
Detection of Transplantation Rejection:

A. Old/Present-Biopsy - looking for The EMP, problem is poor sampling

B. Future – Cell tracking and functional Imaging by MRI (Magnetic Resonance Imaging)

pure magnetic nanocrystal solution

Lecture 22: Tolerance & **Autoimmunity**

Tolerance: Fundamental characteristic of a healthy immune system - system is usually unresponsive to antigen, unless there is a threat ("Danger hypothesis")

Central Tolerance:

cell development (expression of all antigens in thymus by mTEC - AIRE factor).

B) Peripheral Tolerance:

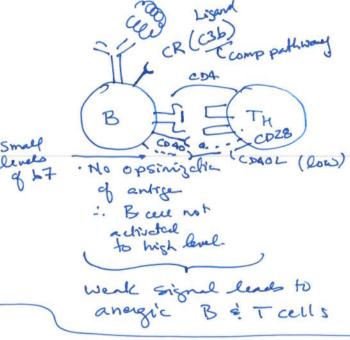
Anergy: B-cells

- · Recognition of self-antigen will result in the presentation of self-peptides on MHC II, poor stimulation of T_H cells.
- Without strong 2nd signal from CD40-CD40L, B-cell becomes anergic.

Anergy: T - cells

- B7- CD28 required for complete T-cell activation - only provided by activated DCs, macrophages, B-cells. APCs only express high levels of B7 during activation, typically associated with the presence of a pathogen:
 - complement receptor on B-cell).
 - LPS + TLR 4 on macrophages,
- Without 2nd signal, T-cell becomes anergic

T_{REG} cells


- Produced in T-cell development, recognize self-peptides.
- Express CD25 as a cells surface marker and Foxp3 transcription factor.

Immunosuppressive functions:

- Possess the α chain of IL2R, enhanced binding of IL-2 and preventing it from activating other T-cells.
- Secrete TGFB (transforming growth factor) which inhibits T-cell activation.
- T_{REG} cells bind to self-antigen/MHC II complex, interaction of B7-CTLA-4 causes production of cytokines that suppress antigen presentation by APCs.

Tolerance:

Usual self-tolerance checkpoints in B and T- checkpoints in B & T-cell development

produces inhibito APC COA diff cytokin coa ПП

1LZRX

OUTSIDE

Immuno-privileged sites: Eye/brain, reproductive organs.

Oral tolerance - Unique environment of gastrointestinal mucosa tissue.

 Low levels of antigen induce the production of T_{H3} cells in the intestinal mucosal (known as adaptor T-regulatory cells or induced T-regs).

 High levels of antigen may become systemic, however presentation by unactivated macrophages leads to anergy of B/T cells, not an acquired immune response.

Autoantigen

tissural TH3 food (Peptide antison)

Autoimmunity:

Disease

Activating mechanism:

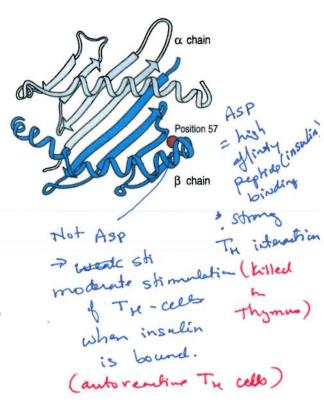
Cellular Antigens (Type II HS)

- Molecular mimicry (MM)
- Release of normally sequestered antigens
- Coincident activation of autoimmune cells by activation.

e L	ysed good	B P
	Consequence	phoma
wall	Scarring of heart valves	all >
	hyperthyroidism	24
eptor	Muscle weakness	
	Glomerulonenritis vasculitis arth	ritic

Rheumatic fever	Steptococcal cell wall	Scarring of heart valves	
Graves' disease	TSH receptor	hyperthyroidism	
Myasthenia gravis	Acetylcholine receptor	Muscle weakness	
Soluble Antigens (Type II	I HS)		
Lupus	DNA, histones	Glomerulonepritis, vasculitis, arthritis.	
T _{H1} + Macrophages (Type	e IV HS)		
Diabetes – type I	β-cell antigen	β-cell destruction	
Rheumatoid Arthritis	unknown	Joint inflammation and destruction.	
Multiple sclerosis	Myelin basic protein	Degeneration of nervous system	

Rheumatic Fever:


Antibodies against cell-wall of *Streptococcus pyrogenes* cross react with epitopes on heart, joints, kidney.

- Activation of complement and ADCC by NK cells leads to tissue damage and inflammation.
- Response limited because auto antigens don't activate T_H
 cells, once the pathogen is gone antibody production drops.

Type I diabetes:

- Insulin produced by β-cells in the pancreas in response to high blood glucose levels.
- Genetic predisposition for certain alleles of HLA-DQ, one of the many class II human MHC.
- Residue 57β = Asp, protective, others increase risk.
- Although insulin is expressed by mTEC cells (thymocytes) its binding to non-Asp57 HLA-DQ is weak, therefore T-cells that recognize insulin are not killed by self-tolerance selection.
 - T_{H1} cells can become activated by presentation of insulin on proAPC. Secrete INFγ which activates macrophages, leading to destruction of insulin producing β-cell.
 - O Antigens released by β-cells can lead to additional autoimmune (antigen spreading), leading to rapid death of β-cell due to recognition of other β-cell antigens.

Why is 57β = Asp protective? What are the properties of that MHC?

