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1. Executive Summary 

 

This document presents the theory, methods, data analysis, and conclusions drawn from studying 

the harmonic response of second-order rectilinear dynamic systems. The associated theory and 

testing procedure for our experimental tests are described. The tests performed used different 

system parameters, including inertia, damping, and spring stiffness. Also, different forcing 

functions (swept sine and random excitations) were applied to our system. Through changing 

these system parameters we were able to conclude their effects on the system response. We were 

able to draw conclusions from the analysis of the data. We verified empirical relationships as and 

discovered relationships that exist in non-ideal systems. Using swept sine and random forcing 

functions to determine system parameters allowed us to conclude differences in the responses to 

these forcing functions (i.e. swept sine produces FRFs with less noise). Lastly we explore the use 

of Fourier series approximation to model a repeated forcing function. 

 

2. Introduction 
 

The purpose of this lab is to analyze different cases of harmonic response of second-order 

rectilinear dynamic systems. While harmonic response theoretically considers only the steady-

state vibrations, the dynamic parameters extracted from analyzing harmonic response can be 

used to estimate the transient behavior. 

 

Fundamentally, the harmonic response (the frequency response function (FRF)) allows the 

steady state response of dynamic systems to harmonic excitation to be determined without 

solving the system equations. When considered for a complicated system, such as a car, a 

washing machine, an airplane, frequency response function becomes an invaluable approach to 

estimate the system response. The main assumption used is that the dynamic response of the 

system to a sinusoidal excitation is itself sinusoidal, with the same frequency as the excitation, 

but with a phase shift. The magnitude of the FRF at a particular frequency indicates the ratio of 

the response amplitude to sinusoidal excitation-force amplitude. The phase of the FRF at a 

particular frequency indicates the phase shift between the sinusoidal force and associated the 

sinusoidal response. 

 

In this lab, various methods for obtaining frequency response function of dynamic systems were 

used to determine frequency response characteristics of rectilinear systems. 

 

 

3. Theory 
 

Symbols: 

 

Table 3.1.1: Explanation of Symbols used in Equations 

k Spring Rate 

Wn Natural Frequency 

m Mass 

ζ Damping Ratio (Zeta) 
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c Damping Constant 

T Period 

x Position 

T0 Forcing Function Amplitude 

 

 

The equation of motion for a second-order system with harmonic forcing function can be given 

(generically) as: 
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where TS0 and TC0 are the coefficients of sine and cosine functions, respectively. Provided that 

the system behaves linearly (which means we can use the superposition principle), we can seek 

the response qi of the system to each individual sine (or cosine) function, and then sum up the 

responses, i.e., 
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Therefore, we will concentrate on finding the steady-state response to 
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The frequency response function (i.e., sinusoidal transfer function) of the system given in 

Eq. (3) can be written as 
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This complex-valued frequency response function can further be written as a magnitude and 

phase as 
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For a linear, second-order system, the response to a not only harmonic but also periodic 

functions may be obtained from the harmonic response analysis. The Fourier Series Expansion is 

used to convert a periodic function into a sum of harmonic functions. The response to each 

harmonic function can then be determined from the FRF, and summed to determine the response 

to the periodic function. 

 

The Fourier Expansion Theorem indicates that any periodic function can be expressed as an 

infinite sum of harmonic functions. In general, however, only finite number of harmonic 

functions are sufficient for expressing most periodic functions. This is due to the fact that the 

Fourier series, provided that certain conditions are satisfied, converges. Given a periodic 

function f (t), the (truncated, i.e., finite N-element) Fourier series expansion can be written as 
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During these tests were used two different excitation methods, sine sweep and random 

excitation.  

 

In the case of random excitation, a “random” signal is generated to excite the structure, and the 

response is measured. From the auto- and cross-correlation functions (which are forms of Fast-

Fourier Transforms), the FRF is generated. The FRFs, however, only become accurate if a large 

number of averages (commonly 50 to 100) are taken, since only then the Random signals (on 

average) deliver constant energy to all frequencies. To assess the increased accuracy of the 



 

6 

response, coherence function is calculated. The closer the coherence to unity (1), the better the 

response characteristics (reduced overall noise). Random excitations are particularly favorable in 

rejecting random (or white) noise from the system. However, the random excitations do not 

perform well for systems with nonlinearities. 

 

For both linear and nonlinear structures, sweep-sine and step-sine test can provide complete 

and high-quality information about the system dynamics. The disadvantage of these techniques, 

in general, as opposed to hammer impact and pseudo-random tests is that they are considerably 

more time consuming to apply (step-sine being the slowest one). In sweep-sine tests, the 

frequency of excitation continuously changes from zero to the maximum value. By providing the 

total time for testing, and the range of frequencies, the A value is determined. As such, this 

method is (essentially) a way of providing sinusoidal excitations at every frequency. Again, the 

excitation force and response are post-processed (commonly using Fast-Fourier Transforms 

(FFTs)), and an FRF is generated. Figure 2 shows a sweep-sine excitation force in both time 

and frequency domains. 

 

Step-sine testing is very similar; however, the tests continue at small frequency steps Dw, and at 

each step, a sine signal is used as an excitation. Amplitude ratios and phase shifts between the 

response and excitation are calculated at each frequency step. Therefore, the FRFs are generated 

point-by-point (as opposed to all other methods, where the entire FRF is generated at the end of 

one single tests). While very slow, step-sine testing is the most accurate method, especially when 

nonlinear structures are considered. 
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4. Experimental Setup  
 

The experiment used the ECP 210 Rectilinear dynamic system, which can be seen in Figure 4.1.  

 

 
 

Figure 4.1: Drawing of Experimental Setup 

 

The system consists of three low-friction cars that have one degree of freedom (direction of 

travel indicated in Figure 1). Each of the cars is attached to an encoder that measures the linear 

displacement. Each car also has a screw and nut that can be used to secure additional masses that 

increase the mass of the car. There three large masses and one smaller mass. There are 3 springs, 

one with high stiffness, one with medium stiffness, and one with low stiffness, which can be 

attached with bolts between two cars or between a car and a spring support bracket. The cars can 

also be locked in place to prevent their movement. A motor is connected with a linkage to Car 1 

by way of a rack and pinion gear. This motor can be used to provide a forcing function to the 

system. Car 3 has a bracket which can be attached to air cylinder to provide damping to the 

system. The encoders and motors interface with a computer, which runs software necessary to 

control the motor and read and store data output from the encoders. 

 

5. Procedure 
 

The purpose of Experiment 1 was to obtain the harmonic response (in the form of FRFs) of a 

single degree of freedom system with sine-sweep excitation force. The first car only was used 

with no masses and with the strongest spring attached between Car 1 and the spring support 

bracket. The software was used to set prescribed stiffness and damping coefficients. 

Subsequently, a sine-sweep signal was configured with the given amplitude (four such tests at 

four amplitude levels) from 1 Hz to 10 Hz frequency range within 40 seconds. For each 

amplitude level, five tests were conducted and the results averaged to obtain FRFs. Data was 

saved for post processing. 

 

 

Encoder 
Motor 

Mass 

Car 1 

Spring support 

bracket 

 

Damper 

Car 2 Car 3 

Spring 

Direction of 

car travel 

Linkage 



 

8 

The purpose of Experiment 2 was to obtain the harmonic response, in the form of FRFs, of a 

single degree of freedom system with random excitation force. The same physical setup from 

Experiment 1 was used. Prescribed stiffness and damping was set through the software, and a 

random signal with given amplitude (for two tests using different amplitudes) was configured 

from 1 to 10 Hz, with 10 tests being averaged. The software would then provide the FRFs and 

associated coherence plots. 

 

In Experiment 3, effect of changes in spring constant, damping coefficient, and mass on the FRF 

characteristics were evaluated. The same physical setup used in the sweep-sine tests (Experiment 

1) was used. In first 7 tests, only the mass of the car was considered. For the last two tests, mass 

blocks were added to evaluate the effect of added mass. In addition to the spring and inherent 

damping coefficient, springs rate and damping coefficients were prescribed through the software 

for many tests. Each test was conducted using a swept sine force with a 1.2 N amplitude from 1 

Hz to 10 Hz frequency range for 40 seconds. Each test was averaged over 2 sets of tests. Data 

was saved for post-processing. 

 

The purpose of Experiment 4 was to excite the system using single frequency sinusoidal 

functions in order to compare the magnitude and phase of the system’s steady state responses to 

ones predicted by FRFs obtained in previous experiments. Experiment 4 used the same physical 

spring and the first car’s mass, like in other experiments. All tests were performed using a 

sinusoidal excitation force with a 1.2 N amplitude for a 40 second duration. A software stiffness 

of 200 Nm/rad and a software damping of 2 Nms/rad were used. The data was saved for post-

processing. 

 

 

The purpose of Experiment 5 was to investigate the use of the Fourier series expansion for 

representing a periodic function, as well as the response of a second order system to the periodic 

function using harmonic response principles. To perform the tests in Experiment 5, the previous 

setup was used (Car 1 with no masses and stiffest spring attached). For the first five tests that are 

listed on Table 5.1, Equation (9) was utilized, adding one additional term each time. A software 

stiffness of 200 Nm/rad and a software damping of 2 Nms/rad were used. The data was saved for 

post-processing. 

 

Table 5.1: Terms added in Fourier series expansion 

Test Added term 

2 6.4846*sin(3.1416*t) 

3 -0.7205*sin(3.1416*3*t) 

4 0.2594*sin(3.1416*5*t) 

5 -0.1323*sin(3.1416*7*t) 

6 0.0801*sin(3.1416*9*t) 

 

 

6. Results, Discussion & Observations 
 

Question 1: Comparison of Test 3 and 4 

 



 

9 

 
Figure 6.1.1: FRFs from tests 3 and 4 

 

Shown in Figure 6.1.1 is a zoomed in view of the FRFs from tests 3 and 4. This shows that 

increasing the number of averages above 2 did not significantly decrease the amount of noise, as 

the signals generally overlap one another. There are little to no differences between the two 

FRFs, which leads us to believe that increasing the averages above 2 does not significantly 

decrease the amount of noise in the system. To this end, 2 averages are sufficient to remove most 

noise from the system, and we should not consider noise a factor in any test which has 2 

averages or more, unless there is evidence to the contrary. 

 

Question 2: Determining the bandwidth of excitation for stepped sine forcing function 
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Figure 6.2.1: Flat region, and drop off past the flat region for stepped sine test 

 

The bandwidth which represents -3db below the “flat region” is 1.2 Hz to 9.89 Hz. 

 

Question 3: Comparing tests 1-3 and 5 

 

 
Figure 6.3.1: Amplitude ratio and phase diagrams for test s 1-3 & 5 
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As the amplitude of the forcing function increases, the natural frequency decreases, and the 

phase shift also decreases. The graph presents a zoomed in view of the amplitude ratio to 

highlight this shift, as it is less noticeable in the rectilinear case than the torsional. This may be 

due the difference in inertia. The amount of noise in these plots does not change with increase in 

amplitude. The linear range of these plots is from 2 Hz to 8 Hz. Any values above or below those 

limits has too much noise to be considered coherent. 

 

Question 4:  

 

 
Figure 6.4.1: Amplitude and Phase diagrams for Exp 2 Test 1 and Test 2 

 

In general these two tests appear to have the same phase and natural frequency. However, test 2 

has less noise in the peak of the natural frequency than test 1. Also, the noise in the phase graph 

starts earlier for the higher amplitude test. Other than these two factors, the graphs appear to be 

very similar. 

 

Question 5: Comparing Experiment 2 Test 1 and Experiment 1 Test 2 
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Figure 6.5.1: Amplitude and Phase diagrams for Exp 2 and Exp 1 Test 3 

 

The results from experiment 1 test 3 are cleaner than the results from experiment 2. This is 

because we used a stepped sine function excitation, so the forcing function increased linearly in 

frequency. In experiment 2 we used a random forcing function, which may have missed various 

frequencies, causing errors in the data. Experiment 2 results would become smoother if we tested 

the random forcing function for longer, allowing for more data points and a more accurate result. 

However, the stepped sine tests have more noise in the beginning and end of the test. Our 

hypothesis for why this happens is that the randomly generated signal produces a normal 

distribution of forced frequencies over the applied frequency range. This means that there is 

more forcing in the middle of the frequency range, and less at the end points. There may be 

insufficient data at the end regions of the forcing function, so that the noise which would 

normally be there is not displayed. This hypothesis cannot be tested without knowing how the 

randomly generated forcing function is actually generated. 

 

Question 6: Determining the bandwidth of excitation for random forcing function 

 

The excitation bandwidth for the random forcing function is similar to that of the stepped sine 

function (1.2 Hz to 9.89 Hz). However, the stepped sine has a much more clearly defined “flat” 

region, making the determination of the bandwidth clearer. This may be caused by the normal 

distribution hypothesis as stated above, which supports that assumption of a normal distribution 

of frequencies in the randomly generated forcing function. Below is a “flat region” which can be 

compared to Figure 6.2.1 
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Figure 6.6.1: Flat region, and drop off past the flat region for random excitation test 

 

Question 7: Determination of system parameters using FRF fitting 

 

Table 6.7.1: Dynamically determined system parameters 

Test Calculated m (kg) Calculated c (Nms) Calculated K (Nm) 

1 0.7181 1.3663 883.4 

2 0.7406 2.5471 914.8 

3 0.8956 10.2699 1109.1 

4 0.9644 18.8907 1237.6 

5 0.8738 42.9406 1230.4 

6 0.8539 2.8058 941.4 

7 0.8684 3.1324 848.6 

8 1.9211 3.0940 844.8 

9 2.6099 3.0013 810.1 

 

The calculated parameters match fairly well with the observed parameters (off by roughly 15%) 

for low damping coefficients. This is because for higher damping coefficients the amplitudes do 

not have a well defined peak to choose a range to fit the FRF to. When the damping ratio is too 

high, the values do not match at all. From this we can conclude that fitting an FRF is an accurate 

measurement method for systems with low damping, but inaccurate for systems with relatively 

high damping. 

 

Question 8: Plotting of FRF Amplitudes from Experiment 2, Tests 1-5 
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Figure 6.8.1: FRF amplitude response for changing damping ratio 

 

As seen in Figure 6.7.1, as the damping ratio increases, the amplitude of the frequency response 

decreases. It appears that small changes in damping, like the change between the first to damping 

ratios (approximately 0.006) also result in small changes in amplitude. Also, when the system is 

overdamped, the shape of the amplitude response curve changes from convex to concave. Aside 

from the lack of smoothness, the overall shape of the curves is very similar to what is expected 

from when plotting theoretical FRF amplitude plots. 

 

Question 9: Effects of Different Dynamic Parameters on System 
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Figure 6.9.1: FRF amplitude response for different system parameters 

 

As seen in Figure 6.8.1, different system parameters have different effects on the amplitude 

response. For the overdamped case, there is no frequency response. This is expected from theory, 

since the damping is very high and the vibrational energy is absorbed. For the case of where a 

simulated spring constant was used, the natural frequency increased as well as the amplitude of 

the response. From theory, the increase in frequency is expected since KW  , and K 

increases in this case. The amplitude increase is also expected since the mass stays the same but 

the spring force is increased, so the amplitude goes up. For the case of increasing inertia, the 

natural frequency decreased as well as the amplitude response. The decrease in frequency is 

expected since JW 1 . The amplitude decrease is also expected since increasing the inertia of 

the system increases the load on the bearings, which increases the system damping. 
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Question 10: Amplitude and Phase Shift for Experiment 3 

 

 

 

 

 

 

 

 

 

Table 6.10.1: Amplitude and phase ratios for Tests 1-4 

Test # Amp. Ratio Phase Ratio 

1 0.0234 -0.3204 

2 0.0749 -0.3619 

3 0.2683 -0.8332 

4 0.0843 -2.9405 

Figure 6.10.1: Experiment 3 Test 1, 

steady state response, phase and 

amplitude shift 

Figure 6.9.2: Experiment 3 Test 2 steady 

state response, phase and amplitude shift 

Figure 6.10.3: Experiment 3 Test 3, steady 

state response, phase and amplitude shift 

Figure 6.10.4: Experiment 3 Test 4, steady 

state response, phase and amplitude shift 

Figure 6.10.1: Experiment 3 Test 2, 

steady state response, phase and 

amplitude shift 
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Figure 6.10.4: FRF of Experiment 2, Test 1, with points of amplitude and phase ratios from 

Table   6.10.1 plotted 

 

The amplitude ratio agreement between the Experiment 2 curve and the Experiment 3 points is 

not good. The points from Tests 1, 2, and 4 seem all seem to lie the same distance under the 

curve. This error may be due a mistake in the scaling factor used to adjust the points or the curve 

(associated code used on this problem can be found in the Appendix, Question 9). The point 

from Test 3 actually lies above the curve, and is off by a larger factor. This error may be due to 

not taking any averages during Experiment 3; each test was only run once, compared to 

Experiment 2, which took 10 averages. There may have been an anomaly when recording data, 

like someone bumping the table. If averages were taken, there might be less error. There is very 

good agreement between the phase from both experiments, since the phase requires no scaling to 

the curve. 

 

Question 11: Step Sine Simulation  
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Figure 6.11.1: Experimental curve from Experiment 2, Test 1, vs analytical step response 

 

The agreement between the experimental curves and analytical points in Figure 6.10.1 is very 

good. For the amplitude, the agreement is best between 1 to 4 Hz and 7 to 10 Hz. For the phase, 

the agreement is best between 1 to 5 Hz and 6 to 8 Hz. The agreement does not match further 

due to lots of noise in the phase graph, which was common to results from all experiments. Since 

the overall agreement in on both curves is good, we can conclude that our step sine model is a 

good representation of the experimental system. 

 

Question 12: Fourier series to represent a triangle wave forcing function 
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Figure 6.12.1: Forcing functions and responses for experiment 4, first cycle 

 

Figure 6.11.1 shows a zoomed in view of the forcing functions and responses to a triangle wave 

and the Fourier series approximation of a triangle wave where the number of terms increases. 

The view is zoomed in to the first period to highlight the differences between the actual triangle 

wave and the Fourier approximation. Both the forcing functions and the responses get closer and 

closer to the actual triangle wave as the order of the Fourier series approximation increases. 

 

Question 13: FRF comparison for Fourier series approximation 
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Figure 6.13.1: Experimental FRF for Experiment 2 Test 1 

 

Reading off the amplitude ratio and phase at each of the frequencies for the different terms in the 

Fourier series expansion produces table 6.12.1 

 

Table 6.13.1: Amplitude ratio and phase 

Test F (Hz) Amplitude Ratio Phase (radians) 

2 (1
st
 term) 0.5 0.10 0.00 

3 (3
rd

 term) 1.5 0.12 -0.03 

4 (5
th

 term) 2.5 0.13 -0.06 

5 (7
th

 term) 3.5 0.15 -0.11 

6 (9
th

 term) 4.5 0.29 -0.23 
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Figure 6.13.2: Observed results compared to results calculated from FRF values 

 

The observed and calculated values do match, because we found the missing amplitude ratios for 

the first 2 frequencies. We were instructed to use values of 1 for the amplitude ratio and 0 for the 

phase for the first two frequencies of the Fourier series. However, linearly approximating the 

graph, the values should have been in the range of 0.1 to 0.3 for the amplitude ratio. By adjusting 

these two values iteratively, we found the actual phase amplitude such that the observed response 

closely matched the calculated response. This method allowed us to find the missing amplitude 

ratios for the first and second frequencies in the Fourier series. 

 

 

7. Conclusion 
 

After completing this lab and lab report, we were able to draw several important conclusions. We 

verified the following from the empirical data relationships. First, when the spring constant is 
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increased, the natural frequency of the system will increase, and the amplitude of the frequency 

response will increase as well. Also, increasing the system’s mass will lower the natural 

frequency of the system and increase the amplitude of the response. Another relationship verified 

is that when the amplitude of the forcing function is increased, the natural frequency and phase 

of the system will decrease.  

 

Conclusions were also reached from study of the system’s damping. It was determined that 

overdamping results in no excitation of the system’s natural frequency. As a result, there is no 

peak in the FRF data, and normal curve fitting techniques which expect that peak are unsuitable. 

However, these curve fitting techniques are accurate for low damping where a peak is present.  

 

Our system has a clearly defined bandwidth for which results are expected to be linear. Outside 

of the bandwidth, our testing produced inconclusive results. This bandwidth was very well 

defined for a swept sine forcing function, but less so for a random input. This difference is a 

result of the inconsistencies in the frequencies which are tested by a random excitation with a 

low number of averages. However, for swept sine, using more than 2 averages did not noticeably 

decrease the amount of noise present in the data. From this we concluded that using only 2 

averages for all swept sine testing was sufficient to reduce noise to an acceptable level. 

 

The different tests we used were swept sine, and random excitation, as well as a simulation of 

stepped sine. All of these testing methods can accurately give system parameters, though is best 

suited for different testing restrictions. Also, using a Fourier series approximation can accurately 

model a repeating forcing function. The accuracy of this approximation increases as the order of 

the Fourier series increases. 
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9. Appendices 
Matlab code used: 

 

fitfrf.m 

 
function [m c k]=fitfrf(freq,amp,pha) 
% b=textread('3.1_k200_c2_1.2N.txt','','headerlines',23); 
plot(amp,'r') 
xx=ginput(2); 
h=amp(ceil(xx(1,1)):floor(xx(2,1)))/1000.*exp(i*pha(ceil(xx(1,1)):floor(xx(2,

1)))); 
[num,den]=invfreqs(h,freq(ceil(xx(1,1)):floor(xx(2,1)))*2*pi,0,2); 
hh=freqs(num,den,freq*2*pi); 
mag=abs(hh); 
ang=angle(hh); 
subplot(2,1,1) 
plot(freq,amp,'r') 



 

23 

hold on 
plot(freq,mag) 
xlabel('Frequency (Hz)') 
ylabel('Amplitude Ratio') 
subplot(2,1,2) 
plot(freq,pha,'r') 
hold on 
plot(freq,ang) 
xlabel('Frequency (Hz)') 
ylabel('Phase (rad)') 
hold off 
denn=den/num; 
m=denn(1); 
c=denn(2); 
k=denn(3); 

 

readfreq.m 

 
function [freq,val]=readfreq(filename,pm) 
a=textread(filename,'','headerlines',23); 
if strcmp(pm,'m')  
    val=a(40:400,2); 
end 
if strcmp(pm,'p')  
    val=a(40:400,4); 
end 
freq=a(40:400,1); 

 

sweepfft.m 

 
clear all 
close all 

  
[tt,force,disp]=readenc('timesweep.txt','d',1); 

  
fft_force=fft(force); 
freq_axis=[0:1/tt(end):(length(tt)-1)*1/tt(end)]; 

  
figure; 
plot(tt,force) 

  

  
figure; 
plot(freq_axis,abs(fft_force)) 

 

 

 
%Question 1 

  
[freq1,val1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t3.txt','m'); 
[freq2,val2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t4.txt','m'); 
plot(freq1,val1) 
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hold all 
plot(freq2,val2) 
legend('Test 3','Test 4') 
xlabel('Frequency (Hz)') 
ylabel('Magnitude (cm)') 

  
%Question 2 

  
[tt,force,disp]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\exp1test3.txt','d',1); 
fft_force=fft(force); 
freq_axis=[0:1/tt(end):(length(tt)-1)*1/tt(end)]; 
figure; 
plot(tt,force) 
figure; 
plot(freq_axis,abs(fft_force)/1000) 
xlabel('Frequency (Hz)'),ylabel('Force (N)') 

  
%Question 3 

  
[freq1,mag1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t1.txt','m'); 
[freq1,phase1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t1.txt','p'); 
[freq2,mag2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t2.txt','m'); 
[freq2,phase2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t2.txt','p'); 
[freq3,mag3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t3.txt','m'); 
[freq3,phase3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t3.txt','p'); 
[freq5,mag5] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t5.txt','m'); 
[freq5,phase5] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t5.txt','p'); 
figure(); 
max1 = max(mag1(20:250,:)); 
max2 = max(mag2(20:250,:)); 
max3 = max(mag3(20:250,:)); 
max5 = max(mag5(20:250,:)); 
subplot(2,1,1), title('Magnitude') 
plot(freq1,mag1/max1,'b',freq2,mag2/max2,'r',freq3,mag3/max3,'g',freq5,mag5/m

ax5,'black') 
xlabel('Frequency (Hz)'), ylabel('Amplitude Ratio') 
subplot(2,1,2), title('Phase') 
plot(freq1,phase1,'b',freq2,phase2,'r',freq3,phase3,'g',freq5,phase5,'black') 
xlabel('Frequency (Hz)'), ylabel('Phase (rad)') 
legend('Test 1','Test 2','Test 3','Test 5') 

  
%Question 4 

  
[freq1,mag1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t1.txt','m'); 
[freq1,phase1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t1.txt','p'); 
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[freq2,mag2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','m'); 
[freq2,phase2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','p'); 
figure() 
subplot(2,1,1) 
plot(freq1,mag1/10,'b',freq2,mag2/10,'r') 
xlabel('Frequency (Hz)'), ylabel('Amplitude (cm)') 
subplot(2,1,2) 
plot(freq1,phase1,'b',freq2,phase2,'r') 
xlabel('Frequency (Hz)'), ylabel('Phase (rad)') 
legend('Experiment 2 Test 1','Experiment 2 Test 2') 

  
%Question 5 

  
[freq1,mag1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t1.txt','m'); 
[freq1,phase1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t1.txt','p'); 
[freq2,mag2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','m'); 
[freq2,phase2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','p'); 
[freq3,mag3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t3.txt','m'); 
[freq3,phase3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex1t3.txt','p'); 
figure() 
subplot(2,1,1) 
plot(freq1,mag1/10,'b',freq2,mag2/10,'r',freq3,mag3/10,'g') 
xlabel('Frequency (Hz)'), ylabel('Amplitude (cm)') 
subplot(2,1,2) 
plot(freq1,phase1,'b',freq2,phase2,'r',freq3,phase3,'g') 
xlabel('Frequency (Hz)'), ylabel('Phase (rad)') 
legend('Experiment 2 Test 1','Experiment 2 Test 2','Experiment 1 Test 3') 

  
%Question 6 

  
[tt,force,disp]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\exp2test2.txt','d',1); 
fft_force=fft(force); 
freq_axis=[0:1/tt(end):(length(tt)-1)*1/tt(end)]; 
figure; 
plot(tt,force) 
figure; 
plot(freq_axis,abs(fft_force)) 
xlabel('Frequency (Hz)'),ylabel('Force (N)') 

  
%Question 7 
[freq1,mag1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t1.txt','m'); 
[freq1,phase1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t1.txt','p'); 
[m1,c1,k1] = fitfrf(freq1,mag1,phase1); 
[freq2,mag2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t2.txt','m'); 
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[freq2,phase2] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t2.txt','p'); 
[m2,c2,k2] = fitfrf(freq2,mag2,phase2); 
[freq3,mag3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t3.txt','m'); 
[freq3,phase3] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t3.txt','p'); 
[m3,c3,k3] = fitfrf(freq3,mag3,phase3); 
[freq4,mag4] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t4.txt','m'); 
[freq4,phase4] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t4.txt','p'); 
[m4,c4,k4] = fitfrf(freq4,mag4,phase4); 
[freq5,mag5] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t5.txt','m'); 
[freq5,phase5] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t5.txt','p'); 
[m5,c5,k5] = fitfrf(freq5,mag5,phase5); 
[freq6,mag6] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t6.txt','m'); 
[freq6,phase6] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t6.txt','p'); 
[m6,c6,k6] = fitfrf(freq6,mag6,phase6); 
[freq7,mag7] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t7.txt','m'); 
[freq7,phase7] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t7.txt','p'); 
[m7,c7,k7] = fitfrf(freq7,mag7,phase7); 
[freq8,mag8] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t8.txt','m'); 
[freq8,phase8] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t8.txt','p'); 
[m8,c8,k8] = fitfrf(freq8,mag8,phase8); 
[freq9,mag9] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t9.txt','m'); 
[freq9,phase9] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex3t9.txt','p'); 
[m9,c9,k9] = fitfrf(freq9,mag9,phase9); 
m = [m1,m2,m3,m4,m5,m6,m7,m8,m9]' 
c = [c1,c2,c3,c4,c5,c6,c7,c8,c9]' 
k = [k1,k2,k3,k4,k5,k6,k7,k8,k9]' 

  
% %Question 7 
[F1,a1]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t1.txt','m'); 
[F2,a2]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t2.txt','m'); 
[F3,a3]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t3.txt','m'); 
[F4,a4]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t4.txt','m'); 
[F5,a5]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t5.txt','m'); 

  
J = 0.0024;%System parameters determined from Lab 1 torsional 
K = 2.69;%System parameters determined from Lab 1 torsional 
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c = 0.0057;%System parameters determined from Lab 1 torsional 

  
c1 = 0; 
c2 = 0.001; 
c3 = 0.01; 
c4 = 0.05; 
c5 = 0.2; 

  
z1 = (c + c1)/(2*sqrt(K*J)); 
z2 = (c + c2)/(2*sqrt(K*J)); 
z3 = (c + c3)/(2*sqrt(K*J)); 
z4 = (c + c4)/(2*sqrt(K*J)); 
z5 = (c + c5)/(2*sqrt(K*J)); 

  
figure(1); 
hold all  
plot(F1, a1,'DisplayName',['Damping ratio ' num2str(z1)]); 
plot(F2, a2,'DisplayName',['Damping ratio ' num2str(z2)]); 
plot(F3, a3,'DisplayName',['Damping ratio ' num2str(z3)]); 
plot(F4, a4,'DisplayName',['Damping ratio ' num2str(z4)]); 
plot(F5, a5,'DisplayName',['Damping ratio ' num2str(z5)]); 
legend show 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude (rad)'); 
hold off 

  
%Question 8 
[F5,a5]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t5.txt','m'); 
[F6,a6]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t6.txt','m'); 
[F7,a7]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t7.txt','m'); 

  
k6 = 1.5; 
Jmasses = 0.0187; %determined in torsional lab 1 
cmasses = 0.0013; 

  
z6 = (c + c2)/(2*sqrt((K+k6)*J)); 
z7 = (cmasses + c2)/(2*sqrt(K*Jmasses)); 

  
figure(2); 
hold all 
plot(F5, a5,'DisplayName','Overdamped'); 
plot(F6, a6,'DisplayName','Stiffer spring'); 
plot(F7, a7,'DisplayName','Increased inertia'); 
legend show 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude (rad)'); 
hold off 

  
%Question 9 

  
[t,f,val]=readenc('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex3t1.txt','d',1); 
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w=3; 
T=1/w; 
sr=1000; 
a=length(val); 
val2=val(floor(a-4*T*sr):floor(a-3*T*sr));% 
f2=f(floor(a-4*T*sr):floor(a-3*T*sr)); 
t2=0:1/sr:(length(f2)-1)*0.001; 
figure(3); 
plot(t2,val2) 
hold on 
plot(t2,f2,'g') 
amp1=(max(val2)-min(val2))/2 
indp1=find(val2==max(val2)); 
plot(t2(indp1(1)),val2(indp1(1)),'r*') 
indp2=find(f2==max(f2)); 
plot(t2(indp2(1)),f2(indp2(1)),'r*') 
xlabel('time (s)') 
legend('Response (rad)','Force (N)')  
hold off 
pha1=(t2(indp2(1))-t2(indp1(1)))*2*pi/T 

  
[t,f,val]=readenc('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex3t2.txt','d',1); 
w=4.8; 
T=1/w; 
sr=1000; 
a=length(val); 
val2=val(floor(a-4*T*sr):floor(a-3*T*sr));% 
f2=f(floor(a-4*T*sr):floor(a-3*T*sr)); 
t2=0:1/sr:(length(f2)-1)*0.001; 
figure(4); 
plot(t2,val2) 
hold on 
plot(t2,f2,'g') 
amp2=(max(val2)-min(val2))/2 
indp1=find(val2==max(val2)); 
plot(t2(indp1(1)),val2(indp1(1)),'r*') 
indp2=find(f2==max(f2)); 
plot(t2(indp2(1)),f2(indp2(1)),'r*') 
xlabel('time (s)') 
legend('Response (rad)','Force (N)')  
hold off 
pha2=(t2(indp2(1))-t2(indp1(1)))*2*pi/T 

  
[t,f,val]=readenc('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex3t3.txt','d',1); 
w=5.1; 
T=1/w; 
sr=1000; 
a=length(val); 
val2=val(floor(a-4*T*sr):floor(a-3*T*sr));% 
f2=f(floor(a-4*T*sr):floor(a-3*T*sr)); 
t2=0:1/sr:(length(f2)-1)*0.001; 
figure(5); 
plot(t2,val2) 
hold on 
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plot(t2,f2,'g') 
amp3=(max(val2)-min(val2))/2 
indp1=find(val2==max(val2)); 
plot(t2(indp1(1)),val2(indp1(1)),'r*') 
indp2=find(f2==max(f2)); 
plot(t2(indp2(1)),f2(indp2(1)),'r*') 
xlabel('time (s)') 
legend('Response (rad)','Force (N)')  
hold off 
pha3=(t2(indp2(1))-t2(indp1(1)))*2*pi/T 

  
[t,f,val]=readenc('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex3t4.txt','d',1); 
w=6; 
T=1/w; 
sr=1000; 
a=length(val); 
val2=val(floor(a-4*T*sr):floor(a-3*T*sr));% 
f2=f(floor(a-4*T*sr):floor(a-3*T*sr)); 
t2=0:1/sr:(length(f2)-1)*0.001; 
figure(6); 
plot(t2,val2) 
hold on 
plot(t2,f2,'g') 
amp4=(max(val2)-min(val2))/2 
indp1=find(val2==max(val2)); 
plot(t2(indp1(1)),val2(indp1(1)),'r*') 
indp2=find(f2==max(f2)); 
plot(t2(indp2(1)),f2(indp2(1)),'r*') 
xlabel('time (s)') 
legend('Response (rad)','Force (N)')  
hold off 
pha4=(t2(indp2(1))-t2(indp1(1)))*2*pi/T 

  
[F,a]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t1.txt','m'); 
[F,p]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t1.txt','p'); 

  
figure(7) 
hold on 
subplot(2,1,1) 
hold on 
plot(F, a/max(a)); 
plot(3,amp1/(0.75/2.69), 'r*') 
plot(4.8, amp2/(0.75/2.69), 'g*') 
plot(5.1, amp3/(0.75/2.69), 'k*') 
plot(6, amp4/(0.75/2.69), 'b*') 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude Ratio'); 

  
hold off 
subplot(2,1,2) 
hold on 
plot(F, p) 
plot(3,pha1, 'r*') 
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plot(4.8, pha2, 'g*') 
plot(5.1, pha3, 'k*') 
plot(6, pha4, 'b*') 
legend('Experiment 2, Test 1 Response','Experiment 3, Test 1', 'Experiment 3, 

Test 2','Experiment 3, Test 3','Experiment 3, Test 4') 
xlabel('Frequency (Hz)'); 
ylabel('Phase Ratio'); 

  
hold off 
hold off 

  
%Question 10 
clear all 
close all 
m = 0.0024;%System parameters determined from Lab 1 torsional 
k = 2.69;%System parameters determined from Lab 1 torsional 
c = 0.0057 + 0.001;%System parameters determined from Lab 1 torsional 
x0=0; %zero initial conditions 
v0=0;  
Tsim=40; %simulation time 
F=0.75;%Forcing amplitude 
fres=1:0.5:10;%create the vector that contains the frequencies on which the 

system is going to be excited(1-10Hz with a resolution of 0.5 Hz) 
for i=1:length(fres); 
    freq=fres(i);%pick the frequency to be run for this iteration from the 

pre-created frequency vector 
    sim ('simstep'); %call the simulation 

    
    T = 1/freq; 
    sr = 1000; 
    a=length(x); 
    val2=x(floor(a-4*T*sr):floor(a-3*T*sr));% 
    f2=f(floor(a-4*T*sr):floor(a-3*T*sr)); 
    t2=0:1/sr:(length(f2)-1)*0.001; 
    amp=(max(val2)-min(val2))/2 
    indp1=find(val2==max(val2)); 
    indp2=find(f2==max(f2)); 
    pha=(t2(indp2(1))-t2(indp1(1)))*2*pi/T 

    
    subplot(2,1,1) 
    plot(freq,amp,'o')%on the top,  plot the determined amplitude at the 

prescribed frequency (normalize the amplitude by dividing it by the static 

displacement  
    hold on 
    subplot(2,1,2) 
    plot(freq,pha,'o')%on the bottom,  plot the determined phase at the 

prescribed frequency 
    hold on 
    drawnow %this shows the plotted point immediately after it is plotted so 

you can see your FRF is dynamically created 
end 
[Freq,a]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t1.txt','m'); 
[Freq,p]=readfreq('C:\Documents and 

Settings\roboclub\Desktop\Lab5\B6\ex2t1.txt','p'); 
subplot(2,1,1) 
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plot(Freq,a) 
subplot(2,1,2) 
plot(Freq, p) 

 
 

 

%Question 12 

  
t = (0:0.001:10); 
f1 = -.3.*sawtooth((t-.5)*pi,.5); 
f2 = 0.2432.*sin(pi.*t); 
f3 = f2 + -0.027.*sin(3.*pi.*t); 
f4 = f3 + 0.0097.*sin(5.*pi.*t); 
f5 = f4 + -0.005.*sin(7.*pi.*t); 
f6 = f5 + 0.003.*sin(9.*pi.*t); 
figure() 
subplot(2,1,1) 
plot(t,f1) 
xlabel('Frequency (Hz)'),ylabel('Force (N)'); 
title('Forcing Functions') 
hold all 
plot(t,f2);plot(t,f3);plot(t,f4);plot(t,f5);plot(t,f5) 
[tt,force1,disp1]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t1.txt','d',1); 
[tt,force2,disp2]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t2.txt','d',1); 
[tt,force3,disp3]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t3.txt','d',1); 
[tt,force4,disp4]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t4.txt','d',1); 
[tt,force5,disp5]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t5.txt','d',1); 
[tt,force6,disp6]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t6.txt','d',1); 
hold off 
subplot(2,1,2) 
plot(tt,disp1) 
xlabel('Frequency (Hz)'),ylabel('Displacement (cm)'); 
title('Responses') 
hold all 
plot(tt,disp2);plot(tt,disp3);plot(tt,disp4);plot(tt,disp5);plot(tt,disp6); 
hold off 
legend('Test 1','Test 2','Test 3','Test 4','Test 5','Test 6') 

  
%Question 13 

  
%Part A 
[freq1,mag1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','m'); 
[freq1,phase1] = readfreq('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex2t2.txt','p'); 
[m1,c1,k1] = fitfrf(freq1,mag1,phase1); 
legend('Experimental','Fit') 
subplot(2,1,1) 
hold on 
plot(.5,0:.01:1) 
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plot(1.5,0:.01:1) 
plot(5*.5,0:.01:1) 
plot(7*.5,0:.01:1) 
plot(9*.5,0:.01:1) 
subplot(2,1,2) 
hold on 
plot(.5,-4:.01:4) 
plot(1.5,-4:.01:4) 
plot(5*.5,-4:.01:4) 
plot(7*.5,-4:.01:4) 
plot(9*.5,-4:.01:4) 

  
%Part B 
W0 = .5*2*pi; %from the graph 
[tt2,force2,disp2]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t2.txt','d',1); 
[tt3,force3,disp3]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t3.txt','d',1); 
[tt4,force4,disp4]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t4.txt','d',1); 
[tt5,force5,disp5]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t5.txt','d',1); 
[tt6,force6,disp6]=readenc('C:\Documents and Settings\roboclub\Desktop\Lab 3 

Rectilinear\B6\ex5t6.txt','d',1); 
figure() 
hold on 
subplot(5,1,1) 
plot(tt2,disp2/100), hold on 
plot(tt2,.2432*.3*sin(W0.*tt2+0),'r') 
xlabel('Time (s)'),ylabel('Amplitude (N/rad)') 
title('Test 2') 
subplot(5,1,2) 
plot(tt3,disp3/100), hold on 
plot(tt2,-0.027*.15*sin(3*W0.*tt2-(0.03*2*pi))+.2432*.3*sin(W0.*tt2+0),'r') 
xlabel('Time (s)'),ylabel('Amplitude (N/rad)') 
title('Test 3') 
subplot(5,1,3) 
plot(tt4,disp4/100), hold on 
plot(tt4,.13*0.0097*sin(5*W0.*tt4-(2*pi*.06))+-0.027*.15*sin(3*W0.*tt2-

(0.03*2*pi))+.2432*.3*sin(W0.*tt2+0),'r') 
xlabel('Time (s)'),ylabel('Amplitude (N/rad)') 
title('Test 4') 
subplot(5,1,4) 
plot(tt5,disp5/100), hold on 
plot(tt4,-0.005*.15*sin(7*W0.*tt4-(2*pi*.11))+.13*0.0097*sin(5*W0.*tt4-

(2*pi*.06))+-0.027*.15*sin(3*W0.*tt2-

(0.03*2*pi))+.2432*.3*sin(W0.*tt2+0),'r') 
xlabel('Time (s)'),ylabel('Amplitude (N/rad)') 
title('Test 5') 
subplot(5,1,5) 
plot(tt6,disp6/100), hold on 
plot(tt4,.29*0.003*sin(9*W0.*tt4-(2*pi*.23))+-0.005*.15*sin(7*W0.*tt4-

(2*pi*.11))+.13*0.0097*sin(5*W0.*tt4-(2*pi*.06))+-0.027*.15*sin(3*W0.*tt2-

(0.03*2*pi))+.2432*.3*sin(W0.*tt2+0),'r') 
xlabel('Time (s)'),ylabel('Amplitude (N/rad)') 
title('Test 6') 
legend('Observed','Calculated from FRF') 
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Simulink Model: 
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10. Suggestions/Feedback for Improvement of the Lab 
 

-decrease number of questions, because we spent much longer on the analysis on this report than 

the previous ones 
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