Lecture 11: Expression of Ab, mRNA Editing, T-cell Independent Antigens, Regulation

Questions to be answered:

- 1. If each V segment has its own promoter why is there only one transcript from the rearranged gene?
- 2. Why do secreted and membrane bound antibodies have the same specificity (and sequence)?
- 3. Why do IgM and IgD on naïve B-cells have the same specificity (and sequence)?
- 4. What shuts down antibody production?
- 5. Can you make antibodies to antigens that don't contain proteins?

Expression of Ig Genes

- Promoter selection is obtained by proximity to enhancer sequences, which enhance the level of transcription from the closest promoter, hence only rearranged genes are expressed.
- 2. Unused V/D/J segments are removed from mRNA by splicing.
- Leader (signal) peptide signals export to rough ER. This is removed during transport across ER membrane.

Events that Rely on polyA addition:

 Production of Membrane Bound and Soluble Immunoglobulin with the same specificity.

enhancer cause Splicing

V2 AAAAAA mRNA (75%)

PAA POL to

V2 AAAAAA mRNA

Translation + export

V2 Promoter

V3 pointing (stem cell)

V3 pointing enhancer

AAAAAA mRNA

Translation + export

V2 Promoter

V3 promoter

V4 Promoter

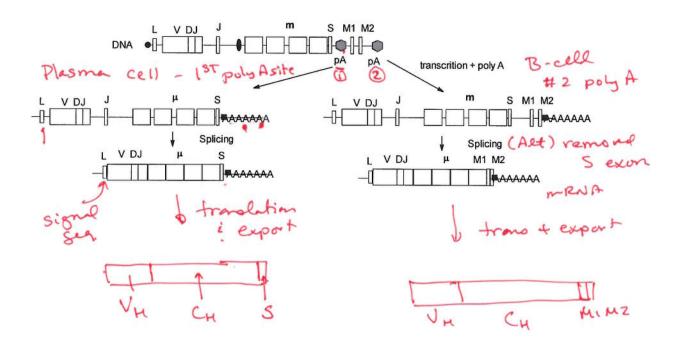
V4 Promoter

V5 Promoter

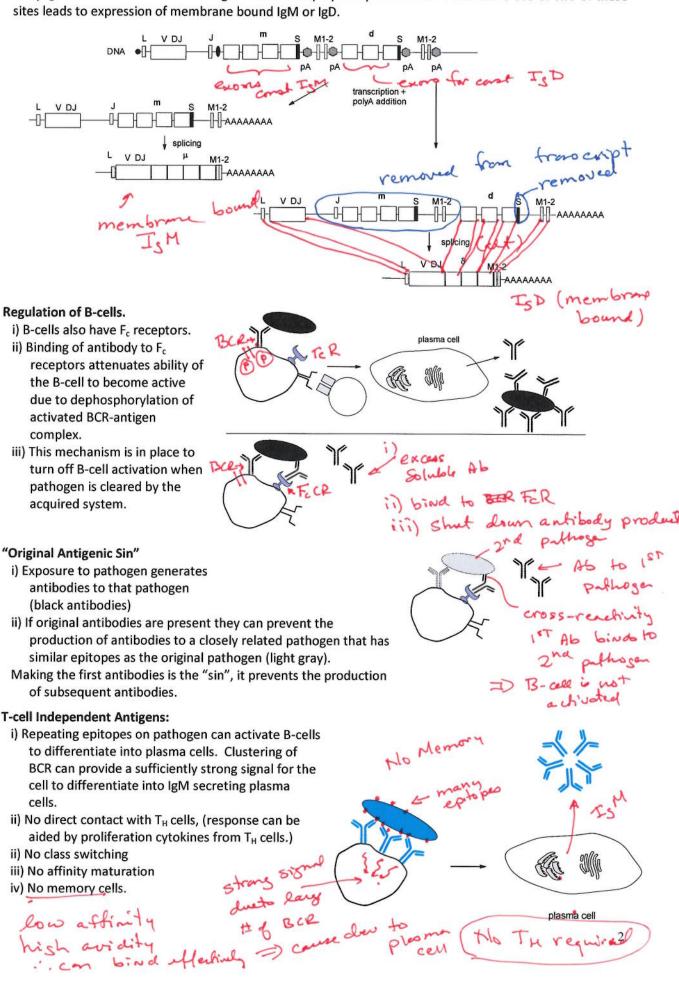
V6 Promoter

V8 Promoter

V8 Promoter

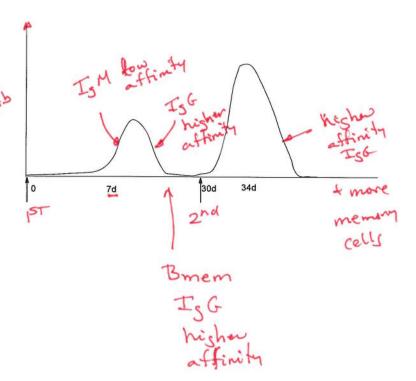

V9 Promoter

Prom


The 3' end of every constant region contains the following elements:

- 1. S exon codes for the carboxy-terminal sequence found in soluble IgM, a hydrophilic sequence.
- 2. polyA: poly A cleavage and addition sites
- 3. M1, M2 exons that code for the membrane domain. Hydrophobic sequences.
- 4. 2nd polyA site.

Alternate use of the two polyA sites results in the expression of soluble IgM (μ 4-S) or membrane bound (μ 4-M1-M2) IgM. The same events would occur for all other antibody isotypes.



ii. Co-expression of IgM and IgD: These two isotypes are expressed at the same time in the mature B-cell. The two constant domain gene segments are adjacent to each other on the chromosome. The 3' end of the μ gene and the 3' end of the δ gene have two polyadenylation sites. Alternative use of two of these sites leads to expression of membrane bound IgM or IgD.

Secondary B-cell Response:

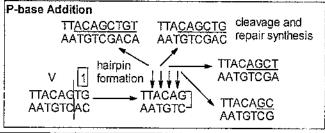
- i) B & T_H -memory cells can live for decades
- ii) Clonal expansion during activation of B-cells produces large number of memory cells.
- iii) Formation of antigen-B-cell/T-cell complex in 2° organs enhanced by larger number of cells.
- iv) Activation process faster.
- v) Heavy chain type (isotype) and high affinity are preserved on memory Bcells.

Summary of B-Cell Development, Activation, and Maturation:

	Pro- B	Pre-B	Immature B	Naive B	Activated B	Plasma B	Memory B
H-Chain genes	DJ	VDJ	VDJ	VDJ	VDJ	VDJ	VDJ
L-Chain genes/proteins	_	VpreB /λ5	VJ	VJ	VJ	VJ	۸٦
RAG1/RAG2	+	+	+	_	-	-	-
TdT	+	+	-	-	-	-	-
Affinity Mat	-	-	-	Low Aff.	+ (AID)	High Aff.	High Aff.
Class Switch.	-	-	_	-	+ (AID)		
Membrane Isotype	<u>-</u>	μ	μ	μ+δ	μ+δ or α,ε,γ alone	none	μ+δ or α,ε,γ alone
Secreted lg	-	-	_	-	none	High affinity μ,α,ε,γ	_

Review Guide on B-Cells

Describe the steps in B-cell development from stem to memory & plasma cell.


- · Checkpoints, location, mechanism, order, and their purpose
- Allelic exclusion and its importance
- · Enzymes/proteins involved & what they recognize

B-cell development:

- VpreB, λ5
- Rag1/Rag2: Recombination signal sequences 1+2 or 2+1 pairing rules.
- TdT (terminal transferase)

Diversity generation:

- Combinatorial joining of segments to make V-exons
- · P bases, N bases, imprecise joining
- Pairing of heavy and light chains due to C_L
 C_{H1} interactions

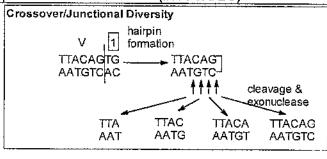
Summary of Diversity:

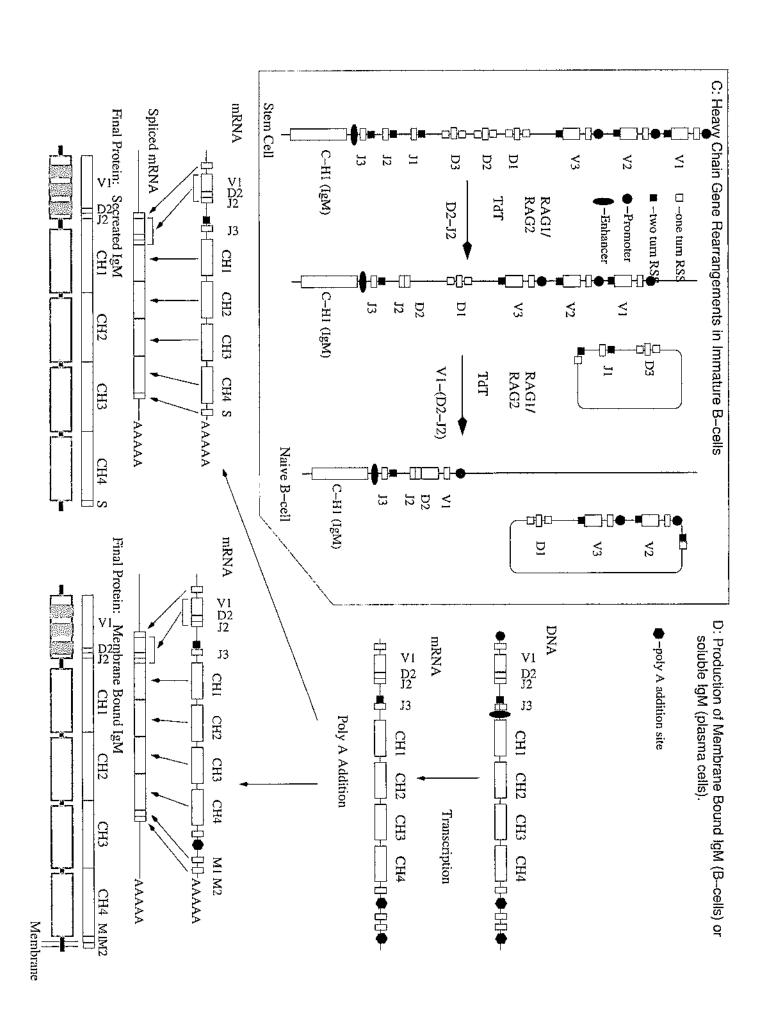
Mechanism of Diversity	Heavy Chain	Light Chain	
Combinatorial V-D-J and V-J:	300×12×4=1.4 ×10 ⁴	$300\times4=1.2\times10^{3}$	
P base (V-D-J) ,(V-J) (x3/joint)	× 9	× 3	
Junctional (Crossover) diversity (x3/joint)	×9 (VDJ)	×3 (VJ)	
N-base addition (TdT) (V-D-J)	× 9	× 1	
# Chains	$\sim 1.0 \times 10^7$	~1.0 × 10 ⁴	
Estimated Diversity	1.0 × 10 ¹¹ (#HC x #LC)		

Production of heavy and light chain proteins

- Promoter/enhancer interactions
- polyA addition and splicing: co-express of IgM & IgD, production of soluble antibody.

B-cell Activation:


- BCR + CR/C3b
- MHC → TCR/CD4
- CD40 ← CD40L
- B7 → CD28
- Cytokine receptors ← 1L2, 1L4, 1L5


Class Switching: cytokine driven

Affinity Maturation:

- Avidity versus affinity, why maturation is important after class switch.
- Selective pressure by B-T_H interactions

Antigenic sin, Secondary response, T-cell independent antigens

