Lecture 3 – Pre-lecture Material Nucleic acid Structure and DNA Polymerases

Nucleic Acids & Central Dogma

Double stranded DNA

Introduction to Central Dogma

Genome: Entire DNA content of an organism, contains all of the instructions for life. Single circular molecule in Proks, multiple linear molecules (chromosomes) in Euks. The genome is *replicated* when cells divide.

Gene – a segment of DNA that is converted (*transcribed*) to RNA. A *promoter* (P) sequence on the DNA is the minimal requirement for the production of RNA.

RNA molecules are often processed in **Eukaryotic cells** before they are functional Many RNAs are functional on their own

mRNA are *translated* to a protein.

The Genetic Code

.ATATGCCCATGTGGTAA..

(DNA Sequence)

.AUAUGCCCAUGUGGUAA..

(mRNA Sequence)

.U-AUG-CCC-AUG-UGG-UAA

Note:

- Each codon codes for one amino acid.
- Many amino acids are coded by more than one codon.
- Most organisms use the same codon table some codons have different meanings in some organisms.

Special Codons:

AUG = Is used to begin almost all proteins that are synthesized on the ribosome, it also codes for methionine when found internally.

UAA, UAG, UGA = stop codons (do not code for any amino acids), terminate synthesis

(Punctuated

RNA sequence

– how the

ribosome

interprets the

sequence)

(Protein Sequence)

Nucleic Acid Structure

1. Monomeric Units

- a) Nucleoside triphosphates are the building blocks of nucleic acids (dNTP = dATP, dGTP, dCTP, dTTP)
- b) The base ("sidechain") is connected to the C1' of the sugar ("mainchain") by an **N-linked glycosidic** bond.

Base + sugar = **nucleoside**.

Base + sugar + n-phosphates = **nucleotide**

- c) The carbon atoms on the sugar are numbered 1' to 5'. The primes distinguish the atoms on the sugar from those on the base.
- d) DNA differs from RNA in the sugar (deoxyribose versus ribose) and one base.
- e) Four different monomers, A, G, C, T in DNA. U replaces T in RNA.

DNA (& RNA) are directional

How Triphosphates are added to the polymer.

What are the two different ways we could write the sequence of this nucleic acid?

© 2011 Pearson Education, Inc.

Double Stranded DNA structure

Complementary base pairing: Hydrogen bonds form between bases, thus linking the 2 stands with weak non-covalent interactions.

DNA twisted into double helix

- Strands anti-parallel
- Sugar-phosphate backbone outside
- Nucleotide bases project inward.
- Basepairs are stacked on each other.
- Uniform width
- H-bonds between bases:
 - A=T (two h-bonds)
 - G Ξ C (three h-bonds)

How to indicate the sequence of ssDNA & dsDNA?

Size Determination of DNA - Agarose Gel Electrophoresis.

MMR2

DNA has a neg charge on each phosphate Separation is by size as the DNA strands are forced through the gel.

https://dnalc.cshl.edu/resources/animations/gelelectrophoresis.html

S3, S4 = unknowns.

MMR2 = standards, DNA

fragments of known length.

Obtaining MW (length) of DNA fragments.

- 1. Plot log(basepair) versus distance for standards.
- 2. Obtain equation of curve.
- Use distance for unknown to find its log(MW) (red arrows)
- 4. S3 3rd fragment migrated 623 mm, Log(MW)~2.92, MW ~ 820 bp

Thermal Stability of Double Stranded DNA (dsDNA)

1. How does the DNA sequence affect T_m ? Explain the difference in Tm for the following two DNAs:

Duplex A: Tm=16 C
AAAATTTT
TTTTAAAA

Duplex B: Tm= 32 C
GCGCGCG
CGCGCGCG

DNA Polymerase – Fundamental Activity.

5' to 3' — polymerization

Phosphodiester linkage

ester linkage

pyrophosphate

2. What determines which base is to be added?

1. Where on the deoxyribose is

the new base added?

DNA Polymerase – Fundamental Activity.

- Synthesize new polymers of DNA.
- Require a short region of double stranded DNA to start synthesis – primer-template junction.
 - Primer can be a short DNA or RNA oligonucleotide (oligo) that is complementary to the DNA template.
 - RNA primers are used in DNA replication in the cell
 - DNA primers are used in other biotechnology applications (PCR, DNA Sequencing)
- Require single stranded template to provide information on which base to add.
- Add new dNTPs to 3'-OH of the primer, elongating in the 5' to 3' direction.
- Elongation will go to the end of the template.

(1:48 syn starts)

DNA Polymerase – Fundamental Activity.

- 1. Where (what position) will this primer (ATCA) anneal?
- 2. What base will be added first?
- 3. What is the last base added?

DNA Polymerase – Error Correction – 3' Exonuclease

- Incorrectly incorporated bases are removed by a 3' exonuclease activity.
- Most DNA polymerases have this activity.
- The polymerase used by the HIV virus has no proofreading activity
- The polymerase used by Covid-19 has limited proofreading activity.

Reflection: What are the consequences of poor error correction in HIV and Covid viruses?

Polymerase Expectations:

- 1. Identify where primer anneals to the template.
- 2. Predict order of base addition.
- 3. Explain the mechanism of dNTP addition by polymerases (addition of dNTP to 3'OH, release of P-P)
- 4. Explain how polymerases correct errors (3' -> 5' exonuclease)

Exercise

A cell acquires deoxyadenosine from the environment.

A. Indicate the (three) steps that have to occur before this base can get incorporated into DNA

B. Indicate the *two* steps that will result in this base becoming part of a DNA strand, after the events in part A.

C. What will happen to DNA synthesis if the base is missing the 3'-OH?

Handbook of Clinical Neurology

Volume 147, 2018, Pages 105-123

Repeat Expansions Related to Diseases

Second base UUU Phenyl-UUC alanine UAU }- Tyrosine UCU UCC - Serine UCA Stop codon UAA -Leucine UCG Stop codon CAU Histidine CUU⁻ CCC CUC - Proline -Leucine CCA **CUA** CAA Glutamine CUG_ CCG

Chapter 9 - Repeat expansion diseases

Henry Paulson 🎗 🖾

Show more 🗸

+ Add to Mendeley <code-block> Share 🥦 Cite</code>

https://doi.org/10.1016/B978-0-444-63233-3.00009-9

Get rights and conten

- CAG at least 10 diseases (Huntington disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and seven SCAs)
- CGG fragile X, fragile X tremor ataxia syndrome, other fragile sites (GCC, CCG)
- CTG myotonic dystrophy type 1, Huntington disease-like 2, spinocerebellar ataxia type 8, Fuchs corneal dystrophy
- GAA Friedreich ataxia
- GCC FRAXE mental retardation
- GCG oculopharyngeal muscular dystrophy
- CCTG myotonic dystrophy type 1

• If the number of repeats increases the individual may show disease symptoms.

A small number of repeats is

"normal"

- These repeats can grow during replication in the cell due to "primer slippage".
- Longer repeats can be inherited from the parent
- Longer repeats can also occur within cells of the individual

Why do they cause disease?

- Additional amino acids if in protein coding region.
- Affect binding of DNA regulatory proteins if outside the coding region.

Treatment:

None yet, except genetic counseling.

