\qquad
This exam consists of 95 points on 6 pages. Allot $1 \mathrm{~min} / 2$ pts.
1A. (4 pts) True \& false (circle the correct answer).
T or F: All 20 amino acids contain at least one chiral center.
T or F : The peptide bond is planar and usually cis.
T or F: Non-polar residues are found in the core of globular proteins due to van der Waals forces.
T or F: Disulfide bonds are usually found on intra-cellular proteins.
T or F : If the ligand concentration is less than K_{D} then the fractional saturation is greater than 0.5 .
T or F : Hydrogen bonds are seldom observed in protein-ligand interactions.
T or F : Ligands that differ in their K_{D} values are more likely to have different kinetic on-rates.
T or F : At equilibrium, the concentration of the protein-ligand complex is constantly changing, or fluctuating.
1B. Fill in the blanks (2 pts).
a. The antigen binding \qquad loops are found on the \qquad domains of the
\qquad and \qquad chains in antibodies.
b. An antibody can be cleaved to produce \qquad (a number) F_{AB} fragments ($1 / 2 \mathrm{pt}$).
2. (10 pts) Hydrogen Bonds:
i) Define/describe the general structure of a hydrogen bond. You answer should include a description of donor and acceptor groups (4 pts).
ii) What chemical groups in a protein form main-chain hydrogen bonds? Illustrate your answer with a sketch. (2 pts).
iii) Briefly describe the importance of hydrogen bonds in stabilizing secondary structures of proteins (4 pts).
3. (5 pts) A titration curve for an amino acid is shown on the right.
i) What are the pK_{a} values for each ionization (1 pt)?
ii) Briefly explain why weak acids act as buffers near their pK_{a} values (4 pts).

4. (10 pts) Please do one of the following two choices. Both choices utilize $\mathbf{0 . 1} \mathbf{~ M}$ acetate $\left(\mathrm{pK}_{\mathrm{a}}=5.0\right)$ as the buffer. Be sure to indicate the question that you are answering. Use the back of the previous page for calculations.
Choice A: Buffer construction, $\mathrm{pH}=4$, starting with NaAcetate.
i) How many moles of NaAcetate would be needed to make 0.5 L of buffer? Please show your work (4 pts).
ii) If the desired pH of the buffer solution was 4.0 , how many moles of HCl would have to be added to the solution of NaAcetate described in part i. Please show all of your work (6 pts).
Choice B: pH Adjustment, initial $\mathrm{pH}=4$, final $\mathrm{pH}=6$, restore to $\mathrm{pH}=4$.
i) What is the total number of moles of acetic acid and/or acetate in 0.5 L of this buffer (at any pH value)? Please show your work (4 pts).
ii) The initial pH of your acetate buffered reaction was 4.0 . The pH rises to 6.0 during the course of the reaction. How many moles of HCl do you have to add to restore the pH to 4.0 ? (6 pts).
5. (10 pts) Draw the following dipeptide: Gly-Val, with the peptide bond in the trans conformation and in the correct ionization state for a pH of 6.0 . If you do not know the structure of the sidechains for these amino acids, draw those that you do know, label them, and give the sequence of your modified peptide. Please do not use Glu, Phe, or Ile, as these are given elsewhere on the exam.
Label the following on your diagram:
i) the amino terminus
ii) the carboxy terminus
iii) the peptide bond
iv) the single bonds corresponding to the phi and psi torsional angles (only one residue is necessary).
6. (12 pts) A protein contains three charged residues (A, B, C), the remaining residues are either polar or non-polar. The relative location of these three residues is shown in the diagram on the right, along with their pK_{a} values.
i) Write the names of residues A and C next to their structure (1 pt).
ii) Estimate the fraction protonated for each group, assuming a pH of 6.0. Use the back of the preceding page for calculations or sketching graphs. (3 pts).

A:

B:

C:
iii) Estimate the net charge on this protein at $\mathrm{pH}=6.0$, don't forget to include

	B ${ }^{C}$
rget to include	$\begin{aligned} & p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \\ & R=10^{(p H-p K a)} \\ & f_{H A}=\frac{1}{1+R} \quad f_{A-}=\frac{R}{1+R} \end{aligned}$

iv)**Explain why the two chemically identical side chains have different pK_{a} values, assume the group with the $\mathrm{pK}_{\mathrm{a}}=6.0$ has the same pK_{a} as the free amino acid (2 pts). Use the back of the previous page to answer this question.
v) Where would you typically find residues of this type: on the surface, or in the core (circle choice)? (2 pts).
7. (8 pts) Please do one of the following two choices, the second choice is found on the following page.

Choice A: A peptide was digested with Chymotrypsin. The peptides from this digest were separated and the sequence of the first five residues of each peptide were determined using Edman degradation, giving the following result:
Ala-Arg-Asp-Phe Ser-Gly-Met-Lys-Val

A new sample of the peptide was cleaved with cyanogen bromide, and the first five residues of each peptide were:

$$
\text { Ala-Arg-Asp-Phe-Ser } \quad \text { Lys-Val-Leu-Ser }
$$

A new sample of the same peptide was cleaved with trypsin, and the first five residues of each peptide were:

$$
\text { Ala-Arg-Asp-Phe-Ser } \quad \text { Val-Leu-Ser }
$$

What is the complete amino acid sequence of the peptide (you should check your answer to verify that it would account for the above data)?
\qquad
Choice B: A protein does not contain tyrosine or phenylalanine. A $1 \mu \mathrm{M}\left(10^{-6} \mathrm{M}\right)$ solution of this protein has a UV absorbance of 0.02 . How many tryptophan residues are present in this protein?

$$
\begin{aligned}
& A=\varepsilon[X] l, \quad l=1 \mathrm{~cm} \\
& \varepsilon_{\mathrm{TRP}}=5,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}
\end{aligned}
$$

8. (6 pts) Please do one of the following choices:

Choice A: Sketch an α-helix, indicate the location of a few hydrogen bonds and sidechains in your sketch. Also indicate the number of residues/turn.
Choice B: Is the β-sheet shown on the right parallel or anti-parallel? Briefly justify your answer. Describe, or draw, the orientation of the sidechains in this sheet.
Choice C: Pick any super-secondary structure. Describe, or sketch, its structure and briefly discuss the intra-molecular forces that stabilize it.

9. (12 pts) There are two entropy terms that are important in protein folding/unfolding. Briefly describe both of these two terms and indicate how they stabilize (or destabilize) the native, or folded from of a protein.
\qquad
10. (12 pts) Please do one of the following two choices:

Choice A: A 8 residue segment of a protein is found on the surface of a protein. The sequence of this segment is:
-Glu-Phe-Glu-Phe-Glu-Phe-Glu-Phe-

The Ramachandran plot for this segment of the protein is shown to the right. Each "dot" represents the phi and psi angles for a residue in this sequence.
i) What is the most likely secondary structure for this section of the protein? Why would it be energetically favorable for this segment to form this structure? Briefly justify your answer. (8 pts)
ii) Why is it energetically unfavorable to find residues in the region labeled "A" (4 pts)

Choice B: A protein normally contains a phenylalanine residue buried in its non-polar core (left structure). Would replacement of this residue by leucine (right structure) increase or decrease the following terms? Briefly justify your answer. Assume the reaction direction is native \rightarrow unfolded.

i) The $\Delta \mathrm{H}^{\circ}$ of unfolding.
ii) The ΔS° of unfolding.
11. (4 pts) Do one of the following choices. Indicate your choice.

Choice A: The curve to the right shows a denaturation curve for a protein.
i) What is the standard energy change, $\Delta \mathrm{G}^{\mathrm{o}}$ at $\mathrm{T}=335 \mathrm{~K}(2 \mathrm{pts})$?
ii) Determine the equilibrium constant at $\mathrm{T}=335 \mathrm{~K}$? (2 pts).

Choice B: A protein denatures with a $\Delta \mathrm{H}^{\mathrm{o}}$ of $+200 \mathrm{~kJ} / \mathrm{mol}$ and an entropy change, $\Delta \mathrm{S}^{\mathrm{o}}$ of $+600 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.
i) Calculate the equilibrium constant and fraction folded (native, N) at 300 K . $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}(4 \mathrm{pts})$

$$
\begin{aligned}
& \Delta G^{o}=\Delta H^{o}-T \Delta S^{o}=-R T \ln K_{E Q} \\
& f_{N}=1 /\left(1+K_{E Q}\right) \quad f_{U}=K_{E Q} /\left(1+K_{E Q}\right)
\end{aligned}
$$

Choice C: Two different proteins bind the same ligand, nitrobenzene. The structure of the protein-ligand complexes are shown on the right. The two sidechains from the protein that contact the ligand are in bold.
Which protein would show a lower K_{D},

Protein A

Protein B protein A or protein B? Why?

