Lecture 3 - Pre-lecture Material Nucleic acid Structure and DNA Polymerases

Nucleic Acids \& Central Dogma

SUBUNIT
$1^{-1} \square$
f sugar

+ $\underset{\text { acid }}{\text { amino }}$ nucleotide

MACROMOLECULE

protein

Double stranded DNA
Introduction to Central Dogma (informatin f(ow)

Genome. Entire DNA content of an organism, contains all of the instructions for life. Single circular molecule in Proks, multiple linear molecules (chromosomes) in Euks. The
genome is replicated when cells divide.

Gene- a segment of DNA that is converted (transcribed) to RNA. A promoter (P) sequence on the DNA is the minimal requirement for the production of RNA.

RNA molecules are often processed in Eukaryotic cells before they are functional
Many RNAs are functional on their own mRNA are translated to a protein.
is the

The Genetic Code
 when found internally.
UAA, UAG, UGA = stop codons (do not code for any amino acids), terminate synthesis

Nucleic Acid Structure Dose $\left(\nabla^{\alpha x}\right)$

1. Monomeric Units

a) Nucleoside triphosphates are the building blocks of nucleic acids (dNTP = dATP, dGTP, dCTP, dTTP)
b) The base ("sidechain") is connected to the C1' of the sugar ("mainchain") by an N-linked glycosidic bond.

Base + sugar = nucleoside.
Base + sugar + n-phosphates = nucleotide
c) The carbon atoms on the sugar are numbered 1' to 5^{\prime}. The primes distinguish the atoms on the sugar from those on the base.
d) DNA differs from RNA in the sugar (deoxyribose versus ribose) and one base.
e) Four different monomers, A, G, C, T in DNA. U replaces T in RNA.

DNA (\& RNA) are directional
 al

How Triphosphates are added to the polymer.

$$
{ }^{\prime} U A G C^{\prime}
$$

What are the two different ways we could write the sequence of this nucleic acid?

3 end of nucleic acid:
new nucleotides are added
to the unlinked 3' carbon

Double Stranded DNA structure

Complementary base pairing: Hydrogen bonds form between bases, thus linking the 2 stands with weak non-covalent interactions.

DNA twisted into double helix

- Strands anti-parallel
- Sugar-phosphate backbone outside
- Nucleotide bases project inward.
- Basepairs are stacked on each other.
- Uniform width
- H-bonds between bases:
- A=T (two h-bonds)
- G ミ C (three h-bonds)

$$
\begin{array}{ll}
5^{\prime} \rightarrow 3^{\prime} \quad & \delta^{\prime} T C^{3^{\prime}} \measuredangle 5 \rightarrow 3 \\
& { }^{3} A 6^{\prime} \rightarrow 3^{\prime}
\end{array}
$$

Size Determination of DNA - Agarose Gel Electrophoresis.

DNA has a neg charge on each phosphate
Separation is by size as the DNA strands are forced through the gel.

8/20/2023
https://dnalc.cshl.edu/resources/animations/gelelectrophoresis.html
D \& D - Lec 3-Pre - Fall 2023

S3, S4 = unknowns.
MMR2 = standards, DNA fragments of known length.
Obtaining MW (length) of DNA fragments.

1. Plot log(basepair) versus distance for standards.
2. Obtain equation of curve.
3. Use distance for unknown to find its $\log (\mathrm{MW})$ (red arrows)
4. S3 $3^{\text {rd }}$ fragment migrated 623 mm , $\log (\mathrm{MW})$ 2.92. MW ~20 bp

Thermal Stability of Double Stranded DNA (dsDNA)

DNA Polymerase - Fundamental Activity.

DNA Polymerase - Fundamental Activity.

- Synthesize new polymers of DNA.
- Require a short region of double stranded DNA to start synthesis -primer-template junction.
- Primer can be a short DNA or RNA oligonucleotide (oligo) that is complementary to the DNA template.
- RNA primers are used in DNA replication in the cell
- DNA primers are used in other biotechnology applications (PCR, DNA Sequencing)
- Require single stranded template to provide information on which base to add.
- Add new dNTPs to $3^{\prime}-\mathrm{OH}$ of the primer, elongating in the 5' to $\mathbf{3 '}^{\prime}$ direction.
- Elongation will go to the end of the template.

DNA Polymerase - Fundamental Activity.


```
1. Where (what position) will this primer (ATCA)
    anneal?
2.What base will be added first? V
3. What is the last base added?
```


DNA Polymerase - Error Correction - 3^{\prime} Exonuclease

- Incorrectly incorporated bases are removed by a 3' exonuclease activity.
- Most DNA polymerases have this activity.
- The polymerase used by the HIV virus has no proofreading activity
- The polymerase used by Covid-19 has limited proofreading activity.

Reflection: What are the consequences of poor error correction in HIV and Covid viruses?

Polymerase Expectations:

1. Identify where primer anneals to the template.
2. Predict order of base addition.
3. Explain the mechanism of dNTP addition by polymerases (addition of dNTP to $3^{\prime} \mathrm{OH}$, release of $\mathrm{P}-\mathrm{P}$)
4. Explain how polymerases correct errors ($3^{\prime}->5^{\prime}$ exonuclease)

Exercise

A cell acquires deoxyadenosine from the environment.
A. Indicate the (three) steps that have to occur before this base can get incorporated into DNA
B. Indicate the two steps that will result in this base becoming part of a DNA strand, after the events in part A.

C. What will happen to DNA synthesis if the base is missing the $3^{\prime}-\mathrm{OH}$?

$\begin{array}{lc}\text { Handbook of Clinical Neurology } & \square \\ \text { ELSEVIER } & \text { Volume 147, 2018, Pages 105-123 }\end{array}$
Chapter 9 - Repeat expansion diseases
Henry Paulson 온
Show more \vee

+ Add to Mendeley α_{0}^{∞} Share gy Cite
\qquad
- CAG - at least 10 diseases (Huntington disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and seven SCAs)
- CGG - fragile X, fragile X tremor ataxia syndrome, other fragile sites (GCC, CCG)
- CTG - myotonic dystrophy type 1, Huntington disease-like 2, spinocerebellar ataxia type 8, Fuchs corneal dystrophy
- GAA - Friedreich ataxia
- GCC - FRAXE mental retardation
- GCG - oculopharyngeal muscular dystrophy
- CCTG - myotonic dystrophy type 1

Repeat Expansions Related to Diseases

blu

- A small number of repeats is "normal" symptoms. slippage". the parent cells of the individual

Why do they cause disease? coding region.

Treatment:

- If the number of repeats increases the individual may show disease
- These repeats can grow during replication in the cell due to "primer
- Longer repeats can be inherited from
- Longer repeats can also occur within
- Additional amino acids if in protein
- Affect binding of DNA regulatory proteins if outside the coding region.

None yet, except genetic counseling.

