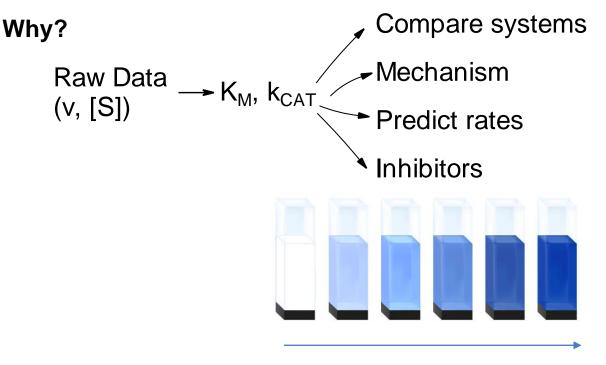

Enzyme Kinetics

- **Enzymes** are protein or RNA catalysts. They increase the rate of the reaction.
- They bind "substrates" and convert them to "products". Usually, the substrate undergoes a chemical reaction and is changed in its structure.
- Substrates bind specifically to the enzyme's active site, interacting with amino acid side chains.
- The chemical change caused by the enzyme is catalyzed by additional functional groups in the active site.
- Many enzymes undergo a conformational change when the substrates are bound to the active site; this change is called an induced fit.
- The rate (or velocity) is the number of products produce/unit time.



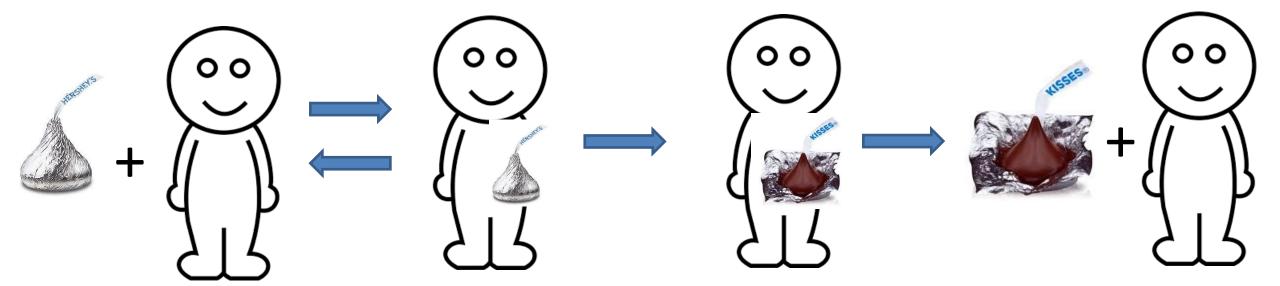
Steady-State Enzyme Kinetics & Inhibitors

Goals:

1. Understand steady-state approximation.

- 2. Experimental parameter (K_M) related to substrate binding.
- 3. Experimental parameter (k_{CAT}) related to catalytic efficiency, conversion of bound S to P.

The rate of product production:


Simple Enzyme Kinetic Scheme.

- k_{ON} (also called k_1) is the forward rate constant for substrate binding
- k_{OFF} (also called k_{-1}) is the reverse rate constant for substrate binding
- k_{CAT} (also called k₂) is the catalytic rate constant (containing terms related to the stabilization of the transition state).
- The (ES) complex is also called the "Michaelis complex".

Enzyme Kinetics

Introduction to Enzyme Kinetics

$$E + S \Longrightarrow (ES) \longrightarrow (EX) \longrightarrow (EP) \longrightarrow P + E$$

 $rate = v = \Delta products/\Delta t \propto [EX] \propto [ES]$

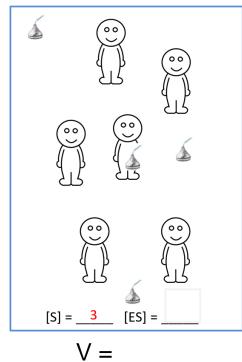
[P] time

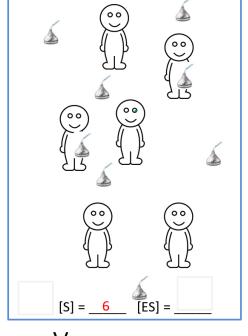
8/31/2023

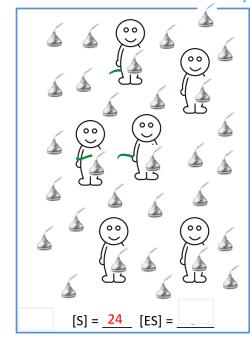
Rate depends on:

- [Substrate]
- [Enzyme]
- pH
- Temperature

D & D - Lecture 4 - Prelecture - Fall 2023

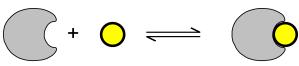

A. Empirical Derivation of Rate Law:


Assume that the rate = $k_{CAT}[ES]$ ($k_{CAT} = 1$)


i) How does the rate depend on the substrate concentration, [S]?

low [S]:

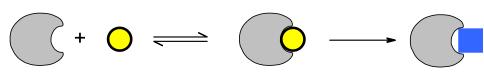
high [S]:



ii) How would you expect the rate to depend on the total amount of enzyme, $[E_{TOT}]$? For example, what happens if I double the amount of enzyme?

B. Empirical Derivation of Rate Law:

A. Ligand Binding



$$Y = \frac{[L]}{K_D + [L]} = \frac{[ML]}{[M] + [ML]}$$

Y is the *fraction* of proteins with substrate bound:

When [L]=
$$K_D$$
, Y=0.5

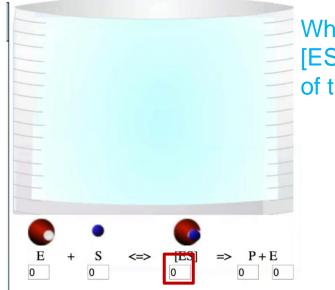
B. Enzyme Kinetics

- a. The *total* number of enzymes with substrate bound is:
- b. The rate that each of those converts S to P is k_{CAT}.
- c. The overall rate is:

When [S]=
$$K_{1/2}$$
, $v=0.5 V_{MAX}$

When (E) is saturated (Y=1), the rate is V_{MAX}

Analytical Derivation of Rate Law - Steady-State Assumption


The goal is to relate the kinetic measurements to *readily measurable* experimental parameters:

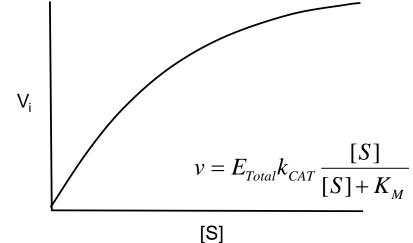
- i) The total amount of enzyme: $E_{Total} = [E] + [ES]$
- ii) the concentration of substrate: [S]
- iii) the measured velocity ($v = k_{CAT}[ES]$)

[ES](t) can be obtained from the following differential eq.

$$\frac{d[ES]}{dt} = +k_{ON}[E][S] - k_{OFF}[ES] - k_{CAT}[ES]$$

If we make the assumption that we are working under steady-state conditions: d[ES]/dt = 0.

$$0 = +k_{ON}[E][S] - k_{OFF}[ES] - k_{CAT}[ES]$$
 and $v = k_{CAT}[ES]$ gives:
$$v = k_{CAT}[E]_T \frac{[S]}{[S] + \frac{k_{OFF} + k_{CAT}}{k_{ON}}}$$
$$= k_{CAT}E_{Total} \frac{[S]}{[S] + K_M}$$
$$= V_{MAX} \frac{[S]}{[S] + K_M}$$
 The last equation is the called the **Michaelis-Menton** equation.
$$K_{LO} = K_M = (K_{OFF} + K_{CAT})/K_{OF}$$


$$K_{1/2} = K_M = (k_{off} + k_{cat})/k_{on}$$

Summary of Kinetic Parameters

i) The K_M or Michaelis constant: This is almost the same as the K_D (= k_{off}/k_{on}), the dissociation constant, except for the presence of the k_{CAT} term. Therefore, it is related to the affinity of a substrate to an enzyme. It is a constant for any particular enzyme-substrate pair. Substrates with slow off-rates (k_{off}) bind more tightly, and possess a smaller K_M .

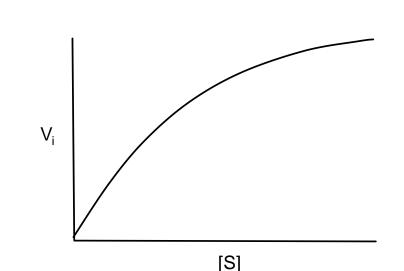
When [S]= K_M the enzyme is $\frac{1}{2}$ saturated with substrate: $v = \frac{1}{2} V_{Max}$

- ii) $V_{MAX} = k_{CAT}[E_T]$: This is the highest rate of product production possible. It is obtained at high substrate levels ([S]>>K_M). Under these conditions *all* of the enzyme is in the [ES] form (i.e. [ES]=[E_T]), the enzyme is **saturated** with substrate. k_{CAT} is obtained from V_{MAX} since the total amount of enzyme is known: $k_{CAT} = V_{MAX}/[E_T]$.
- iii) k_{CAT} is also called the turn-over number how many products are produced/sec by a **single** enzyme molecule.

$$v = V_{MAX} \frac{[S]}{[S] + K_M} = E_{TOT} k_{CAT} \frac{[S]}{[S] + K_M}$$

	k	
'`cat:	'`cat:	

- depends on the enzyme and its substrate.
- Wide range of catalytic efficiencies.


- depends on the enzyme and its substrate.
- Wide range of binding affinities

Enzyme	Substrate	k_{cat} (sec ⁻¹)	<i>K_m</i> (<i>M</i>)
Acetylcholinesterase	Acetylcholine	1.4×10^{4}	9×10^{-5}
Carbonic	CO_2	1×10^6	0.012
anhydrase	HCO ₃ -	$4 imes 10^5$	0.026
Catalase	H_2O_2	4×10^7	1.1
Crotonase	Crotonyl-CoA	5.7×10^3	2×10^{-5}
Fumarase	Fumarate	800	5×10^{-6}
The Association of the Control of th	Malate	900	2.5×10^{-5}

Specificity constant: k_{CAT}/K_{M} = rate at low substrate. This combines information on the catalytic efficiency (k_{CAT}), and substrate specificity. Useful to predict rates at low [S].

$$v = E_{Total} k_{CAT} \frac{[S]}{[S] + K_M} \to E_{Total} \left(\frac{k_{CAT}}{K_M}\right) [S]$$

Note: k_{CAT}/K_M is often used to compare one enzyme to another, this is usually misleading because it does not separate catalytic efficiency from binding, it is best to compare k_{cat} and K_M separately – they are apples and oranges!

 k_{cat}/K_m

 $(M^{-1} \text{ sec}^{-1})$

 1.6×10^{8}

 8.3×10^{7}

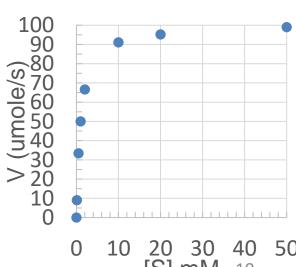
 1.5×10^{7}

 2.8×10^{8}

 1.6×10^{8}

 3.6×10^{7}

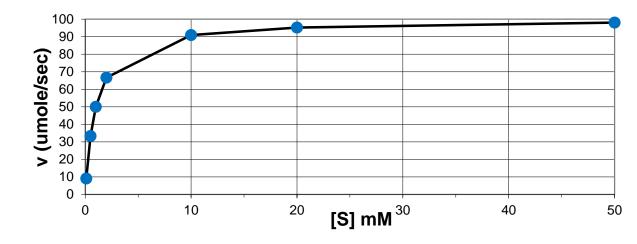
 4×10^{7}


Measuring K_M and k_{CAT} (V_{MAX})

Step A: Measure the *initial* velocity at different substrate concentrations, usually keeping the enzyme concentration *constant*.

Example: The following velocity data was obtained for a number of substrate concentrations at a fixed enzyme concentration ([E]_{Tot}=1 nmoles). Note different units for (S, mM) and (P, umole).

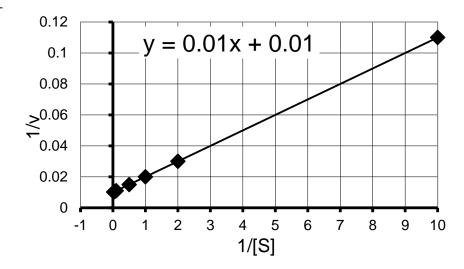
	Product Formation	
T=0	Δt 40	66.6
	90 2000 1500 1500	
T=40s	1500	1 (s/
	$v_{(s=0.1)} = \frac{\Delta P}{\Delta t} = \frac{360}{40} = 0$	6 V (umole/s)
	Time [seconds]	>


Exp. #	[S] (mM)	v (umoles/s)
1	0.1	9.0
2	0.5	33.4
3	1.0	50.0
4	2.0	66.6
5	10.0	91.1
6	20.0	95.2
7	50.0	99.0

Step B: Analyze data

B1. [S] not limiting - **Velocity Curve** (Least accurate):

- i) Plot v_{OBS} versus [S].
- ii) Obtain V_{MAX} from v at very high [S] (~ saturated).
- iii) K_M is the substrate concentration at gives $v=V_{M\Delta x}/2$


- **B2.** Double reciprocal plot (Lineweaver-Burk Plot): Useful graphical tool to identify type of inhibitor and to provide more accurate values for K_M and V_{MAX}
- [S] is extrapolated to ∞ (1/[S] = 0)
 - i) Take inverse of velocity and [S].
 - ii) Plot 1/v versus 1/[S]
 - iii) Analysis of double-reciprocal plot:

y-intercept =
$$1/V_{MAX}$$
 $V_{MAX} = k_{CAT} = V_{MAX}/E_{tot} = ([E]_{Tot}=1 nmol)$

$$v = V_{MAX} \frac{[S]}{K_M + [S]}$$

$$\frac{1}{v} = \frac{K_M + [S]}{V_{MAX}[S]}$$

$$\frac{1}{v} = \frac{K_M}{V_{MAX}} \frac{1}{[S]} + \frac{1}{V_{MAX}}$$

Slope =
$$K_M/V_{MAX}$$

$$K_M = slope \times V_{MAX} =$$