1. Quaternary Structure Determination:

- Native molecular weight = size exclusion chromatography (gel filtration)
- Subunit MW from SDS-PAGE +/- BME (S-S bonds).
- Quaternary structure consistent with both.

2. X-Ray Diffraction:

- How the technique works:
 - 1. X-rays are scattered by electrons
 - 2. Intensity depends on position of atoms.
- How an electron density map is fit.
- How to evaluate the correctness of a model.

3. Thermodynamics:

- Do you know the difference between Gibbs free energy (ΔG) and standard energy (ΔG°)?
- Predict the equilibrium position from ΔG° . •
- Predict the direction of the reaction from ΔG .
- $\Delta G = \Delta G^{\circ} + RT \ln[\text{products}]/[\text{reactants}].$
- Indirect coupling: Change ratio of products/reactants to lower ΔG (e.g. aldolase).
- Direct coupling: Use of ATP to lower ΔG° • (e.g. hexosekinase, PFK).
- Free energy of concentration gradient, $\Delta G = RT \ln[In]/[Out]$
- Free energy of transport of a charge across a voltage difference ($\Delta G = ZF \Delta \psi$)

4. Carbohydrates:

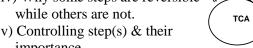
- Ketose versus aldose.
- 3 carbon sugar-glyceraldehyde important intermediates in glycolysis
- 5 carbon sugar -ribose, in nucleic acid •
- 6 carbon sugars glucose and fructose •
- Disaccharides: nomenclature.
- Storage polysaccharides (glycogen). Shorthand nomenclature for linkage (e.g. $\beta(1-4)$).
- Structural polysaccharides: Cellulose ٠
- Bacterial cell wall structure

5. Lipids:

- General structure of fatty acids, waxes, triglycerides, phospholipids, Sphingolipids
- Structure difference between saturated and un-saturated fatty acids
- Biochemical role of fatty acids, triglycerides, • phospholipids
- Role of hydrophobic effect in spontaneous formation of micelles and bilayers, CMC.
- Properties of lipid bilayer membranes.
 - 1. Permeability properties, osmotic effects.
 - 2. Melting temperature and fatty acid composition (van der Waals interactions.)

6. Biological Membranes:

Components of biological membranes and their function:


- 2. Peripheral membrane proteins.
- 3. Integral membrane proteins.
- Fluid mosaic model of biological membranes
- General structural properties of membrane • proteins (hydrophobic residues & H-bonds)
- Ion channel selectivity. •
- Thermodynamics of protein insertion.

7. Metabolic Pathways:

- i) Pathway & location. ii) How all pathways are tied together \rightarrow
- iii) Input and outputs.

importance.

iv) Why some steps are reversible while others are not.

Glucose

Acetyl-CoA

1 Pvr

Lactate

Fats

Acyl-CoA

Amino

Acids

- vi) Steps that produce energy & how that energy is stored (NADH/FADH2/thioesters)
- vii) Global regulation of glucose metabolism between glycogen synthesis/degradation & glycolysis/gluconeogenesis.
- viii) Overall processing of nutrients (proteins, lipids, sugars). Pyr to acetyl-CoA is one way.

8. Enzyme Nomenclature.

- 1. Kinase: $X + ATP \leftrightarrow X-P + ADP$
- 2. Phosphatase: $X-P \rightarrow X + P_i$
- 3. Dehydrogenase: $XH_2 + NAD^+ \leftrightarrow X + NADH$
- **9. Electron Transport -** Final elec. acceptor (O₂)
 - Inorganic & organic carriers.
 - Calculation of redox changes: •
 - i. Either by balancing: H₂O then H⁺ & e⁻
 - ii. Electron counting
 - Direction of electron flow: • NADH oxidation ($I \rightarrow Q \rightarrow III \rightarrow cytoC \rightarrow IV \rightarrow O_2$). FADH₂ oxidation (II \rightarrow Q \rightarrow III \rightarrow cytoC \rightarrow IV \rightarrow O₂).
- Generation of a proton gradient.
- 10. ATP Synthesis: How energy is generated from a
- pH gradient using the F₁F₀ ATPase (ATP synthase)
 - Contains 3 β-subunits, one that binds nothing, one that binds ADP+P_i and one that stabilizes ATP over ADP+P_i, causing the spontaneous formation of ATP from bound ADP+Pi.
 - Pumping of 3 H⁺ causes rotation of γ -subunit. Rotation of γ -subunit changes the conformation of β -subunits, causing bound ADP+P_i \rightarrow ATP.

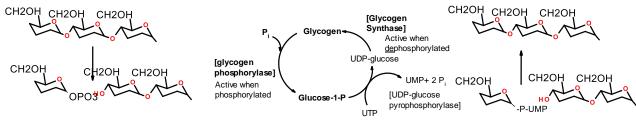
11. Anaerobic Metabolism:

Mammals: pyruvate \rightarrow lactate Yeast: pyruvate \rightarrow acetylaldehyde \rightarrow ethanol

12. Anabolic Pathways (gluconeogenesis, formation of oxaloacetate from pyruvate). Energy input needed, high energy steps done by a different mechanism.

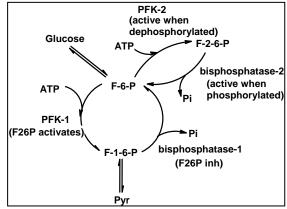
13. Amino acid metabolism:

Transaminase accepts -NH2 from AA, • replaced by C=O.


1. Cholesterol, phospholipids

Regulation: Use common sense.

- You should try to develop a logical understanding of the way things are regulated. It usually makes good common sense. For example, high NADH & ATP levels, which are indicative of a high energy state of the cell, inhibit many enzymes in the TCA cycle. Same goes for ATP regulation of glycolysis/gluconeogeneis glycolysis is turned off when ATP levels are high, on when AMP levels are high.
- Know how pathways are, in general, regulated by phosphorylation of enzymes, product inhibition, feedback inhibition, be able to give one example.
- Opposing pathways are regulated in a coordinated manner, both are not on at the same time (both could be off).


Regulation of Glycogen and Glucose metabolism: "The liver is a glucose bank."

- **1. Glucose demand:** Hormones epinephrine or glucogon are released. Binding to their receptors leads to activation of G-protein, which activates adenyl cyclase. The cAMP produced by adenyl cyclase activates protein kinases → proteins become **phosphorylated**.
- 2. Glucose excess: Hormone insulin is released. Binding to its receptor leads to protein dephosphorylation.
- 3. Glycogen metabolism: Syn. and degradative enzymes are *directly* controlled by protein phosphorylation.

4. Glycolysis & Gluconeogenesis: Directly controlled by F2-6P levels. F2-6P levels are controlled by protein phosphorylation.

- F2-6P levels are high when insulin is present (high blood glucose) because the enzyme that makes F2-6P (PFK-2) is active when <u>dephosphorylated</u> High blood glucose = F2-6P becomes high
- High F2-6P levels activate PFK-1, turning on glycolysis-but only if ATP is needed.
- These pathways are also regulated by energy sensing:
 - *i)* High AMP activates PFK-1, turning on glycolysis to produce ATP. Bisphosphatase-1 in gluconeogenesis is inhibited by AMP since ATP is required to make glucose and high AMP = low ATP.

ADP+Pi

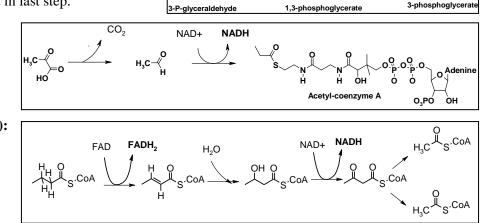
PO.

ΔTP

HO

ö

i) High ATP inhibits PFK-1 and therefore glycolysis. Gluconeogenesis can occur since AMP levels are low, indicating that there is sufficient ATP to make glucose.


Key energy generating steps:

- i) **Glycolysis**: Oxidation of an aldehyde \rightarrow carboxylic Acid. One NADH is produced directly, and one ATP is produced from the phosphorylated product in the next step. 2nd ATP produced in last step.
- **ii**) **TCA Cycle**: Oxidative decarboxylations, NADH and a high energy thio-ester are produced, e.g. Pyr to acetyl-CoA.

iii) β -Oxidation (TCA Cycle, fatty acid oxidation): Oxidation of an alkane \rightarrow ketone (1 NADH and 1

ketone (1 NADH and 1 FADH₂/cycle).

(continued next page)

PO

NADH

PO.

ò

но

iv) NADH/FADH₂ are oxidized in electron transport, energy stored in proton gradient (inner membrane). v) Energy stored in proton gradient is used to generate ATP with ATP synthase (ADP + Pi \rightarrow ATP)

Pathway/Location	Input Substrate	Output Substrate	Controlling Step	Energetic Considerations (Detailed numbers not required for exam.)
Glycolysis Cytosol	Glucose	Pyruvate (Pyr)	PFK-1 Inhibited by: ATP, citrate Activated by: AMP, F26P (essential activator)	Small amounts of ATP generated quickly, <u>without the need for</u> <u>oxygen.</u>
Gluconeogenesis Cytosol	Pyruvate	Glucose	F16bisphosphatase Inhibited by AMP Inhibited by F26P	Requires energy (general property of anabolic pathways).
Anerobic Met. Pyr→ Lactate/ethanol	Pyr & NADH	Lactate & NAD ⁺		Provides NAD ⁺ for glycolysis during anaerobic conditions in active muscles. Lactate is converted to glucose in the liver.
Pyr→Acetyl CoA Mito. Matrix	Pyr	Acetyl-CoA, CO ₂	Inh: ATP, NADH, acetyl-CoA (product Inh)	NADH produced, high energy thio-ester formed.
TCA Cycle Mito. Matrix	Acetyl-CoA +oxaloacetate →citrate	2 x CO ₂	Citrate synthase Energy sensing: NADH,ATP inhibit Citrate inh (product) Succinate CoA inh (feedback)	Produces large amounts of NADH and FADH ₂ which are converted to ATP <u>if O₂ is</u> <u>available.</u>
Fatty Acid Activation Cytosol.	Fatty Acid (N)	Acyl CoA (thioester)		Priming requires 2ATP equivalents.
Fatty Acid Deg. Mito. Matrix	Acyl CoA (thioester)	N/2 Acetyl- CoA		Each {(N/2)-1} cycle gives: 1 NADH, 1 FADH ₂ , 1 acetyl- CoA. Last cycle \rightarrow 2 acetyl-CoA
Electron Transport Inner mito. mem.	O ₂ , NADH, FADH ₂ .	Water [H ⁺] gradient		$NADH \rightarrow 10 \text{ protons} \approx 3ATP$ FADH ₂ $\rightarrow 6 \text{ protons} \approx 2 \text{ ATP}$
Oxidative Phos Inner mito.mem.	$ADP + P_i + [H^+] Grad.$	ATP		3 protons ≈ 1 ATP