Lecture 5: Introduction to Acquired Immunity

Suggested reading Ch 3

T

Key concepts: Immuno-surveillance & Enhanced Probability of Rare Events, Clonal selection. Interplay between Innate and Acquired:

Types of Acquired Immunity:

Humoral Immunity:

Antibodies

B

cell

Cellular Immunity:

Fundamental Immune process to generate antibodies:

1) B-cell recognizes antigen, rare event due to high specificity of antibodies.

2) B-cell presents peptides on MHC class II.

3) Peptide-MHC complex recognized by T_H cell, rare event due to high specificity of the T-cell receptor.

4) B-cells develop into plasma cells which secrete antibodies.

Primary Immune organs:

- Bone Marrow: Responsible for initial development of T cells and maturation of B cells. Only B cells that express an intact immunoglobulin that recognizes foreign molecules are allowed to leave the bone marrow. B-cells that recognize self are either destroyed or are nonfunctional.
- Thymus: Responsible for maturation of the T cells. Only T-cells that can recognize foreign peptides in complex with self MHC are allowed to leave the thymus. All others are destroyed.

Circulation Though the Lymphatic System.

A naive lymphocyte in the blood will enter the lymphatic system 2-12 hours after it is released from the bone marrow or thymus. Passage across the endothelial wall similar to that used by neutrophils in inflammation, except a different cytokine/cytokine receptor is used.

Lymphatic System:

FIGURE 3-23 Diagram of lymphocyte recirculation through the blood (purple) and lymph vasculature (gray) to the major organs of the lymphatic system.

- Approximately 3x10¹¹ lymphatic cells flow through the system on a given day.
- A similar number are processed through the spleen.
- This high flux of cells insures that a foreign antigen will meet the appropriate B and T cells within a short period of time.
- If the naive lymphocyte does not encounter an antigen to which it can bind, it dies in a few days.
- Memory lymphocytes (B, T_H, and T_C) cells circulate for years to decades.

Secondary organs:

The secondary organs of the immune system serve two purposes:

- First, they trap foreign material. This trapped material is processed by dendritic cells as well as other antigen presenting cells, such as macrophages.
- Second, they provide a high density of B- and T-cells, such that the appropriate cell pairings can occur between antigen presenting cells and T_H-cells. This is facilitated by circulation of B and T cells through the lymphatic system.

A. Spleen:

- Traps foreign particles from the blood via dendritic cells & macrophages. T-cells activated by dendritic cells and macrophages. B-cells activated in a manner similar to lymph nodes.
- RBCs bring opsonized pathogens to the spleen.

B. Mucosal-Associated Lymphoid Tissue (MALT/GALT):

- Lymphoid follicles adjacent to mucosal membranes (e.g. tonsils, Peyer's patches).
- Specialized M-cell in wall of mucus membrane entraps foreign particle, delivering it to lymphocytes on the other side of the mucosa. This leads to activation of B-cells which migrate to the mucosa and deliver antibodies of a specific class (IgA class) across the mucosal membrane.
- T_c cells can also be activated, providing mucosal immunity to viruses.
- Activated immune cells circulate and provide protective immunity to the entire mucosal system.

lymphoid tissue

ivmphoid follicle

C. Lymphatic system & Lymph Nodes:

- Traps local foreign bodies near the source of infections. Drains fluid from cells to lymph nodes and follicles, eventually returning fluid to the blood. Nodes and follicles contain B-cells, T-cells, macrophages, and dendritic cells.
- Lymphocytes can entire either from the lymph fluid or cross the endothelial wall of a blood vessel in a manner similar to neutrophils.
- Dendritic cells in tissue engulf foreign particles, migrate to the lymph node, activating T_H cells (and potentially T_C cells.)
- Antigen trapped in lymph node activates both Band T-cells.
- B-cells activated by T_H cells, form a germinal center
- Plasma cells release antibody into circulation.
 (Plasma cells may migrate to bone marrow.)
- Activated T-cells migrate to site of infection. They secrete INF-γ, which recruits macrophages.

Plasma Cells

Properties of B-cells:

- i) Mature in the bone marrow.
- ii) **B-cell receptor** binds *foreign* material (e.g. proteins, carbohydrates.) via antibody component. Highly specific interaction. In addition to the antibody component, the receptor also contains signaling chains.
- iii) All **B-cell receptors are identical on a** *single* **B-cell,** but diversity is on the order of 10⁸ different B-cells within an individual. Genetic diversity in population is low we all have the same germ line DNA.
- iv) Antibody component of the BCR receptor is the IgM & IgD isotype in naïve B-cells.
- v) Self-reactive B-cells are eliminated.
- vi) Activation leads to expansion of specific B-cell population and generation of plasma and memory cells. This is the basis of the **clonal selection theory.**
- vii) Memory B-cells & plasma cells often produce a different type of antibody (but same specificity).

INF

