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Rapid advances in the reasoning and decision-making capabilities of machine learning (ML) models over the last
decade—powered by the combination of deep neural networks (DNNs), vast amounts of data, and computational
hardware suitable for highly parallel computation—has already led to learning-enabled systems being deployed in
critical areas of society such as transportation networks, healthcare, financial systems, industrial manufacturing,
and even government and judicial decision-making. As the use of learning-enabled systems proliferates, there is
an urgent need to ensure that these systems are deployed in safe and socially beneficial ways. DNNs, however,
are well-known to be brittle—slight changes in the operating environment of these systems compared to the
environment used for training them can lead to drastic degradation in their performance—and opaque—the logic
used internally by the DNNs to perform their reasoning is hard to discern from their structure and parameters.
My work advances principled techniques to address the brittleness and opacity of DNNs and for analyzing the
behavior of learning-enabled systems to evaluate their safety.

My research draws on techniques and perspectives from the formal methods literature, which presents
powerful tools for systematically analyzing the behavior of software systems. Formal methods view programs as
formal, symbolic objects that can be logically analyzed to ascertain if they meet their behavioral specifications.
I have extensive experience in applying and extending formal methods for the analysis of traditional software
systems [1, 2, 3, 4, 5, 6, 7, 8, 9]. My ongoing work on improving the safety of learning-enabled systems using
these methods can be broadly categorized into:

• Certifying the Robustness of DNNs: One way to formally analyze the brittleness of DNNs is using the
notion of local robustness. A DNN f ∈ X → Y is locally robust at an input x ∈ X if ∀x′ ∈ X.||x−x′|| ≤ ε =⇒
f(x) = f(x′). In my work, I have discovered flaws in existing popular methods for certifying local robustness of
DNNs [10, 11], have proposed new approaches for local robustness certification [12, 13, 14], and have clarified
the role of the local robustness guarantee in the context of overall system safety [15].

• Understanding DNN Reasoning by Inferring Concept Representations: A first step towards under-
standing the logical reasoning used internally by DNNs is to infer the relationship between the neuron values
at intermediate DNN layers and high-level human-understandable concepts (for instance, colors or shapes in an
image). I have worked on techniques for extracting such concept representations expressed as logical constraints
over neuron values [16]. I have also demonstrated how such representations can help improve the engineer-
ing of DNNs by enabling fundamental software engineering activities such as automated testing, debugging,
requirements analysis, and formal verification.

• Analyzing the Safety of Learning-Enabled Systems: While logical specifications of safe behavior are hard
to state for DNNs in isolation because of their data-driven nature, they are more readily available for learning-
enabled systems with DNN components. However, formal safety analysis of such systems is challenging; the
environments in which these systems operate can be difficult to model mathematically and existing analysis
algorithms do not scale to these complex systems. I have developed new sound, probabilistic [17, 18] and
worst-case [19] abstractions that enable formal analysis of learning-enabled cyber-physical systems such as
autonomous robots. These abstractions not only enable analysis but also allow synthesis of provably safe
controllers for closed-loop systems that use DNNs for perception. I have also developed efficient techniques for
repairing DNN outputs at run-time [20] in order to ensure safe operation of learning-enabled systems.

In general, my research in the emerging area of Trustworthy AI sits at the intersection of formal methods
and machine learning. The interdisciplinary nature of this research and the leading role played by industry in
pushing the boundaries of learning-enabled systems necessitates a collaborative approach, involving researchers
from diverse backgrounds and industry professionals, to tackle the problems. As a postdoctoral researcher in the
Carnegie Mellon University Security and Privacy Institute, I have already built strong connections with multiple
CMU faculty members as well as with researchers from University of York, UIUC, U Wisconsin-Madison, NASA,
Boeing, SRI, and VMware Research, and have multiple ongoing research projects with these collaborators. As
a faculty member, I will continue developing and strengthening connections with researchers from academia and
industry, and ensure that while my research is built on solid theoretical ideas, it is also grounded in the practical
challenges raised by the most complex learning-enabled systems being built by industry.

Vision

We find ourselves in a moment where it seems very likely that future software, cyber-physical, and socio-technical
systems will regularly incorporate AI/ML components as part of their architecture. My vision is to develop the
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mathematical theory and computational tools needed to be able to efficiently and automatically analyze the safety
of such complex, real-world learning-enabled systems deployed in safety-critical settings. This requires developing
new techniques for testing and verifying computational systems, and I hope to leverage the decades of research
on engineering trustworthy traditional software systems for this challenge. However, unlike traditional systems
where it is at least theoretically feasible to seek a fully formal proof of safety, the lack of specifications for DNNs
and their opaque nature necessitates new kinds of analyses for learning-enabled systems that fuse formal proofs
with empirical evidence. I will develop the formal foundations of such safety arguments. I will also continue
my work on discovering and addressing the brittleness of DNNs, specially for new families of powerful models
such as large language models (LLMs) and multi-modal models. Finally, I believe that resolving the opacity
of DNNs, and understanding the internal computational structures and abstractions that they learn is one of
the grand challenges of our times. Making progress on this problem requires adopting a perspective that, so
far, has belonged to the realm of neuroscience. I envision a future where we have automated tools to analyze
and understand the internals of DNNs, and will continue my ongoing research on understanding DNNs to make
progress towards this future.

Certifying the Robustness of DNNs

Attacks. Ensuring local robustness of DNNs has proved to be a hard challenge. Although DNNs can achieve
state-of-the-art classification accuracies on a variety of important tasks, DNN classifiers with comparable certified
robust accuracies1 remain elusive, even when trained in a robustness-aware manner. Consequently, a number
of post-training approaches have been proposed to reduce the brittleness of DNNs. One popular approach is to
certify local robustness at run-time (inference-time). The DNN abstains from prediction if it cannot be certified
as locally robust at the given, possibly perturbed, input. This ensures that the DNN is only used for prediction
at inputs where it is guaranteed to not be subject to perturbation attacks. However, through my work [10], I
have shown that adversaries can exploit such run-time checks to force the DNN to unnecessarily abstain from
prediction and drastically reduce model utility. Another common approach for improving robustness is to use an
ensemble of DNNs for prediction. I discovered that the popular cascading ensemble approach is unsound [14], i.e.,
when a cascading ensemble is certified as locally robust at an input x, there can, in fact, be inputs x′ in the ε-ball
centered at x, such that the cascade’s prediction at x′ is different from x. I also demonstrated how adversaries
can exploit this unsoundness to attack cascading ensembles.

Defenses. I have contributed to not only identifying attacks but also to developing new certification mechanisms.
In recent work [14], I presented a new run-time robustness certification mechanism that balances efficiency and
precision by combining under-approximate, over-approximate, and exact local robustness certifiers. A weakness
of the local robustness specification is that it only provides a guarantee about the local behavior of the model. In
order to provide a guarantee on global model behavior, I have proposed a probabilistic notion of robustness that
I named probabilistic Lipschitzness. Assuming a distribution over model inputs, the property requires that for
any randomly sampled pair of inputs, with a high probability, it should be the case that the difference between
the outputs of the model (assuming continuous outputs which would be the logits in the case of a classifier)
is bounded by the difference between the inputs. I designed a probabilistic static analysis algorithm, based on
abstract interpretation, for certifying DNNs with respect to this property [12, 13]. Recently, I have also written
an expository article [15] that clarifies the nature of the local robustness guarantee from the perspective of global
model behavior and makes the case that research on training and certification procedures for local robustness
continues to be important even though the progress on training robust models has been slow.

Future Directions. The problem of learning DNN classifiers with high certified robust accuracies remains
unsolved even after intensive efforts by the community over the last few years. The problem has been exacerbated
with the growing popularity of generative models such as large language models (LLMs). LLMs are not only
susceptible to misclassifications due to small perturbations but they also exhibit new failure modes. They are
susceptible to jailbreaking attacks that cause them to ignore their safety guardrails and generate undesirable text.
They are also known to hallucinate, i.e., make up false information. While it is important to develop training-
time interventions that can help learn models without these susceptibilities, progress on such solutions has been
slow. In the meanwhile, organizations have shown willingness to deploy vulnerable models. Run-time mechanisms
are a promising approach to harden existing DNNs against different kinds of attacks. These mechanisms decide
whether to abstain from prediction or not based on the current input, output, and internal model state. In my

1Percentage of inputs where the classifier is accurate and certified as locally robust.
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past research, I have already explored the use of run-time mechanisms for hardening image classifiers against
perturbation attacks, and I am excited to develop new solutions that can harden LLMs.

I am also interested in studying the brittleness of code models—ML models designed to solve coding tasks—to
adversarial perturbations and developing defenses for such models. In an ongoing project [21], I am studying
the susceptibility of LLMs such as GPT-3.5, GPT-4, Claude, and CodeLlama to semantics-preserving adversarial
code perturbations when used for code summarization (i.e., the task of generating the function name given the
function body). Initial results suggest that these models are highly susceptible to perturbations but run-time
defenses based on “unperturbing” the code inputs can be effective. Unlike images, it is possible to leverage static
analyses to transform semantically-equivalent code into a canonical form that is immune to perturbations.

Understanding DNN Reasoning by Inferring Concept Representations

Unlike traditional software applications whose logic is driven from input-output specifications, DNNs are inher-
ently opaque, as their logic is learned from examples of input-output pairs. The lack of high-level abstractions
makes it challenging to interpret the logical reasoning employed by a DNN and hinders the use of standard soft-
ware engineering practices such as automated testing, debugging, requirements analysis, and formal verification
that have been established for producing high-quality software.

I have worked on addressing this challenge by proposing a concept-guided approach to neural network engi-
neering [16]. My work draws on the insight that, in a typical DNN, the early layers extract the important concepts
from the inputs while the later dense layers encode the symbolic, decision-making logic in terms of these concepts.
The proposed approach therefore first extracts high-level, human-understandable concept representations from
the trained DNN. This enables us to reason about the DNN through the lens of the concepts and to drive the
aforementioned software engineering activities.

The concept representations associate neuron values at the intermediate layers with higher-level abstractions
that have clear semantic meaning (e.g., shapes in an image). These high-level concept representations have been
empirically observed to take the form of logical rules (pre =⇒ post) where the precondition (pre) describes a
geometric shape (typically, a convex region or a halfspace characterized by a direction) in the latent space defined
by an internal layer of the neural network and the postcondition (post) denotes the presence (or absence) of
the concept. These formal, checkable rules enable evaluating the quality of the datasets, retrieving and labeling
new data, understanding scenarios where models make correct and incorrect predictions, detecting incorrect (or
out-of-distribution) samples at run-time, and verifying models against human-understandable requirements.

Future Directions. Understanding how DNNs represent high-level concepts and what algorithms they use
internally for solving computational tasks remain challenging open questions that I am very keen to investigate.
Towards the goal of understanding the concept representations learned by a DNN, I have an ongoing project
where we are trying to leverage CLIP, a state-of-the-art multi-modal (vision and language) model, as a powerful
lens for analyzing and understanding DNN latent spaces. This research is aided by recent empirical observations
that the latent spaces of various high-quality DNNs (such as ResNets, Vision Transformers, CLIP, LLMs, and
Diffusion Models) can be mapped to each other via simple linear maps. This opens up powerful new capabilities
for leveraging the high-quality representations learnt by foundation models for analyzing other, smaller models.
I intend to continue exploring this direction in my future research. I also plan to develop formal methods that
leverage the knowledge of concept representations for analyzing the behavior of DNNs with respect to specifications
expressed in terms of high-level, human-understandable concepts.

Towards the goal of understanding the algorithms internally used by DNNs, I have another ongoing project
where we have trained a small model with an attention-based Transformer architecture to solve the 2-SAT problem
for instances with a fixed number of clauses and variable (10 and 5, respectively), and are attempting to reverse
engineer the algorithm that the model has learnt for this task. This style of analysis, referred to as mechanistic
interpretability in recent literature, is in its infancy and currently performed in a fairly ad-hoc manner. I am
interested developing more rigorous tools and techniques, inspired by formal methods and static program analysis
frameworks, that can help reliably undertake such analyses on a variety of models.

Analyzing the Safety of Learning-Enabled Systems

Autonomous systems such as self-driving vehicles, social robots, and recommendation systems are meant to
operate in complex physical and digital environments with unknown dynamics. They need to perceive and reason
about their environments using high-dimensional data streams (such as images) generated by rich sensors (such
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as cameras) and increasingly use DNNs for this purpose. These systems are closed-loop, with components that
perceive, act, and update the state of the system as well as the environment. Formally analyzing the safety of
these systems is challenging because of the complexity of the system components—the DNNs can have millions
to billions of parameters, and mathematical models of other components such as the environment in which the
system operates and the sensors are highly complicated.

Figure 1: Closed-loop System

I have developed symbolic, compositional techniques [17, 18,
19] for formal safety analysis of learning-enabled autonomous sys-
tems that addresses the above challenges and have used it to an-
alyze an experimental autonomous system developed by Boeing
for guiding airplanes on taxiways. The decomposition of this sys-
tem is illustrated in Fig 1. The key insight for dealing with the
complexity is to conservatively abstract away the hard-to-analyze
components, namely, the DNN-based perception (p) and environ-
ment dynamics (e), and replace their composition (p ◦ e) with
either probabilistic or worst-case abstractions. The resulting sys-
tem becomes amenable to formal verification using off-the-shelf (probabilistic) model checking tools. Furthermore,
the artifacts from the verification are leveraged to improve the DNN, resulting in increased performance and safety.

The abstractions I have proposed not only enable analysis but also allow synthesis of provably safe controllers
for closed-loop systems that use DNNs for perception [17]. I have worked on synthesizing such provably safe
controllers for a system intended to maintain driver alertness levels in a shared control Level 3 autonomous car
as well for a system to avoid collisions between mobile service robots. I have also designed efficient techniques for
repairing DNN outputs at run-time [20] in order to ensure safe operation of ML-enabled systems.

Probabilistic Analysis. The probabilistic abstraction [18] yields probabilistic safety guarantees about the
system with respect to safety properties expressed in probabilistic computation tree logic. The key idea is
to replace the DNN, sensors, and environment with a compact probabilistic abstraction built from confusion
matrices computed for the DNN on representative data sets. Developers routinely use confusion matrices to
evaluate DNNs, so the analysis approach is closely aligned with existing work-flows, facilitating its adoption in
practice. The approach is compositional—the probabilistic component is computed separately from the rest of the
system. The size of the probabilistic abstraction is linear in the size of the output of the DNN, and is independent
of the number of the DNN parameters or the complexity of the sensors and the environment. The approach also
leverages local, DNN-specific analyses, such as certifiers for local robustness, as run-time guards to refine the
abstractions and increase the safety of the overall system. As the probabilities in the abstraction are estimated
based on empirical data, they are subject to error. I have explored the use of confidence intervals, in addition to
point estimates for these probabilities, to strengthen the guarantees of the analysis.

Worst-Case Analysis. The worst-case abstraction [19] helps provide non-probabilistic guarantees for system-
level safety properties, expressed as finite state automata or constraints in (fluent) linear temporal logic. The idea
here is take an abductive reasoning approach and analyze the system in the absence of the DNN, the sensors, and
the environment, assuming their worst-case behaviour. The analysis generates assumptions encoding sequences
of DNN predictions that guarantee system-level safety. The assumptions are the weakest in the sense that they
characterize the output sequences of all the possible DNNs that, plugged into the autonomous system, satisfy
the properties. These assumptions can be leveraged as run-time monitors over a deployed DNN to guarantee
the safety of the overall system. Moreover, the assumptions can be mined to extract local properties on DNN
behavior, which in turn can be used for the separate testing and neuro-symbolic training of the DNNs.

Future Directions. There are many open problems in applying formal analyses to learning-enabled systems
deployed in practice. First, the specifications of safety are non-obvious, specially for learning-enabled systems
deployed in socio-technical settings such as recommendation systems, healthcare, judicial decision-making, and
financial systems. Second, while my research so far has focused on systems with discrete dynamics, many systems
can be faithfully modeled only with continuous dynamics. Third, complicated systems such as autonomous cars
use a hierarchy of components, namely, route planners, behavioral decision-makers, motion planners, and low-
level controllers. Such systems are beyond the scope of the techniques I have developed so far. I am very eager
to address these open questions. Designing suitable abstractions is essential for extending formal analyses to
these settings, so my current work presents a natural starting point for tackling these problems. Longer term,
I am interested in developing the formal foundations of safety arguments that fuse formal proofs with empirical
evidence (for instance, about the behavior of components such as DNNs).
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