reviewers for feedback and suggestions. This work
was partially supported by the National Science Foundation (NSF) under
grants CCF-2015445, CAREER-1664356, and CCRI-2016592.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 31 / 32

References
[1] Alexandre Duret-Lutz et al. “From Spot 2.0 to Spot 2.10: What’s

New?” In: Proceedings of the 34th International Conference on
Computer Aided Verification (CAV’22). Vol. 13372. Lecture Notes in
Computer Science. Springer, Aug. 2022, pp. 174–187. doi:
10.1007/978-3-031-13188-2_9.

[2] Alexandre Duret-Lutz. “Manipulating LTL formulas using Spot 1.0”.
In: Proceedings of the 11th International Symposium on Automated
Technology for Verification and Analysis (ATVA’13). Vol. 8172.
Lecture Notes in Computer Science. Hanoi, Vietnam: Springer, Oct.
2013, pp. 442–445. doi: 10.1007/978-3-319-02444-8_31.

[3] K.Y. Rozier. “Linear Temporal Logic Symbolic Model Checking”. In:
Computer Science Review Journal 5.2 (May 2011), pp. 163–203. doi:
doi:10.1016/j.cosrev.2010.06.002. url:
http://dx.doi.org/10.1016/j.cosrev.2010.06.002.

[4] Yang Zhao and Kristin Yvonne Rozier. “Formal Specification and
Verification of a Coordination Protocol for an Automated Air Traffic
Control System”. In: Science of Computer Programming Journal 96.3
(Dec. 2014), pp. 337–353.

Linear Temporal Logic (LTL) LTL Model Checking LTL Visualization Conclusion References 32 / 32

https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/doi:10.1016/j.cosrev.2010.06.002
http://dx.doi.org/10.1016/j.cosrev.2010.06.002

	Linear Temporal Logic (LTL)
	LTL Model Checking
	LTL Visualization
	Conclusion
	References

