
4: Recombinant DNA Technology

✓ Central Dogma – How to produce protein based drugs using recombinant DNA.

- DNA replication (DNA to DNA)
- DNA transcription (DNA to mRNA)
- · Protein Synthesis (mRNA to protein)

Lecture 14: Nucleic Acids (Chapter 7)

- a) Nucleoside triphosphates are the building blocks of nucleic acids.
- b) Consist of phosphate + sugar (ribose/deoxyribose) + nitrogenous base.
- c) The carbon atoms on the sugar are numbered 1' to 5'. The primes distinguish the atoms on the sugar from those on the base.
- d) The base ("sidechain") is connected to the C1' of the sugar ("mainchain") by a covalent bond.
 - Base + sugar = nucleoside.
 - Base + sugar + 1 phosphate=nucleotide, nucleotides are found in DNA and RNA
- e) DNA differs from RNA in the sugar (deoxyribose/ribose).
- f) Four different monomers, A, G, C, T in DNA. U replaces T in RNA. Both U and T have the same H-bonding capability.
- g) A and G are purines (two rings), C, U, and T are pyrimidines (one ring) (Angels are "pure" and have two wings purines have two rings)

Short-hand nomenclature:

Deoxynucleoside triphosphates; dATP & dGTP & dCTP & dTTP = dNTPs

Nucleoside triphosphates: ATP & GTP & CTP & TTP = NTPs

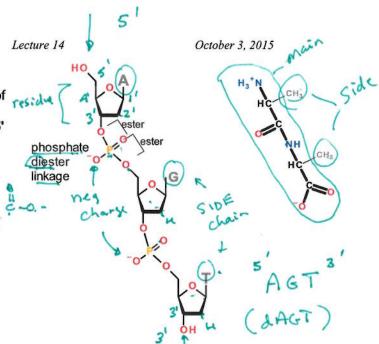
You will be expected to answer questions like the following:

- 1. Label the 3' and 5' carbons of this nucleoside.
- 2. Would you find this in DNA or RNA? Why?
- 3. Is the base a purine or a pyrimidine?
- Label all hydrogen bond donors and acceptors on the base.
- 5. The short-hand name of this compound is:

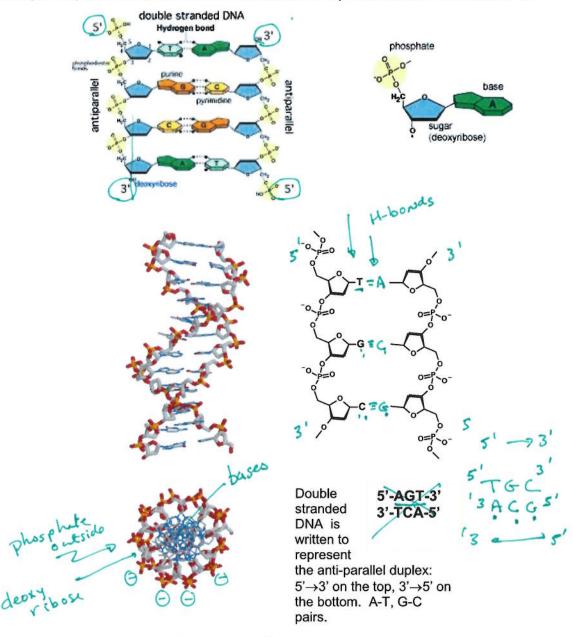
dGDP +1phos > dGTP

DNA and RNA are Polynucleotides

The **phosphodiester** backbone is comprised of deoxyribose (DNA) or ribose (RNA) sugars bridged by phosphates between the **3' and 5'** positions of the sugars.


 i) The phosphates are always ionized (pK_a~1), therefore nucleic acids are polyanions.

ii) Note the polarity, $5' \rightarrow 3'$.


For single stranded DNA (ssDNA) sequence of nucleotides is written in the 5'-3' direction:

Expectations:

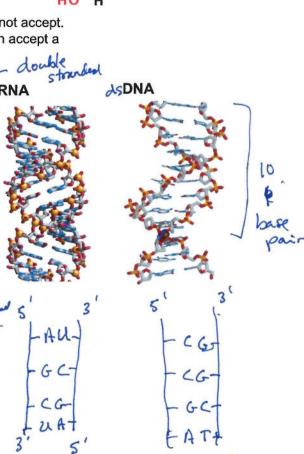
- · Familiar with overall structure,
- Be able to identify the 5'(and 3' end)
- Be able to write sequence based on structure, from 5' to 3'

Watson, Crick, Wilkins & Franklin: DNA exists in anti-parallel double stranded form.

Base pairing:

- i) Hydrogen bond donors and acceptors match up. "Watson-Crick" H-bonds shown as blue lines.
- ii) Purine is always paired with a pyrimidine (ensured by enzymes that copy DNA use both hydrogen bonds and size of the base pair to insert the correct base.)
- iii) Additional hydrogen bonding capabilities are found on the edges of the bases proteins can utilize these to bind to DNA (and RNA) in the grooves of the DNA.

Expectations - You should know the following:


- a) The DNA chains are anti-parallel.
- b) 10 bp/turn
- c) The helix interior is filled with stacked base.
- d) Negatively charged phosphates (& pentose) are on the outside.
- e) T pairs with A via two "WC H-bonds"
- f) C pairs with G via three "WC H-bonds"
- g) How to write the sequence of duplex (double stranded) DNA (dsDNA)

H-Bonding & Nitrogen: N-H is always a donor, but when is N an acceptor? Here are the rules:

- When N is in a ring and bonded to 3 other atoms, it cannot accept. NH₂ groups connected to the ring cannot accept.
- When N is in a ring and bonded to 2 other atoms, it can accept a hydrogen bond, on the edge of the ring.

RNA versus DNA Helical Structure:

- i) DNA and double-helical RNA. Complementary sequences have similar anti-parallel structure. Both have ~10 basepairs/turn.
- ii) U pairs with A in RNA.
- iii) single stranded RNA can form complicated folded structures, such as in transfer RNA (tRNA), a molecule used for protein synthesis (left), as well as hairpin structures (right).

ds RNA helix

tRNA

RNA hairpins

3