Lecture 23 – Carbohydrates I.

Goals

- Distinguish between aldose & ketose.
- Number the carbons in a monosaccharide
- Explain ring formation

Identify the anomeric carbon

Correctly name cyclic sugars

Carbohydrates are:

- 1. The primary energy reservoir in biosphere.
- 2. Biosynthetic precursors to amino acids and nucleic acids.
- 3. Targeting of proteins for trafficking within the cell.
- 4. Structural and mechanical components.
 - Cell walls in plants & bacteria

Structural Hierarchy:

- 1. Monosaccharides: cannot be hydrolyzed to simpler sugars (= amino acid)
- 2. Oligosaccharides: 'a few' covalently linked monosaccharides (= peptide)
- Polysaccharides: 'many' covalently linked monosaccharides (= protein)

D(R) glyceraldehyde

S(L) glyceraldehyde

Proteins versus carbohydrates:

20 Amino Acids

>>20 monosaccharides

Unique linkage (peptide bond)

Multiple ways to link

Linear chains

Branched chains

Few chiral centers/residue

Many chiral centers

Monosaccharides: All carbons in monosaccharides are 'hydrated' -hence the name *carbohydrate* (*general* formula $(CH_2O)_N$)

The simplest monosaccharides contain three carbons:

- When the C=O group is at the 2nd position it's called a ketose.
- When the C=O group is at the very end it's an aldose.

Note that the aldose, glyceraldehyde, has a chiral center and therefore exists in D and L forms, or mirror images of each other. The D-form is the "root" compound for all other naturally occurring aldoses, this is why all natural sugars are "D", e.g. D-glucose.

Aldose Series: Additional hydrated carbons (HO-C-H) are added just below the aldehyde group. Therefore, the chiral center of D-glyceraldehyde is preserved. The added carbon generates a new chiral center. The two different molecules generated by the addition of another carbon are called *epimers* because they differ in only *one* chiral center. For example, erythrose and threose are epimers.

Biochemistry

Lecture 23

Ketose Series: These are formed in the same way, the addition of a hydrated carbon below the keto group, with each addition forming a new chiral center.

October 24, 2019 CH2OH =0 -H ÇH2OH Снгон сн20н ÇH2OH ÇH2OH **СН2ОН** =0 dihydroxyacetone =0 OH -H сн2он -0 н D-erythrulose сн2он -OH D-ribulose снгон

Carbon numbering: Begin at the end closest to the C=O group.

- Aldoses C1 is the aldehyde carbon
- Ketoses C2 is the ketone carbon

Important sugars to remember:

- Glyceraldehyde (C3 aldose) m take lism
- Ribose (C5 aldose)
- Glucose (C6 aldose) m
- Fructose (C6 ketose) met

Ring formation:

In general, alcohols can attack the C=O group in sugars to form *hemiacetals*. Since sugars have OH groups, they can form hemiacetals by an intramolecular reaction, forming closed rings.

Only long (>C4) saccharides can form internal hemiacetals, giving closed rings (Includes ribose, glucose, fructose). No atoms are lost or gained in this reaction!

Ring Formation in Glucose

- 1. Six membered ring created by forming a bond between C1 and O5 (most stable ring size).
- 2. This form is called pyranose, *i.e.* glucopyranose after the organic compound, pyran.
- 3. The C1 carbon becomes chiral and is called the *anomeric* carbon
- 4. The new OH group (on C1) can exist in either the α or β form.

Carbohydrate Worksheet.

1. Draw the cyclic form of fructose and ribose.

Hints:

1

- i) the 2nd to last carbon attacks the C=O.
- ii) Draw the ring first, and then add the -OH groups with the correct stereochemistry.

d-fructofuranose

H₁OH

H₁OH

H₂OH

H²COH

H³COH

H⁴COH

CH2OH

CH2OH

B-ribofuranose

- 2.i) Identify the configuration of the anomeric carbon on both sugars.
 - ii) Which one corresponds to the linear sugar on the far right?

CH2OH OH OH CH H-2C-OH d H-2C-OH d HO-3C-H H-4C-OH d H-5C-OH

3. Name the following disaccharide (one monosaccharide is glucose, the other is galactose).

The six simple rules for naming disaccharides are:

- 1. The non-reducing end defines the first sugar.
- 2. Configuration of the anomeric carbon of the 1st sugar (α,β)
- 3. Name of 1st monosaccharide, root name followed by pyranosyl (6-ring) or furanosyl (5-ring)
- 4. Atoms which are linked together, 1st sugar then 2nd sugar.
- 5. Configuration of the anomeric carbon of the second sugar (α,β) (omitted if the anomeric carbon is free since α & β forms are in equilibrium.)
- 6. Name of 2nd monosaccharide, root name followed by pyranose (6-ring) or furanose (5-ring) (If *both* anomeric carbons are linked, then the name ends in 'oside", not 'ose')

galacto pyranosyl (1-2) B gluco pyranosel

4. What is wrong with this disaccharide?

Chaban used

for bond