Relative Potential of Professional antigen presenting cells to activate T-cells:

THE ACT -1	BEST	WORST	IN MIDDLE
	Dendritic cell	Macrophage	B cell
Cell type	virus virus virus infecting the dendritic cell	bacterium	microbial toxin
Location in lymph node	T-cell areas		follicle
67 before	+	+	+
b7 after	4++++	+ +	+ + +
Location	Ubiquitous throughout the body	Lymphoid tissue Connective tissue Body cavities	Lymphoid tissue Peripheral blood

T-cells and Immunological Holes in the Immune Response & Induction of Anergy (non-responsive).

Anergy: B-cells

- Without 2nd signal, B-cell becomes anergic, doesn't enter T-cell zone of lymph nodes, dies.

Anergy: T - cells

- B7- CD28 required for complete T-cell activation only provided by activated DCs, macrophages, B-
- APCs only express high levels of B7 during activation (e.g. complement receptor on B-cell).
- Without 2nd signal, T-cell becomes anergic

Immune privileged site (eye, testes, brain, ovary, placenta)

- These tissues produce immunosuppressive cytokines.
- Expression of FasL, inducing apoptosis of immune cells.

Lecture 16

T-cell Subsets & T-cell Based Response to Pathogens:

T_{reg} – Regulatory T-cells (reduce auto-immunity)

- Possess the α chain of IL2R, binding IL-2 and preventing it from activating other T-cells.
- Secrete TGFB, which inhibits T-cell activation.

T_{H1} – cellular immune response:

- IL-2: Activation of $T_c \rightarrow T_{CTL}$
- - Activation of macrophages
 - Production of IgG3 Ab
- TNF β (=TNF α) aids in recruitment of macrophages to site (inflammation)

T_{H2} – antibody based immune response:

- IL-5 & IL-4: Activation of B-cells
- IL-4: Class switch to IgE or IgG1

Cross-regulation by cytokines:

Proliferating B cells

A. Intracellular Pathogens - Leprosy: Mycobacterium leproae

Tuberculoid

Lepromatous

Which T-cell response is more effective against leprosy? Why?

B. Disease caused by over-reaction of T-cell Immune Response to Bacterial components (exotoxins). Staphylococcal Food poisoning & Toxic Shock Syndrome:

Exotoxins produced by bacteria act as "superantigens" that non-specifically activate large numbers of T cells. Toxic shock syndrome occurs with contaminated surgical dressing and long-term use of certain types of feminine hygiene products (tampons).

C. T_{H1} cells are largely responsible for transplant rejection.

