Lecture 18: Applications of K_M and k_{CAT}, Temperature effects, Inhibitors. Goals:

- Use pH effects to support mechanism
- Predict effects of temperature on enzyme kinetics
- Distinguish between types of inhibitors (covalent, competitive, mixed/allosteric)
- Key properties of suicide & competitive inhibitors.
- Effect of competitive inhibitors on steady-state kinetics, measurement of K_I.

Applications of K_M and k_{CAT} :

Mechanistic Information - about particular enzymesubstrate pairs.

- 1. The active site region of Trypsin is shown below.
- i) Sketch the k_{CAT} as a function of pH.
- ii) Sketch the K_M as a function of pH.

- 2. The two substrates shown on the right were presented to trypsin. Their structures and measured K_M and k_{CAT} values are given.
- i) Explain the differences in K_M values.
- ii) Why are the k_{CAT} values the same?

Substrate	$\mathbf{K}_{\mathbf{M}}$	k _{CAT}
NH3 OF CH3 OF CH3	10 μM better lower	1000 s ⁻¹
B NH3 NH3 O CH.	100 μΜ	1000 s ⁻¹

Effect of Temperature:

Two competing factors:

1. Increase in population of [EX]

$$\frac{n_X}{n_S} = e^{-\Delta G/RT}$$

2. Unfolding of enzyme

Inhibitors:

Studies on Inhibitors are useful for:

- 1. Mechanistic studies to learn about how enzymes interact with their substrates.
- 2. Understanding the role of inhibitors in enzyme regulation.
- 3. Drugs if they inhibit aberrant biochemical reactions:
 - penicillin, ampicillin, etc. interfere with the synthesis of bacterial cell walls
- 4. Understanding the role of biological toxins.
 - Amino acid analogs useful herbicides (i.e. roundup)
 - Insecticides chemicals targeted for insect nervous system.

Types of Inhibitors:

- 1. Covalent/Suicide inhibitor covalently modifies enzyme, usually in active site.
- 2. Competitive inhibitor blocks substrate, reversibly.
- 3. Mixed type (allosteric) inhibitor causes allosteric change, reversibly.

1. Suicide Inhibitors:

Inhibitor binds in the active site. This type of inhibitor binds irreversibly.

 Transition state is a reactive compound that forms a covalent bond with the enzyme, irreversibly inactivating it.

Example: Sarin nerve gas

- Acetylcholine esterase is required to breakdown the neural transmitter acetylcholine in neuro-muscular junctions so that the muscle will relax.
- Esterase has an active site Serine that is activated in a similar manner as serine proteases.
- Sarin modifies the active site serine in the serine esterase acetylcholine esterase by forming
 a stable covalent bond with the serine that cannot be easily hydrolyzed.
- Inhibition of acetylcholine esterase results in suffocation since the diaphragm muscles no longer function properly.

2. Competitive Inhibition:

2

- Succinate dehydrogenase converts succinate to fumarate by removing two hydrogens (oxidation).
- Malonate is a competitive inhibitor of succinate.

Can malonate be converted to a product using the same reaction (H removal)?

0

(10als: (i) Determine how well inhibitors bind (ii) Allosfenic inhibitors / wixed type inhibitors Complete the following statements (i-iv): kI = KD

i. A competitive inhibitor binds to the Active site

ii. A competitive inhibitor and the substrate are ______ in structure.

iii. A competitive inhibitor cannot undergo <u>catalysis</u> / a chemical reachion.

iv. A competitive inhibitor can only bind to the enzyme when the substrate is

absent

Effect of Competitive Inhibitor on Kinetics: A competitive inhibitor reduces the amount of [E] by the formation of [EI] complex. The inhibitor cannot affect the [ES] complex after it has formed since the inhibitor can no longer bind. How will high concentrations of substrate affect the inhibition?

$$(EI) \rightleftharpoons (E) + (I)$$

$$k_{I} = (E)(I) = k_{D}$$

$$(EI)$$

[S] < K_M $[S] = K_M$ [S] > K., without inhibiturs Saturation A' V= | B' V=2 c' V= 4 ø + inhibitor DK (saturat w/o Inh 6 + Inh 5 with or without C' 3 inhibitor B' Vmax is [S] km (tinh) Km (No inh)

No Inhibitor Present

can use the effect of intribition on kinetics to get KI#

to remind us that it is an inhibitor.

There are two consequences of a competitive inhibitor binding on the kinetics of the enzyme:

- 1. V_{MAX} is unchanged: At high levels of substrate all of the inhibitor can be displaced by substrate, and [ES]= E_{TOTAL} , v_{MAX} = $k_{CAT}[ES] = k_{CAT}[E_{TOT}]$.
- 2. The observed K_M is increased: It requires more substrate to reach 1/2 maximal velocity because some of the enzyme is complexed with inhibitor.

The change in K_M can be used to determine how well the inhibitor binds to the free enzyme \rightarrow

 $v = V_{MAX} \frac{[S]}{K_M + [S]}$ $V = V_{MAX} \frac{[S]}{K_M + [S]}$

 $\frac{1}{v} = \frac{K_M}{V_{MAX}} \frac{1}{[S]} + \frac{1}{V_{MAX}}$ Inhibitor Present change

 $v = V_{MAX} \frac{[S]}{\alpha K_M + [S]}$ $\frac{1}{V} = \frac{\alpha K_M}{V_{MAX}} \frac{1}{V_{MAX}} + \frac{1}{V_{MAX}} \frac{$

 $\alpha = \text{ratio of slopes}$ $\alpha = \text{ratio inh}$

 $K_i = [i]/(\alpha-1)$

 $\alpha = 1 + \frac{[I]}{a}$

a : degree of inhibition. = ratio of slopes.

October 6, 2019

Measuring Inhibitor-Enzyme Affinity (K_I)

A. Data Collection

- i) Measure initial velocity for different [S], in the absence of inhibitor.
- bitor. Tro vam CS7
- ii) Measure initial velocity for different [S], in the *presence* of a fixed concentration of inhibitor (i.e. only [S] is varied, not [I]). Multiple inhibitor concentrations can be used.

B. Analysis:

- 1. Linearization of Data using Double-Reciprocal Plot
 - i) Both data sets are plotted on a double reciprocal plot.
 - ii) Ratio of the slopes gives α (degree of inhibition).
 - iii) $K_1 = [1]/(\alpha-1)$.
- 2. Directly Fitting to Experimental Data (best method):

There are three parameters: V_{MAX} , K_{M} , $\alpha.$ The data is directly fit to theoretical equations.

- i) Predict v versus [S] for I=0 $[v_{Pred}=V_{MAX}[S]/(K_M+[S])]$
- ii) Predict v versus [S] for I>0 [$v_{Pred}=V_{MAX}[S]/(\alpha K_M+[S])$]
- iii) Sum differences between actual and predicted velocities, $\chi^2 = \sum |(v_{obs} v_{pred})|_{l=0} + |(v_{obs} v_{pred})|_{l>0}$
- iv) Use Solver to minimize χ^2 , use α to obtain K_I .

A: Experimental Data tinh							
[S] mM	v; / [I]=0	I=10µM	1/[S]	1/v [l]=0	1/∨ I=10µM		
1	16.7	9.1	1.0	0.060	0.110		
5	50.0	33.3	0.2	0.020	0.030		
10	66.7	50.0	0.1	0.015	0.020		

B. Double Reciprocal Plots

$$\alpha = \frac{0.1}{0.05} = 2$$

$$K_i = \frac{[I]}{(\alpha - 1)} = \frac{10\mu M}{2 - 1} = 10\mu M$$

C. Fitted Parameters: Vmax 100.06 Km 5.00

α 2.00

