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primary tool that consumers have for comparative shopping is the shopbot, which is short for shopping

robot. These shopbots automatically search a large number of vendors for price and availability. Typically a
shopbot searches a predefined set of vendors and reports all results, which can result in time-consuming searches
that provide redundant or dominated alternatives. Our research demonstrates analytically how shopbot designs
can be improved by developing a utility model of consumer purchasing behavior. This utility model considers
the intrinsic value of the product and its attributes, the disutility from waiting, and the cognitive costs associated
with evaluating the offers retrieved. We focus on the operational decisions made by the shopbot: which stores to
search, how long to wait, and which offers to present to the user. To illustrate our model we calibrate the model
to price and response time data collected at online bookstores over a six-month period. Using prior expectations
about price and response time, we show how shopbots can substantially increase consumer utility by searching
more intelligently and then selectively presenting offers.
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1. Introduction
Comparison shopping engines, better known as shop-
bots, are a key consumer innovation offered through
the Internet. Shopbots automatically and efficiently
search a large number of online stores, providing a
consumer with nearly all offered prices for a partic-
ular product at a given point in time. For example,
a consumer who visited the popular shopbot Deal-
time.com in October 2001 wanting to purchase Tom
Clancy’s novel Bear and the Dragon would have waited
30 seconds before being presented with a list of
57 offers that ranged in price from $16.45 to $40.22. To
complete a purchase, the consumer must follow one
of the hyperlinks from the Dealtime.com site to the
online store. Compared with the traditional sequential
search process described by Stigler (1961), shopbots
clearly lower the cost of acquiring price information.
Consumers also incur costs from using a shopbot.
These costs include the time to use the shopbot,
the time to wait for the shopbot to respond, and
the additional cognitive effort expended in this more
expansive search process. If the shopbot user ends up
purchasing from his or her favorite store, then using a
shopbot is a less-efficient shopping strategy. So when
deciding whether to use a shopbot, consumers must
evaluate whether the expected gains from search out-
weigh the added costs. In other words, is a consumer
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better off using a shopbot or simply visiting his or her
favorite store?

To address this problem, we develop an analytical
model of consumer utility to compare the expected
gains of search against the expected costs. Gains
include higher utility from identifying lower prices
or faster delivery, and costs include the waiting time
for the shopbot to respond and the cognitive effort
required to compare alternatives. In our model the
shopbot can make the following operational decisions
that influence these benefits and costs: which stores
to query for offers, how long to wait for these stores
to respond, and which items to report to a user. This
cost-benefit framework is used to evaluate the utility
of three alternatives: the traditional shopping process
such as visiting a favorite store; the current shopbot
design, which visits all stores and presents all results;
and an optimized shopbot design.

Using this model and data on prices, wait times,
and customer preferences over attributes, we show
that directly visiting a favorite retailer may yield
higher utility than using a shopbot that searches all
stores and presents all offers. Furthermore, we show
how a shopbot’s design can be optimized to lead to a
higher chance of using a shopbot over simply visiting
a favorite retailer. This improved design improves the
response time of the current generation of shopbots
by using past prices to anticipate future prices and by
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selectively searching stores likely to yield good offers.
Using data collected from 28 stores between August
1999 and January 2000, we find that shopbots can pre-
dict prices with a high degree of accuracy. Addition-
ally, our improved design filters offers to reduce the
number presented to the consumer and subsequently
the consumer’s cognitive effort.

Our research contributes to two distinct litera-
tures—the study of intelligent agents and the study
of choice when the choice set is unknown. In the
last decade, research by computer scientists on shop-
bots, and more broadly on intelligent agents, has
exploded. While many novel technical problems have
been addressed, the economic behavior of these intel-
ligent agents is often quite primitive. For example, the
Kasbah agent has a utility function composed of a sin-
gle element—price—and buys if the price is below a
certain threshold (Chavez and Maes 1996). Drawing
on the economics and marketing literatures, we use a
multielement, compensatory utility function, allowing
the shopbot to make decisions that better reflect actual
consumer behavior. We feel that economic and mar-
keting approaches to consumer behavior have much
to contribute to this developing work in helping intel-
ligent agents make better decisions on behalf of con-
sumers.

In contrast to traditional choice models (Ben Akiva
and Lerman 1985)—where all offers are known to
consumers—in our setting consumers must choose
whether to search using a shopbot based only on
their prior expectation of the shopbot’s choice set. The
consumer will know the shopbot’s choice set only
after the choice to use a shopbot is made. In others
words, the consumer must make a decision not only
about which item to choose from a set, but also the
metachoice of which choice set to choose based only
on their prior expectations of the choice sets.

2. Literature Review

Shopbots present a retailing problem that has been
studied primarily by computer scientists interested in
the design of intelligent agents. However, their inter-
est lies in the technical challenges of agent construc-
tion (Jennings et al. 1998). This work can be classified
into knowledge representation and agent learning
(Poole 1997), agent adapting (Doorenbos et al. 1997,
Pham and Karmouch 1998), and multiagent commu-
nication (Chavez and Maes 1996). The most closely
related research in management science to our shop-
bot design problem is an empirical study of choice at
the shopbot Dealtime.com by Smith and Brynjolfsson
(2001). Although direct work on shopbots has not
been plentiful in the management science community,
there are many streams of research about consumer
behavior that can enhance our understanding of shop-
bot design. We briefly discuss these research streams
and their relevance to our shopbot design problem.

Choice with Uncertain Sets. Our analysis shares
some commonalities with the optimal cutoff rule
defined by Feinberg and Huber (1996), in which a
decision maker must decide a screening mechanism
for which alternatives to consider with imperfect
information. Instead of assuming that consumers will
consider all alternatives offered in a choice problem,
consumers may limit their attention to a smaller set
to reduce effort by explicitly considering the relative
gains of adding another item (Hauser and Wernerfelt
1990; Roberts and Lattin 1991, 1997; Siddarth et al.
1995). The shopbot faces a similar problem, except
that it must act on behalf of the consumer in form-
ing the consideration set, which in turn will become
the consumer’s choice set. In this case the shopbot
must explicitly value search on behalf of the con-
sumer (cf. Moorthy et al. 1997). The basic advantage
of shopbots or, more generally, electronic markets is
to lower consumer search costs (Bakos 1997).

Information Overload and Cognitive Costs. Elec-
tronic environments tend to make it easy to present a
large amount of information to consumers. But from
the consumer’s vantage point, combing through a
long list of items can present a taxing cognitive prob-
lem, resulting in information overload. The notion of
cognitive overload has a long history in consumer
behavior research (Jacoby et al. 1974, Jacoby 1984,
Keller and Staelin 1987). Johnson and Payne (1985)
show that consumers are willing to trade off cogni-
tive effort in the decision-making process for accu-
racy, where cognitive effort can be defined in terms
of elementary information processes (Bettman et al.
1990). These information-processing arguments can
be used to improve the design of electronic interfaces
(Hoque and Lohse 1999). Our approach is to directly
incorporate measures of the cognitive costs of deci-
sion making (Shugan 1980) to offset the benefits of
consumption.

Decision-Support Systems. Computer-aided deci-
sion-support systems, such as shopbots, might be
able to reduce cognitive effort and allow consumers
to make better decisions by ordering and filtering
alternatives (Sproule and Archer 2000). Widing and
Talarzyk (1993) found that ordering alternatives by
a linear weighted average of the product’s attributes
was superior to having users select cutoffs that
would eliminate poor choices or randomly order the
items. Hédubl and Trifts (2000) use recommendation
agents (also using weighted averages of the product’s
attributes) to increase both the accuracy and speed of
consumer decisions. Hoch and Schkade (1996) advo-
cate using decision-support systems to exploit the rel-
ative strengths of human decision makers with tech-
nology that can overcome their weaknesses.
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3. Operational Decisions in Shopbot
Design
The typical shopping process for a consumer begins
with a consumer identifying a product to purchase,
such as a book. We use books here because they are
commonly purchased online, although our technique
can be adapted to other consumer products and
services like music, travel, and auctions. Identification
of the book may happen after surfing the Web,
reading a book review, or browsing an online or phys-
ical bookstore.

Once the consumer has identified a product to
purchase, he or she must decide where to purchase
the product either using a shopbot or directly visit-
ing an online store. Suppose the consumer elects to
use a shopbot. Currently shopbots query all stores
at the time a request is made and report all results
to consumers.! Query time can be substantial, with
the modal time for Pricescan.com and Dealtime.com
being about 45 seconds in 2000. The tails of the dis-
tribution are fat, especially for Dealtime.com, which
times out at three minutes in 10% of the searches. In
comparison, individual stores respond more rapidly,
with modal response times of two seconds, but also
have the potential for slow response.

We conjecture that many consumers may choose to
go directly to an online bookstore and avoid a shop-
bot because they are impatient. Usability research
shows that delays of more than 10 seconds result in
a loss of user attention (Nielsen 2000, p. 44), and con-
sumers place high emphasis on download times (Udo
and Marquis 2001). Instead of querying all stores,
shopbots could use prior expectations about prices to
identify stores that are most likely to have low prices
or high utility. More sophisticated shopbots could
reduce both the average and the tails of their distri-
bution by reducing the number of queries or inter-
rupting searches, making shopbots more attractive to
consumers.

An additional problem with current shopbot design
is the number of alternatives presented. Every addi-
tional alternative presented will force the user to
expend cognitive effort. Given that consumers are
cognitive misers, additional time spent on cognitive
activity is more taxing than simply waiting. One sug-
gestion would be to show consumers the cheapest
offer. However, it is unlikely that the shopbot could
be so confident, because there is a random component
to utility. Nor is the best offer synonymous with the
cheapest offer, because other attributes such as deliv-

!Some shopbots may have direct access to price information
from stores because of special marketing agreements. In these cir-
cumstances query time may be substantially lessened because it
requires a lookup in a local database rather than a query to a store
and appropriate parsing of the HTML document that is returned.

Figure 1 Flow Diagram lllustrating the Operational Decision Process
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ery and the store’s identity may affect a consumer’s
utility. We propose that shopbots could sort the
retrieved offers by utility and offer a consumer fewer
but more relevant choices by eliminating unlikely
alternatives. Fewer alternatives reduce the cognitive
burden to the consumer; however, that also reduces
the utility of the offer set.

For our purposes we assume that our customer
is interested in searching using a shopbot. First, the
shopbot presents the consumer with choices such as
location (country), state (for sales tax purposes), and
currency. Once the consumer makes his or her choices
and initiates the search, the shopbot queries all of the
bookstores in its search set and tabulates the infor-
mation from stores that respond within a specified
period. The shopbot then presents the consumer with
prices and shipping options. These offers are often
ranked by price or the placement fees paid by the
store to the shopbot. Shopbots may filter these stores
for availability and add information about the online
bookstores (e.g., MySimon.com also provides Gomez
ratings). Note that if a consumer prefers that the data
be ranked by some other criteria, he or she can rerank
it based on other data fields such as unit price, store
name, delivery type, and so forth.

Figure 1 illustrates the decision framework we
assume for the shopbot’s operational decisions. First,
the shopbot is given the book title to search. Second,
the shopbot makes predictions about the price and
response time at each store it will consider query-
ing. These prior predictions can be used to deter-
mine which stores to search and how long to wait
for a response. We assume that only realized offers
(i.e., those offers retrieved from a store) can be pre-
sented to consumers. This forces shopbots to actively
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search and not rely on prior expectations.? Finally,
once the process threads® that search the stores are
started, the shopbot must decide whether to wait for
all threads to finish their retrieval or to prematurely
stop the retrieval process. Once all offers are collected,
the shopbot decides which of these offers to present to
the customer. Separating the presentation and query
decisions allows the shopbot to respond to poor initial
predictions.

4. A Utility Model of Consumer
Interaction with a Shopbot

In this section, we formalize the operational decisions
made by the shopbot that were introduced in the last
section. We begin in §4.1 by presenting a random util-
ity model that allows us to quantify the value of a
set of offers and balance this value against the cog-
nitive effort necessary to compare offers within this
set. A model of the shopbot decision process is given
in §4.2. The optimal shopbot design is considered in
§§4.3 and 4.4.

We assume that each customer initiates a search for
a single book and then chooses a single item from
the set of choices. The shopbot makes the decisions
described in §3 about how many stores to query, how
long to wait for responses, and how many of these
responses to present to the consumer. The shopbot’s
goal is to maximize the consumer’s utility. Through-
out this discussion we model the behavior of a sin-
gle consumer. However, we believe heterogeneity in
consumer response is likely to be present. Hence, a
shopbot should estimate the parameters at an indi-
vidual level. Although it is outside of the scope of
this research to estimate the parameters of the utility
model, we discuss how this could be done in §8.

We assume that there is a universe of S stores that
can be queried by the shopbot. The shopbot must
choose which stores to query and how many seconds
(#*) to allow the query to run. The decision of which
stores to query (q) is encoded as an S x 1 vector of
binary decision variables, where g; =1 if the store is
to be queried and g; =0 otherwise. The time it takes
for the ith store to respond is assumed to be a ran-
dom variate T, and the observed value is ;. The corre-
sponding S x 1 vector of observed response times is t.
The S x 1 vector r records whether the store responds
to the query within * seconds, that is r; =1 if t; < t*

2 This assumption could be relaxed so that expected offers could be
shown to the consumer. However, this adds an additional layer of
complexity, because the consumer must now evaluate the probabil-
ity than an offer will be available.

% A process thread refers to a task within a program that can be run
independently from the main body of the program. Most operating
systems allow multiple threads to be run at the same time. In our
shopbot example, the query for each store would be launched as a
separate thread run in parallel.

and r; =0 otherwise. Notice that r is a random vari-
ate that is not chosen by the shopbot directly, but is a
function of realized retrieval times (t) and the shop-
bot’s choice of q and t*. For example, suppose the
ith alternative has been queried, g; = 1. If the realized
time is less than the time at which all uncompleted
threads are to be canceled, t; < t*, then the offer will
be retrieved, r; =1, otherwise even though the store
was queried, its offer will not be retrieved, r; =0.

Once this query is completed, the shopbot decides
which offers to present to the customer. We define the
vector p to represent which offers to present, where
p; =1 if the offer is presented to the consumer and
p; = 0 otherwise. The total number of stores queried,
stores retrieved, and offers presented equals Q, R, and
P, respectively. The sum of the vector elements yields
the number of chosen items, P =3} p;, Q=>"g; and
R =3"r. Notice the following inequality holds: P <
R <Q < S. We assume that only queried stores can
be retrieved, and only those offers that are retrieved
can be offered. This relationship can be represented by
the inequality p <r < q, which is defined in terms of
the element-wise inequalities, 0 <p;, <r; <g; <1. The
requirement that only retrieved offers are presented
reflects current shopbot design, but could be relaxed
in future research to allow predicted offers to be
reported.

4.1. A Random Utility Model

Consumer utility from the ith store is a random
variate, U;, and U={U,, U,, ..., Ug}. We assume that
utility is specific to an individual and likely to be het-
erogeneous, but avoid adding a subscript / to denote
each consumer for clarity. We argue that the consumer
will choose only one item within the set, and therefore
the utility from a set of choices is equal to the utility
from the best alternative or the maximum of the set.
We define the operator U(p) to denote the set com-
prised of the elements of the set U that correspond
with those elements in p that equal 1. Additionally,
we define the operator ((p)) to denote the set of the
indices that correspond to the nonzero elements of p.
For example, if p=[1 1 0 0 1] then {p) =({1,2,5}
and U(p) ={U,, L, Us}.

The utility of the ith offer (U;) is modeled as the
sum of the utility derived directly from the product
(lfl,-) and the disutility associated with the waiting
time for the online stores to respond to the shopbot’s
query (W), the overhead of launching Q threads on
the shopbot, and the cognitive effort (C) associated
with evaluating the set of alternatives:

U=U,—éW—wQ—AC. (1)

Because the latter three terms decrease utility, we
assume ¢,w,A > 0. Additionally, these disutility
terms are not subscripted by i because they are iden-
tical for all items offered. They are a function of the
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set of offers queried and presented. We consider the
construction of each of these variables below.

Utility. We assume that product utility (U,) is the
sum of a component due to a linear function of
the attributes of the product (U;) and a stochastic
component (€;):

A
U;=U+e, whereU =7 B;ay, 2)
j=1

Bij denotes the weight, and a;; denotes the value of
the jth attribute of the ith product. For example,
in our application to bookstores, the attributes of a
book are price, delivery, tax, shipping time, and store
brand name. Note that store attributes like store brand
name, return policies, and availability can be included
as well as product attributes. For example, a dummy
variable corresponding with store brand name can
capture a consumer’s affinity for a popular store like
Amazon. (We discuss this further in §5.3 and Table 6.)
This compensatory utility model allows increases
in one attribute to offset a decrease associated with
another attribute versus a noncompensatory approach
that assumes consumers have rigid thresholds or
reservation prices. A primary benefit of the compen-
satory approach is that it can better capture trade-offs
that consumers make. For example, the higher price
of a book at Amazon may be offset by faster delivery.
The stochastic component is due to unobserv-
able factors or random evaluation error by the con-
sumer and represents the fact that we cannot predict
utility with certainty. We assume that these ¢; are
independently and identically distributed and follow
an extreme value distribution with a zero location
parameter and a scale parameter of 6. The cumulative

distribution of I, = U, +¢; is

Pr[ﬁi <x]= exp{_e*(xfﬁi)/e}. (3)

The mean and variance are E[U,] = U, + y6 and
Var[UI,] = 7262 /6, where v is Euler’s constant (i.e., y ~
0.57722). The choice of the extreme value distribution
is motivated by its extensive use in choice models
(McFadden 1980). Usually the scaling parameter 6 is
set to unity to address the identification of the param-
eter estimates in the utility function when a constant
is included.

Waiting Time. The response time (W) is the time
associated with retrieving the set of offers. This is
the time for the slowest store to respond, max(T(q)),
unless this time exceeds the interrupt time set by the
shopbot when the retrieval threads are launched, t*,
in which case any remaining threads will be ignored.
Hence, response time (W) is defined as

W =min(t*, max(T{(q))). 4)

Server Overhead. We assume that the time for the
shopbot’s server to start and service the threads that

handle the query to an online store is proportional
to the number of stores queried (Q) and is measured
by w. The term w(Q measures the disutility that con-
sumers experience as the result of the total delay in
response time from launching Q threads. For most
situations one would expect that w would be insignif-
icant, because the time to start a thread is on the
order of a few milliseconds; hence w ~ 0. However,
when the system is above its operating capacity dur-
ing peak periods there could be a measurable delay
for the consumer (e.g., perhaps a second or more). An
interpretation of w is delay due to the load on the
shopbot’s server. The inclusion of w > 0 prevents the
situation in which the optimal shopbot design would
launch a query at every store. Under this solution the
shopbot’s server would always be overutilized and
response seriously degraded.

Cognitive Costs. A metric for evaluating the cog-
nitive costs (C) associated with comparing P alterna-
tives each with A attributes was proposed by Shugan
(1980):

C=A-1)(P-1). (5)

The motivation for this formulation is that cognitive
costs are proportional to the number of alternative
and attribute pairs. For example, a set of three alter-
natives with four attributes will take six comparisons.

Consumer Heterogeneity. Although we have sup-
pressed the subscript h for individuals in our nota-
tion, past marketing research shows that individual
heterogeneity is likely to be present and important.
Some consumers may value fast delivery, while oth-
ers think more highly of one store than another. This
heterogeneity can be represented by assuming that
the B, or more properly the individual level value §,
for individual h, follows a multivariate distribution:
By ~ N(B, V). There has been a great deal of work
in estimating this type of hierarchical Bayesian model
in choice occasions (see Rossi et al. 1996). More-
over, an individual consumer’s preferences may vary
across choice occasions, sometimes needing quick
delivery and other times, lower prices. Hence, more
flexible assumptions about these distributions can be
added.

4.2. The Shopbot’s Decision Problem

The shopbot’s decision problem is to maximize util-
ity in a two-step process. First, the shopbot needs
to make decisions about which stores to query (q)
and how long to wait (*) in order to maximize the
expected utility of the offers (p) that it expects to make
to a consumer:

maxE [max(U(p))]. (6)
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At this stage the shopbot does not know either prices
or utility with certainty. Instead, it must predict utility
and its components using past information. In addi-
tion, the shopbot does not need to decide which stores
it will present because this decision can be made after
the offers are retrieved, but it does need to predict
which p is likely to be used.

Second, after t* seconds have elapsed and the shop-
bot has actually retrieved a set of offers (r) it needs to
make a decision about which offers to present (p) to
the consumer:

max E{max(U(p)) | U(n)]. 7)

Notice that at this point the shopbot knows the por-
tion of utility due to the product attributes (U) but
not the portion due to the evaluation error (g;).

In our notation current shopbot design can be rep-
resented as a query to all stores (q =t), where v =
[11-.-1], if the search is interrupted it is not com-
pleted within 30 seconds (t* = 30), and all retrieved
offers are presented (p =r). However, there are 2° pos-
sible combinations that the shopbot could consider for
query. In addition, for any proposed retrieval set there
are many combinations to show consumers. In total,

there are 4
S L[S (i
>3 () (]
i=1 j=1

possible sets that the shopbot could offer the con-
sumer. A universe of 10 stores yields 58,025 combina-
tions, while a universe of 30 stores yields more than
205 trillion combinations. In the next two subsections
we consider the solution to this problem. Because this
is a two-step optimization problem we begin with
the final stage decision and then consider the ini-
tial decision assuming the final stage decision will be
optimized.

4.3. Deciding Which Retrieved Offers to
Present to the Consumer

We begin by considering the shopbot’s decision at
the final stage, where the shopbot must decide which
offers to present to the consumer by choosing p,
which implicitly defines P. At this stage the shop-
bot has already decided which stores to query (this
decision will be considered in §4.4) and retrieved
a set of R offers (r). Because the offers have been
retrieved, the product attributes (price, delivery cost,
etc.) are known at this point; hence the random vari-
ate representing utility, U;, will take the observed
value ii;, where i € ((r)). There is still uncertainty asso-
ciated with the random variates U, due to the con-
sumer’s evaluation error €;. The optimization problem
that corresponds with this stage given in (7) can be

written as

max E[max(U({p)) | (U)()]
= mng[max(lj[(p)) —&EW —wQ
—MA-1)(P-1)|T@®]. ()

This simplification uses the fact that the disutility
terms for waiting time, server overhead, and cog-
nitive costs are functions of the set of alternatives
retrieved, so they can be extracted from the maximiza-
tion function. The expectation is computed and is con-
ditional on the information set {U(r)¢, , A, 8}, which
is suppressed for notational convenience throughout
this subsection.

Clearly, the best alternatives to present are those
with the highest expected utilities. To find the set of p
offerings that maximize the expected utility of this
set, we order the retrieved offers by their expected
utilities. The utilities of the alternatives in the
offer set are denoted by {iig.z, ..., ig_py1.r}, Where
g.g = Ug_1.g = -+ > Ug_p,q.g- This reduces our prob-
lem to a decision about how many offers to present
(P). Given P, the elements of p are determined by the
relation p; =1 if r,=1 and U, > Uy » +1.r, otherwise
pi=0.

The properties of the extreme value distribution
imply that the maximum variate, I = max(Uyg.g,
Ug_1.rs -+ Ug_py1.r), will also follow an extreme
value distribution with location of 6 In(exp{iiz.z/60}+
exp{iig_1.z/0} + - - - + explilg_p,1.z/6}) and scale of 6.
(Note that this simplification depends upon the i.i.d.
assumption of €;.) Hence, the expected utility of the
offer set is

E[max(U(p)) | P, U(r)]

P
= 91n<zexp{ﬁRi+1:R/9}> +0y—EW—wQ

i=1

—MA-1)(P-1). )

The ordering of the items to include is determined
by the sorted order of iiz_;,,.z- To determine the num-
ber of elements to include in this set, notice that the
two terms that involve P, In(}_ exp{iiz_;.1.z/60}) and
—A(A — 1)(P — 1), are monotonically increasing and
monotonically decreasing in P, respectively. There-
fore, we can find the optimal value for P by first
evaluating at P =1 and subsequently incrementing P
until the expected utility begins to decline. This yields
the following stopping rule to determine the optimal
value P*:

E[max(U(p)) | P=P*+1, U(r)]
< E[max(U{p)) | P = P*, I_J(r)]
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exp{ilg_p:.g/0}
Zle expliig_i1.r/0}

cop[A=D)

(10)

In other words, find the largest P such that the rel-
ative gain from adding this alternative exceeds the
added cognitive costs to the consumer of its evalu-
ation. The vector of offers to present (p) is implic-
itly defined by setting those elements that correspond
with the indices of {iig.g, ..., ig_p+g} to unity and
zero otherwise.

Special Case with Identical Offers. To proceed
further, we assume that all offers have the same
expected value, iiz_;, 1.z = il, but the evaluation in the
utility term is stochastic. Therefore, the question is not
which offers to present (because they are identical),
but how many. Under this assumption we can sim-

plify (9) as
E[max(U(p)) | P, it; = ul]
=u+0(y+log(P)) — W —wQ
~MA=1)(P—1). (11)

If we allow P to take noninteger values, we can
differentiate (11) with respect to P and find the opti-
mal value 0

“Aa-

Notice that the optimal set size increases as cognitive
costs decrease (A — 0_) or the variance () of utility
increases. Additionally, we can then show that (11)
creates an upper bound of (9) by setting u to the max-
imum value, iz, and that (12) bounds the solution
in (10).

Example with Identical Offers. To illustrate these
relationships, suppose the average book generates
10 utils with a standard deviation of about two utils,
which corresponds with 1 =9.1 and 6 =1.6. Addition-
ally, assume that a book has four attributes (brand,
price, shipping cost, and delivery time), A =4, and
set £ and w to zero without loss of generality in this
example. This means P =1.6/3A. Suppose each addi-
tional unit of cognitive effort decreases utility by 0.1
utils (A =0.1). The optimal number of offers to present
to the customer is 5.3, or about five books. Doubling
the effects associated with cognitive effort (A =0.2)
will reduce the set to P* =2.7 or about three books.
Again, suppose A = 0.1. Then, the utility generated
by offering five books (the optimal number) is 11.4.
If the shopbot were to present 20 books, then utility
would drop by 20%. In summary, ignoring cognitive
costs and naively presenting all offers retrieved is not
optimal.

P* (12)

44. Deciding Which Stores to Query and
How Long to Wait for a Response

At this initial stage the shopbot must decide which
stores to query, q, and whether those queries should
continue until completion or whether they should be
interrupted prematurely at time t* as stated in (6).
We assume that the shopbot will make the optimal
decision about which retrieved offers to present as
discussed in §4.3. Neither the retrieval times nor the
offers are known, as in the previous subsection, so
both are assumed to be stochastic variates. The util-
ity from the product attributes (price, delivery time,
availability, etc.) is the random variate U; and not
the observed value i;, as in the previous subsection,
where i € ((q)). We assume that response time and
utility are independent, so discount stores will return
responses as quickly as expensive stores. Empirically
this assumption will be justified by the discussion in
§5. Formally we can make use of the result from the
previous section and rewrite (6) as follows:

E[max(U(p))] = E[E[max(U(p)) | U(n)]]. ~ (13)

Equation (13) makes use of the following relation:
E[X]=E[E[X | Y]]

The solution of the inner expectation was given
in (9), and we will assume that p is chosen optimally
by sorting the retrieved values and using the first P*,
where P* is a function U(r) as defined in (10). The
outer expectation requires integrating over the distri-
bution of product utility and retrieval times and sum-
ming over all possible permutations of retrieval sets
weighted by their probability:

E[E[max(U(p)) | U()]]

=2 _Pr[r]E [9 1n<§ eXP{U<r>R,_i+1:R,/0}>

reg i=1

—AMA-1)(Pr-1)]| r} +0y—EEW]—wQ, (14)

where 7 denotes all possible 29 permutations of the
query set, Pr[r] denotes the probability that query
set r is retrieved, R, = Y r; = r'v, which is the num-
ber of retrievals made from query set r, P denotes
a stochastic variate that represents the optimal num-
ber of offers to present given the retrieved set r,
and I_J<r>Ry_i +1:r, denotes the R,_; ; ordered statis-
tic from the set U(r) with R, elements. The expec-
tation is computed conditional on the information
set {q, t*, ¢, w, A, 0, B}, which is suppressed for nota-
tional convenience hereafter.

Additionally, to avoid problems when the rare
occurrence of no offers being retrieved, we assume
that one inferior offer is always available. In our book-
store example this will be a special order that is twice
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the list price and takes six months to receive. As long
as any offer is retrieved this offer is dominated and
will not be considered or presented.

The probability that any member of 7 is retrieved
can be computed in the following manner. Consider
the probability that all items are retrieved. It equals
Pr[ty) <t tyy <, ..., tyq) < t*], where i[j] denotes
the jth element of ((q)). The probability that all items
except the first one is retrieved is Pr[t;;; > t*, t;p; < t*,
.-+, tjgy < t*]. The remaining elements can be com-
puted in a similar manner. Notice that F has 2,
members and its evaluation leads to a computational
problem because of the large number of combinations.
A set of 10 stores yields 1,024 combinations to evalu-
ate, while 30 stores will lead to more than one billion
combinations. Before considering the optimal solu-
tion we discuss distributional assumptions for wait-
ing times and utility.

Waiting Times Are Exponentially Distributed.
Equation (14) requires the computation of E[W]. To
proceed further we assume that retrieval times follow
an exponential distribution and are independently
and identically distributed. This assumption is sup-
ported by our empirical analysis of §5.2. The prob-
ability of observing a query to a selected store is
denoted by 1 = 7(t*) = Pr[T; < t*] = 1 — exp{—t*/{}.
The expected time to observe a queried store is
E[T;]=¢ with variance Var[T] = {% The expected
time to observe the set of queries is E[max(T(q))] =
¢>(1/j), where j goes from 1 to Q. For example, if
the expected time to observe one store is two seconds,
then the expected time to observe a set of ten stores
is 5.9 seconds. The density function of the maximum
variate is Pty qn[t] = Q7 ()% exp{—t/{}/{. We can
derive the expected value of W, which can alterna-
tively be described as the maximum from a distribu-
tion of exponential variates censored at #*:

E[W] = E[min(max(T(q)), t*)]

- " Qr(H expl—t/2)/L dt
+ (1= 7(t)9). (15)

If t* < E[max(t(q))] then E[W] = t*. The probability of
observing an individual member r from set 7 is

Pr[r] =% (1-7)2® where R=>r. (16)

Utility Is Logistically Distributed. The expecta-
tion in (14) implicitly requires the integration of (9)
over the distribution of U(r). To proceed further we
make additional assumptions about the distribution
of product utility. The natural choice is to assume that
the attributes, such as price, are normally distributed
at each store, and therefore utility itself is normally

distributed. The problem is that the distribution of
the order statistics from a normal distribution does
not yield closed-form solutions. A reasonable approx-
imation to the normal distribution is the logistic
distribution.* If we assume that the attribute compo-
nent of utility is identically and independently logis-
tically distributed across stores, U; ~ L(w, o) for i =
1,2,...,S. The cumulative distribution function of Hi
is defined as

Pr[Uin]=[1+exp{—x?7'M”_l. (17)

The mean and variance of the logistic distribu-
tion are E[U;] = u and Var[U] = ¢®>7?/3. The mean
of the maximum variate of a logistic distribution
is E[max(Ug.)] = o(W(R) + 7) + a, where i(x) =
I'"(x)/I'(x). Balakrishnan (1992) presents a full discus-
sion of the properties of the logistic distribution.

We can now bound the component of the expecta-
tion in (14) that involves the logarithmic function:

(S ) ]

i=1

> E[U.g | 1] = o ($(R) + ) + . (18)

This lower bound can be derived by factoring Uy,
and showing that the term in the logarithmic func-
tion always exceeds unity. Intuitively, we are focusing
on the “best” single product; if we could know the
consumer’s choice with certainty (6 — 0), then this
inequality becomes an equality.

Solution. A general analytical solution to the max-
imization of expected utility given in (12) with respect
to Q and t* is not known. However, we can derive
a reasonable approximation for certain cases. First,
we consider the case where some queries may be
prematurely interrupted when their response time is
longer than t*. Second, we consider the more restric-
tive case where response time is not interrupted, but
all queries that are launched are allowed to execute
until completion.

Time is bounded (t* constraint is active). If we make
four simplifications—(a) any uncompleted query
threads are interrupted at time t*; (b) P* is replaced
with the approximation defined in (12); and (c)
we use the lower bound of expected utility from
Equation (18); and (d) we use t* to approximate W,

* The distribution of the logistic distribution has longer tails than
the normal and is more closely approximated by a t distribution
(Mudholkar and George 1978). Also, the variance of the standard
logistic is 7?/3, so the variance parameter of the normal distribu-
tion should be scaled by 7/3 before comparing it to the logistic
distribution’s scale parameter (for more discussion see David 1981,
pp- 77-78).
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then the expected utility in Equation (14) yields
E[E[max(U(p)) | P*, U(n)]]

Q
Ay (9)#1‘(1 — o) ) )+ (1= )%,
j=1 \J

—(0=AA-1)+0y—E&"—wQ, (19)

where u, is the utility from the alternative when no
offers are made, and we assume that u, < n. The
assumption that times and utility are i.i.d. is critical
in this simplification, because both the expected util-
ity and the probability the set is realized depend only
upon the size of the set and not the stores selected.
The optimal solution for +* given Q is

r=0n({ G e Ter@) }_UQ) 20

The solution for the optimal value of Q can be found
by substituting (20) into (19) and enumerating the val-
ues of Q beginning with unity until the expected util-
ity begins to decline.

Time is not bounded (t* — o0). If we make
three simplifications—(a) all query threads that are
launched are allowed to run to completion then 7 —
1; (b) the value of P* is approximated using (12);
and (c) we approximate E[W] = E[max(Ty, ..., Ty)] ~
{ In(Q)—then the expected utility found in (12) yields

E[max(U(p))]

~ E[Oln(PZ* exp{le_i+1;Q/9}>:|

—AMA-1)(P"—-1)+0y—€{In(Q) — wQ. (21)

Replacing the expectation of the logarithmic term
in (21) using the lower bound in (18) and using the
approximation ¥/(x) =~ In(x + 0.5) when x > 2 yields
the following solution:

_ —2E+20+ 0+ /8lEw+ (20 —20¢ + w)?
o 4w '

If either ¢ or { are small relative to o and w < o,
then Q* =~ o/w. In other words, the number of sites
to query is directly proportional to the variance of
utility and inversely related to the waiting time asso-
ciated with the computational overhead of starting
additional threads.

Q" (22)

5. Empirical Study of Online Book
Prices, Store Response Times, and
Utility

In this section, we consider calibrating the parameters

of the shopbot model proposed in §4. We begin by for-
mulating a predictive model of price in §5.1, present

an analysis of store response times in §5.2, and discuss
the part-worths of the utility function, the disutility
of waiting, and cognitive costs in §5.3. A simulation
study of utility using these parameters is presented
in §6.

5.1. Predicting Prices
We analyzed the prices at 28 online bookstores for
60 books that were on the August 8, 1999, New York
Times bestseller list over the course of a six-month
period, from August 1999 to January 2000. During
this period, even if the book fell off the bestseller list
we continued to collect prices throughout the period.
These books were part of a broader data set that
included computer bestsellers and random books. We
elected to focus on New York Times bestsellers because
they had the highest variability in price. The data on
prices were collected using automated agents from
two major comparison-shopping engines and a num-
ber of individual stores. (For a further discussion of
this data set and its construction, see Clay et al. 2001.)
Figure 2 illustrates typical price behavior for a
selected book at several online bookstores. A striking
feature of the price series is the persistence of prices.
In fact, prices may remain at the same level for sev-
eral weeks. Note that most price increases were pre-
cipitated by the book falling off the New York Times
bestseller list. The book being added to the best-
seller list results in a price decline. However, these
effects are not always automatic and there can be
delays of several days or weeks before any change
results. Additionally, some stores, like Buy.com, will
respond to changes in prices at another store with
high likelihood, while Amazon.com seems to act more

Figure 2 Price Changes at the Three Top Online Booksellers for a
Fiction Hardcover Book (August 1999-November 1999)
= Amazon H

wo_| e Borders

- === Barnes & Noble
S e | T R

Q,

® ©

f i

12

T T T T T T T
08/16/1999 09/13/1999 10/11/1999 11/08/1999
Time
Note. The three events marked by A, B, and C denote when the best-
seller dropped off the bestseller list on September 19, moved back on
September 26, and moved off again on October 10, respectively.
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like a price leader. In summary, price changes occur
fairly infrequently, and only one quarter of all prices
changed again within an eight-day period. The aver-
age time between price changes in our dataset is
about four weeks.

These observations suggest that a shopbot can
predict prices with a fair degree of precision. The pre-
dictability of prices means that shopbots can lever-
age information from previous retrievals to improve
searches by selectively ignoring high-priced stores (or
stores with low expected utility). We propose a formal
statistical model to capture these stylized facts:

relprice,

relprice, , , ; with probability pg,,
= d)sO + d)strelprices, b, t—1 + S;hxsbt + esbt (23)
otherwise,

where relprice;, denotes the price at store s for
book b on day t relative to its list price (relprice,,, =
price,,, /listprice,;,) and x,,, denotes a vector of covari-
ates used to forecast price changes. We assume that
list prices do not change through time and are known.
Relative prices are used to enable direct comparisons
across stores and books. Also, note that we use the
actual price of the product excluding shipping costs
and tax, which were found to be deterministic in our
sample.

If prices are changed, the magnitude of the price
change is modeled as an autoregressive transfer func-
tion in (23). In our application the covariates used
for forecasting (x,) are four indicator variables: uph,
downh, upp, and downp that indicate, respectively, if
the book is hardcover and moved onto the bestseller
list, if the book is hardcover and moved off of the
bestseller list, if the book is paperback and moved
onto the bestseller list, and if the book is paperback
and moved off of the bestseller list. The MLE esti-
mates for predicting the relative prices are given in
Table 1. For the most part when the book moves
off of the bestseller list, the expected price increases,
and when it moves back onto the bestseller list the
expected price declines. The magnitude of the effect is
larger for hardcover than paperback books. The over-
all fit of the models is moderate due to the fact that
some price changes occur for inventory management
issues, periodic price revisions, or other unobserved
factors.

We assume that the number of days between a price
change follows a negative binomial model (Hausman
et al. 1984)

Pr[nsbt] =

F()’sbt + nsbf) ( n
F(Ysbt)r(nsbt + 1) 1 + n

where ng, is the number of days between price
changes, and while the y parameter is allowed to

> e, @)

Table 1 Estimates of the Effects on Magnitude of Price Changes
Store Constant Lag price  uph  downh  upp  downp
1BookStreet 0.24 0.07 -0.27 017 -026 -0.02
(0.05) (0.12)  (0.13) (0.06) (0.07) (0.06)
Amazon.com 0.17 0.69 045 0.23 —0.58 0.43
(0.04) (0.08)  (0.03) (0.04) (0.03) (0.04)
Barnes&Noble  0.43 -0.30 -0.03 -0.23 0.19
(0.04) (0.10) (0.05) (0.07) (0.05)
Borders 0.24 0.08 . 011 -0.30 0.32
(0.07) (0.10) (0.11)  (0.25) (0.10)
Buy.com 0.87 0.01 -0.82 -053 -0.74 -0.41
(0.29) (0.08)  (1.54) (0.58) (1.03) (0.57)

Note. Standard errors of the estimates are given in parentheses below the
estimates.

vary as a function of the covariates, y,,, = exp{z),,a,}.
This equation implicitly defines the probability of
a price change from (23). The expected number of
days until a price change is y,,/n and the variance
is y4:(1 + m)/m*. In our application the covariates
used for predicting when price changes occur (z)
include the days since the book’s bestseller status
has changed and variables that correspond with the
number of days since a price change at the major
online bookstores. The maximum likelihood estimates
of the parameters for the top five online stores are
given in Table 2. Note that days since a change in
the bestseller status has a significantly positive impact
for Amazon.com and Buy.com. This implies that the
longer it has been since the bestseller status has
changed, the less likely a price change is; in other
words, if a price change is to happen, it will occur
soon after a price change. For most stores the timing
of price changes does not appear to be statistically
significant.

Our primary interest in model (23) is its ability to
predict future prices given past pricing information.
To predict price we can join the two conditional com-
ponents together. Consider the expectation of the one-
step ahead, price forecast:

E[relprice, , ,,, | relprice ]
= Ps,p, rarelpricey, +(1—p p 1)

“(by + Parelpricey, + 8., 5 111).  (25)

This expectation is equal to the probability that a price
change has occurred times the conditional expecta-
tion plus the probability that a price change has
occurred times the probability of no price change.
The probability of a price change can be computed
from the negative binomial distribution given in (24).
Additionally, if x and z are not known, then forecasts
can be used instead. Subsequent forecasts can be cre-
ated by recursively applying (25). The eventual fore-
cast model under stationarity, or the forecast when no
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Table 2 Maximum Likelihood Estimates for Time Between Price Changes
Days since change Number of days since change in price at...
Store ) Constant in bestseller status 1BookStreet Amazon.com Barnes&Noble Buy.com Borders
1BookStreet 0.043 0.005 0.009 —0.005 0.003 0.000 0.005
(0.007) (0.177) (0.005) (0.006) (0.003) (0.003) (0.002)
Amazon.com 0.059 0.032 0.006 0.006 —0.001 0.002 0.003
(0.009) (0.148) (0.003) (0.004) (0.004) (0.003) (0.004)
Barnes&Noble 0.053 0.052 —0.003 0.010 —0.005 0.003 0.009
(0.008) (0.153) (0.005) (0.002) (0.005) (0.002) (0.002)
Borders 0.034 0.017 0.002 0.003 —0.002 0.001 —0.001
(0.005) (0.152) (0.006) (0.005) (0.006) (0.005) (0.003)
Buy.com 0.039 —0.158 0.008 0.003 0.005 —0.006 0.004
(0.005) (0.128) (0.002) (0.002) (0.002) (0.002) (0.002)

Note. Standard errors are given in parentheses below the estimates.

information other than the list price is known, follows
the usual autoregressive relationship:

o E
E[relprice,,] = %";_s—bd)[x@bt] and
. (26)
S
Var([relprice ] = ——-.
bt 1— g2

Table 3 presents the mean and standard devia-
tion of expected prices under the assumption that

Table 3  The Mean and Standard Deviation of Prior Price Expectations
for Each Store Without Any Previous Price Information
Store Mean Std. Dev.
1BookStreet 0.76 0.13
A1 Books 0.75 0.06
Alldirect.com 0.63 0.05
AlphaCraze.com 0.64 0.09
Amazon.com 0.63 0.13
Baker’s Dozen online 0.99 0.06
Barnes&Noble 0.63 0.13
BCY Bookloft 0.72 0.07
Bigwords.com 0.77 0.06
Book Nook Inc. 0.99 0.05
Bookbuyer’s Outlet 0.62 0.13
Books.com 0.70 0.09
Booksamillion.com 0.59 0.12
Booksnow.com 0.88 0.06
Borders 0.62 0.13
Buy.com 0.52 0.10
Cherryvalleybooks 0.89 0.02
Classbook.com 0.96 0.06
Codys Books 0.99 0.06
Computerlibrary.com 0.99 0.06
Fatbrain 0.65 0.15
HamiltonBook.com 0.70 0.07
Kingbooks.com 0.73 0.04
page1Book.com 0.99 0.07
Rainy Day Books 0.89 0.05
Rutherfords 0.89 0.05
Varsitybooks.com 0.75 0.05
WordsWorth 0.83 0.10

Note. These estimates are relative to the list price, and the predictions are
normally distributed.

no information is known about the store (as defined
by Equation (26)). For example, without any specific
information about past book prices, other than, say, a
list price of $19.99, our best guess is that Buy.com will
be cheapest with an expected price of $10.39 and a
standard deviation of $2.00. Note that cheaper book-
stores tend to have higher variance than more expen-
sive stores.

The accuracy of the price predictions depends
on the frequency with which the shopbot chooses
to gather prices from the stores. For example, if
the shopbot performs a weekly search of prices at
Amazon.com on Friday, then prices are known with
certainty at that moment, but the shopbot must pre-
dict prices between these weekly updates. The qual-
ity of the predictions will depend upon the frequency
with which the shopbot queries the sites. The corre-
lations between the actual and predicted price (stan-
dardized by its list price) if prices are collected every
3, 7, 14, and 30 days, or only once, are 0.987, 0.950,
0.914, 0.819, and 0.297, respectively. Clearly, good
price forecasts can be generated without having to
query the store. As the frequency of price sampling
goes down, the forecasts start to deteriorate. Even
with month-old price information, however, there is
a correlation of 0.82, which implies a shopbot should
be able to make an educated guess about the cheap-
est stores with even fairly old information. Decreasing
the frequency of sampling lessens demands on net-
work traffic (and increases demands on an internal
database to look up past prices) but would also lessen
the predictive accuracy. This trade-off between accu-
racy and speed needs to be considered by a shopbot
when choosing an optimal frequency to gather prices.

5.2. Analysis of Store Response Times

Stores typically respond quickly to requests from a
user or shopbot. The time for Amazon.com’s server
to respond to 5,700 queries during April to July
2000 between midnight and 6 AM were analyzed.
For the most part responses are quick, with almost
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80% of requests being retrieved in less than two sec-
onds. However, at certain times network congestion
or server overload can cause substantial delays or
even no response. In fact, in the remaining 20% of
requests Amazon.com could take up to 90 seconds to
respond. Additionally, about 4% of requests are not
returned within a 180-second period. The response
times at BCY Bookloft and Barnes&Noble are simi-
lar. We found that response time can be modeled well
by assuming that there is probability p that the store
responds. Given that the store responds, the time
between the user request and the store response is
well described by a gamma distribution. Estimates of
the probability of no response and the gamma param-
eters for three major stores are given in Table 4.

If we assume that retrieval times across stores are
independent, then we can evaluate the time to retrieve
information from not only a single store but a set
of stores. The time to retrieve a set of Q stores will
be determined by the time for the slowest store to
respond. The mean of the maximum response time
can be computed directly. To simplify these calcu-
lations we ignore the fact that some stores will not
respond and assume that response time is identically
and independently distributed as a gamma distribu-
tion with location and scale parameters of 0.5 and 5,
respectively. Therefore, the mean and standard devia-
tion of a single response is 2.5 and 3.5 seconds, respec-
tively, which is similar to our sample in Table 4. The
expected time for five stores to be queried is 6.9 sec-
onds, while a set of 10 stores takes 9.5, and 30 stores
would take more than 14 seconds. (These numbers
are sample estimates using a simulation with 100,000
draws.) Note that as the number of stores increases
the mean goes up, proportional to the logarithm.
Therefore, a simple retrieval strategy of searching for
all stores may not be a good one, because the benefits
of retrieving an additional store need to be balanced
against the expected benefits of retrieval.

5.3. Calibrating the Utility Model, Disutility of
Waiting, and Cognitive Costs

In this subsection, we consider the calibration of the

parameters associated with our utility model. Our

purpose is to choose reasonable values that will be

used for illustrative purposes in a simulation study

that will be presented in §6. We do not claim that

Table 5 Parameter Estimates of a Multinomial Logit Choice Model for
Consumer Purchases at Dealtime.com
Parameters Estimates
Price
Item price —0.194 (0.001)
Shipping cost —0.368 (0.002)
Expected days until delivery —0.019 (0.001)

Effect of branded retailers

Amazon.com 0.477 (0.020)
Barnes&Noble 0.177 (0.023)
Borders 0.266 (0.020)

Notes. The standard errors of the estimates are given in parentheses.
Source. Smith and Brynjolfsson (2001)

these settings are correct or even representative. Their
purpose is to illustrate potential effects of different
operational strategies on consumer utility.

The parameters for the utility function measure
the implicit trade-offs consumers are willing to make
when evaluating a product. These parameters can
be estimated directly from previous purchases at
the shopbot or through a conjoint task. We use the
maximum likelihood estimates reported by Smith
and Brynjolfsson (2001) and given in Table 5. They
measured the utility associated with the following
attributes about each book: total price, expected
number of days until delivery, and an indicator for
brand if it is sold by one of the three large book-
sellers (Amazon.com, Borders, and Barnes&Noble).
Smith and Brynjolfsson (2001) use actual purchase
data from a panel from more than 20,000 unique vis-
itors during late 1999.

One method for interpreting these coefficients is
to make relative comparisons. For example, these
estimates imply that for every additional day that
it takes to have a book delivered, the store needs
to decrease its price by $0.098 (=—0.019/—0.194) to
keep utility unchanged. To properly compensate a
consumer for an extra two weeks in delivery time,
the store would need to decrease the price by about
$1.37. Note that consumers are almost twice as sen-
sitive to a dollar paid for shipping as they are to the
item price (this implies it is better to charge higher
prices and bundle shipping costs with the book price).

Table 4 Estimates of Gamma Distribution and Probability of Response for Selected Bookstores

Number of Probability Gamma parameters Moments
Store observations of response Location (a) Scale (o) Mean Std. Dev.
BCY Bookloft 7,803 0.979 0.452 5.61 2.53 3.77
Amazon.com 5,739 0.960 0.775 3.47 2.69 3.05
Barnes&Noble 2,224 0.950 0.443 5.94 2.63 3.95
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Also, the value of Amazon.com’s brand name can be
imputed from the model parameters to be $2.46 more
(=0.477 /—0.194) than the value of an less-well-known
bookstore. All three major booksellers show substan-
tial brand equity.

Our model postulates a certain amount of disutility
due to waiting one second (w), waiting for the shop-
bot server to launch a thread due to system conges-
tion (§), and the cognitive costs associated with mak-
ing comparisons in a final offer set (A). Unfortunately,
the data from Smith and Brynjolfsson (2001) do not
include waiting times, nor do we have access to
any data that would allow us to empirically answer
this question. However, previous studies of Internet
behavior indicate that there is disutility to waiting.
Konana et al. (2000) conjecture that there is a direct
trade-off between waiting time and costs. Dellaert and
Kahn (1999) show experimentally that waiting can
negatively affect evaluations of websites. Their results
also suggest that waiting is not purely a function
of time but can be mediated by other factors. How-
ever, for simplicity we have assumed that waiting is
a simple trade-off between time and dollars. Johnson
et al. (2002) argue that the more a website is used,
the faster users can use the website in the future due
to improved knowledge about the website’s design.
They estimate that after five visits to Amazon.com,
the user reduces his or her time costs by almost $1.50
per session (or about $0.40/minute) versus having to
learn a new online bookstore.

Our analytical framework permits arbitrary values
for w and ¢, but to illustrate our technique we choose
plausible settings for the simulation in the follow-
ing section. We assume that the value of time to
a consumer is $0.01/second. This translates into a
yearly wage of about $70,000. Therefore, every addi-
tional second of waiting diminishes utility by 0.002
utils (=%$0.01/sec x —0.194 util/$ ~ —0.002 util/sec),
so we let £ =0.002. Suppose the overhead for launch-
ing an additional thread is 10 milliseconds; a cor-
responding value for w is 0.00002. If the system is
at high utilization, then launching and servicing an
additional thread could take a substantial amount of
time, and w could be substantially higher during high
utilization. Finally, we assume that a consumer can
make one comparison per second, but attaches 10
times the value to a second of cognitive effort ver-
sus a second of waiting: A = 0.02. For example, sup-
pose we ask a consumer to evaluate a list of three
items with four attributes; this would require (3 — 1) x
(4—1) = 6 comparisons and have an implicit cost
of $0.60 (=0.02 util/comparison x 6 comparisons <
—0.194 util/$). In comparison, if the consumer was
simply waiting six seconds, the implicit cost of time
would be $0.06.

6. Empirical Illustration of
Optimal Shopbot Design

In this section, we consider a simulated example
using the data presented in the previous section to
show how the design of the shopbot can influence
consumer utility. In these simulations we can solve
the shopbot’s operational problem empirically, which
allows us to move beyond some of the assumptions
that we were forced to make in §4 to derive ana-
lytical results. Specifically, we assume prices are nor-
mally distributed and not logistically distributed; we
compute the order statistics of utility empirically and
do not need to rely upon approximations; the offers
are no longer assumed to be identically distributed;
and the distribution of time to retrieve an offer is
gamma distributed and not exponentially distributed.
These simulations allow us to assess the probability
that a consumer will prefer shopping at their favorite
store rather than using the present or optimal shopbot
designs. Furthermore, we perform a couple of simu-
lations to assess the sensitivity of these results to our
parameter settings.

The set of 28 online stores is given in Table 3.
Each store will likely return several offers with dif-
ferent shipping terms. To construct an actual offer,
the shopbot needs to search the online store, find
the price, and add the shipping cost. For example,
if the list price of a book is $19.99, and the actual
price at 1BookStreet is $15.19, then the book could be
delivered by USPS parcel post with a delivery range
of 6-21 days (expected time to deliver is 13.5 days)
for a total cost of $15.19, or via UPS 2nd day with
an expected delivery in nine days for a total cost of
$27.14. If just these two offers were presented to the
consumer, the utility of these offers would follow an
extreme value distribution with locations of —3.204
and —7.516, respectively, and a common scale param-
eter of unity. The probability that a consumer would
chose the first offer would be 98.7%. Clearly, the first
alternative dominates the second and illustrates why
not all offers need to be presented to the consumer.

We now consider the consumer’s utility under three
scenarios using the parameters specified in the pre-
vious section. The first scenario is that the shop-
bot searches all stores and presents all results (this
is the current decision rule). The second scenario is
that the shopbot knows prices with certainty (we
assume that the price of the book is equal to its
mean and the list price is $19.99). The third sce-
nario that we consider is the case where prices are
not known with certainty, but instead the shopbot
assumes a priori prices are normally distributed with
the means and standard deviations given in Table 3.
In both of the latter two scenarios we assume that
the shopbot will select the optimal set of offerings to
present to the consumer. To simplify calculations we
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assume that all stores respond to a query (as opposed
to a 95% probability that the store will respond).
This is not a strong assumption, because all stores
have similar probabilities of responding and the prob-
ability of no response is independent of the offer
returned. Incorporating the probability that the store
will not respond reduces the utility of all scenarios.
Additionally, we assume that a priori we can deter-
mine the optimal order of stores to query by sorting
on the expected utility (see the online appendix at
mansci.pubs.informs.org/companion.html for a dis-
cussion). Finally, in our simulation if one offer from
a store is retrieved, then we assume that all offers
from that store are retrieved without any extra delay
or cost, because delivery costs are deterministic.

The expected utility for the three scenarios is plot-
ted in Figure 3 against the number of stores that are to
be queried. The stores are ordered according to their
best offer. For example, if only one store could be
searched, then the shopbot would only check 1Book-
Street. Presumably this would be the consumer’s
favorite store (denoted by #). Note that the utility for
the current shopbot peaks after five stores (denoted
by M) and then starts to decline quickly due to the
high cognitive effort placed on the consumer of com-
paring so many alternatives. In fact, if consumers
were asked to choose between the current shopbot
design that queries all stores and presents all offers
(denoted by @) and simply visiting their favorite
store, we would expect that consumers would choose
their favorite store with a probability of 90%. In
contrast, the optimal shopbot designs are not penal-
ized for querying a larger number of stores, because

Figure 3

they will only select the best offers to present to the
consumer. The optimal designs under the assump-
tion that prices are known or normally distributed
(denoted by A or V¥, respectively) searched 10 and
16 stores, respectively, and would be preferred by
consumers over simply visiting their favorite store
with a probability of 76% and 78%, respectively.
Even if current shopbots were scaled back so that
they searched fewer stores (but still selected the best
stores), consumers would prefer the faster search and
smaller decisions sets with a probability of 64%.

To help understand what offers would be pre-
sented, we list the optimal offer set in Table 6 from
the optimal shopbot design when prices are assumed
to be known (the solution that corresponds to ¥). The
10 stores that were queried would yield 32 separate
delivery options, but only 12 of these would be pre-
sented to the consumer. We are not simply identi-
fying the cheapest bookstores, but those stores that
yield the highest utility. For example, Amazon.com
and Borders have higher prices but were included due
to the brand equity of their store names; computer-
library.com and 1BookStreet are included because of
their free shipping policies.

If prices are not known with certainty, then it is bet-
ter to search at a larger number of stores. Suppose
prices are assumed to be normally distributed with
the mean and standard deviation given in Table 3
(this solution is denoted by A in Figure 3). Our sim-
ulation shows that it is best to search at 16 stores,
which would yield 55 possible offers. Because prices
are not known with certainty, the offer set cannot
be determined until after the prices are realized. For

Expected Utility Based on Number of Stores Queried Using Several Different Shopbot Designs
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Table 6  Offers That Will Be Presented to the Consumer for the Scenario in Which Prices Are Known
Offer Store Delivery Service (days) Price ($) Shipping ($) Total ($)
1 1BookStreet USPS parcel post 6-21 15.19 0.00 15.19
21 Amazon.com USPS priority mail 5-10 12.59 3.95 16.54
51 Buy.com Standard shipping N/A 10.39 3.95 14.34
48 Borders Standard 5-10 12.39 3.90 16.29
26 Barnes&Noble Standard ground 4-7 12.59 3.99 16.58
25 Barnes&Noble USPS 5-9 12.59 3.95 16.54
42 Booksamillion.com Standard ground N/A 11.79 3.95 15.74
16 AlphaCraze.com USPS special rate 5-15 12.79 3.50 16.29
64 Computerlibrary.com N/A N/A 19.79 0.00 19.79
69 HamiltonBook.com USPS N/A 13.99 3.00 16.99
17 AlphaCraze.com USPS N/A 12.79 3.95 16.74
70 Kingbooks.com USPS book rate 16 14.59 2.50 17.09

Note. Prices assumed to equal their expected values.

example, the previous best offer (#1) would be
included with a 95% probability, while the last offer
(#70) would be included with a 38% probability. Addi-
tionally, there is some chance previously excluded
offers, like Amazon.com'’s second-day air, would now
be included. (We report the full results in the online
appendix.) Even though a larger number of offers
may be potentially included, on average we would
expect to see only nine or 10 offers presented to
the consumer. The ability to select a smaller number
of offers demonstrates an important reason why the
optimal shopbot design performs so much better than
the present shopbot design.

The parameter settings play an important role in
determining the benefit of the improved shopbot.
First, consider the case where w, &, and A are scaled
by a factor of 10 to reflect that time is more valu-
able. If prices are unknown, the shopbot would search
no more than five stores and most likely present
only the best offer retrieved. Again, the high cost
of time means that the shopbot needs to be much
more intelligent in anticipating the tastes of the con-
sumer. In contrast, if time is less valuable, being
scaled by a factor of 0.1, then the current shop-
bot design performs more comparably to the opti-
mal shopbot design. Finally, consider the case where
a consumer is indifferent between expending time
in a cognitively taxing activity (such as comparing
results) and simply waiting (¢ = A = 0.002). Under
this assumption, the current shopbot design performs
more comparably to the optimal shopbot design and
the shopbot is more likely to be preferred by the con-
sumer than simply visiting a favorite store. (A com-
puter program is available upon request from the
authors for readers interested in further assessing
the sensitivity of these results to different parameter
values.)

7. Discussion
Our model has provided several insights into how
improved design could increase the value of shopbots

and their subsequent use by consumers. Specifically,
shopbot design can be improved by selectively pre-
senting and querying stores. Our empirical analysis
shows that book prices at online stores can be pre-
dicted with a high degree of accuracy without having
to query a store but instead relying upon past prices.
Embedded within our framework is a compensatory
utility model that aids the shopbot in understanding
user preferences. This utility model allows the shop-
bot to predict the expected gains to the consumer
from more search and to balance these gains against
the cost of searching and presenting too much infor-
mation.

In practice we find that despite high price vari-
ability online (Smith and Brynjolfsson 2001), most
Internet shoppers continue to search in the traditional
way, for example, visiting a single store (Johnson et al.
2003) or making price comparisons on their own. In
Table 7 we report Internet usage information using
Media Metrix’s home panel during a five-year period
from July 1997 through May 2002. Although shop-
bot usage has grown, it is still low compared with
other retail usage. From July 2001 through May 2002
less than 6% of Internet home users visited a shopbot,
while 66% visited an online retailer and 28% visited
an online bookstore. On the other hand, shopbots are
effective in increasing the number of bookstores that
consumers visit. During the same period online book
shoppers (i.e., the user visited at least one bookstore
during the month) visited 1.4 bookstores, while shop-
bot users visited 2.0 bookstores. Clearly, shopbots are
helpful in leading to increased search.

It is our opinion that shopbots are still underuti-
lized by consumers, although the trends in Table 7
show that shopbot usage has grown substantially.
While there are many contributing explanations for
shopbot growth, we would point out that during this
time shopbots have made significant design changes
that are consistent with our recommendations. Specif-
ically, shopbots have improved their response times
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Table 7 Various Measures of Home Internet Users’ Behaviors Using Media Metrix Panel Data

Number of bookstores
visited by visitorto a...

Percentage of Internet users

Pr ility of sh t
during a month who visita... obability of shopbo

visit given visit

Probability of shopbot
visit given visit

Time period Retailer Bookstore Shopbot Bookstore Shopbot last month last month
July 1997-June 1998 39 9 0.1 1.2 1.5 3 6
July 1998-June 1999 48 15 0.7 1.2 1.9 10 20
July 1999-June 2000 59 23 3.6 1.3 2.0 22 20
July 2000-June 2001 62 26 5.5 1.4 2.1 29 31
July 2001-May 2002 66 28 5.7 14 2.0 26 24

Note. The values are computed by averaging monthly values. Note that the final period does not include June 2002, which was unavailable to the authors. Also,
we define shopbot usage as a visit to Dealtime.com, Bottomdollar, Pricescan, or MySimon. Retailer refers to online resellers of consumer goods which include

bookstores and shopbots, while bookstore refers only to retailers of books.

and refined their information displays. In May 2000
our queries to Dealtime.com resulted in an aver-
age response time of 89 seconds, and Pricescan had
a 33-second response time. By March 2002 these
response times dropped significantly to 18 and 16 sec-
onds, respectively. Moreover, retention rates, given in
the last two columns of Table 7 as conditional proba-
bilities of repeat visits, have also increased, suggesting
that consumers are also more satisfied. Although the
increase in usage and retention is consistent with our
prescriptions for improved shopbot design, we do not
have information about marketing expenditures such
as advertising and cannot control for their effects.
We would certainly expect that increased advertising
expenditures is another important contributing factor
to increased shopbot usage. Finally, this analysis only
measures a correlation and cannot prove causation;
hence, we can only suggest that these trends are con-
sistent with our prescriptions.

To further explore our proposal, an experimen-
tal test was constructed by Basartan (2001). She
constructed a simulated shopbot in which response
time and the number of offers displayed was var-
ied for a sample of 190 students. First, the students
completed a conjoint exercise to estimate their util-
ity model (Green et al. 1981). Second, the students
were asked to shop at several simulated shopbots
and evaluate whether they would prefer shopping
at the presented shopbot or Amazon.com. At one
shopbot, students were given the top six alterna-
tives after a 2-second wait. Seventy-seven percent of
participants said that they would prefer shopping
at this shopbot versus at Amazon.com. At another
shopbot students were given the top 19 alternatives
after a 30-second wait, and only 61% of partici-
pants said that they would prefer shopping at this
shopbot versus at Amazon.com. (The difference in
response is statistically significant at the 0.001 level.)
This decrease in preference for shopbots corroborates
our argument that shoppers may prefer visiting their
favorite store if a shopbot provides too many alterna-
tives and long waiting times.

8. Conclusions and Future Research
Our approach to solving the shopbot design prob-
lem has taken design elements from computer science
and statistics and combined them with models of
consumer behavior from economics and marketing.
This research represents a cross-disciplinary approach
that we believe is necessary in the emerging area of
e-commerce research. We believe a dominant research
theme in this area is to use models of consumer
behavior to better improve the design of software
and websites. At the same time there are many areas
that we have only touched upon that need to be
researched further. In this section, we discuss some
of the issues related to implementation and consumer
behavior.

Implementation

The primary challenge for a shopbot implementing
the utility-based design that we have proposed is
measuring user preferences, which we have assumed
are known. Shopbots have two approaches to learn
about consumers. First, the shopbot can learn from
previous choices made by a visitor, if there are
any. Most directly we would refer to Smith and
Brynjolfsson’s (2001) empirical work in estimating a
multinomial logit model using Dealtime.com data.
More advanced techniques for estimating individual-
level multinomial probit models have also been
demonstrated by Rossi et al. (1996). Perhaps even
better would be to allow for heterogeneity within a
user through time (Allenby et al. 1998), because users
may be delivery sensitive for some books. Second,
instead of relying solely upon past data, a shopbot
could adaptively ask questions before conducting a
search so as to learn about consumer utility using
hybrid conjoint analysis (Green et al. 2001). An essen-
tial trade-off that must be considered is whether the
added predictive ability is worth the effort to train the
agent (Alba et al. 1997).

We have also ignored two related and potentially
important issues—profit-maximizing behavior of the
shopbot and the related strategic issue of coopera-
tion between shopbots and online retailers (Iyer and
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Pazgal 2003). Baye and Morgan (2001) consider the
price equilibrium introduced by a shopbot or infor-
mation gatekeeper that charges consumers for access
to price information. Greenwald and Kephart (1999)
study the effectiveness of various pricing algorithms
that can be used by pricebots (adaptive agents that
automatically set prices) in marketplaces with signifi-
cant shopbot presence. It is possible that the decision
environment created by shopbots could lead to new
competitive retail structures, because shopbots earn
revenue not only from choice, but also from consider-
ation (e.g., shopbots can be paid if a visitor clicks on
a link to a retailer).

We have not explicitly modeled the shopbot profit
function, but instead focused upon one of its input
components, consumer utility. It is straightforward
to argue using our results that if consumer utility
can be increased, ceteris paribus then shopbot profits
will increase. Shopbot profitability differs from con-
ventional retailer profitability in that shopbots can
earn revenue from advertising, referrals, and pre-
ferred placement in a list of offers. This means that
shopbots need to balance the increased revenue they
can earn from giving some high-priced retailers pri-
ority in the listings against the potential backlash
by consumers. These differences make shopbot prof-
itability an interesting area for further study.

Effects of Consumer Behavior on Shopbot Design
Research has found that the context in which a choice
is evaluated can impact its likelihood of being chosen.
Degeratu et al. (2000) show that ordering lists by
prices can lead consumers to become more price sen-
sitive. Lynch and Ariely (2000) show how quality
information can mediate the greater price sensitivity
that may result from making price comparisons easier.
Simonson (1999) surveys how product assortment can
influence buyer preferences and choices. For example,
including a higher-quality version of a product can
increase the chance that a lower-quality item will be
purchased. One possibility is that a consumer’s pref-
erences are not fixed but instead constructed during
the choice task, because of limited processing capacity
(Bettman et al. 1998). These studies point out that the
set of alternatives and the context in which they are
presented by the shopbot could themselves influence
user preferences.

We also know that when consumers are confronted
with demanding cognitive tasks they may use heuris-
tics (for further discussion see Payne et al. 1993). For
example, to find the best product in a long list of
alternatives consumers may use an elimination by
aspect strategy (Tversky 1972) to help reduce cogni-
tive effort. Directly modeling these processes could
result in better predictions.

Furthermore, an improved understanding of how
consumers perceive waiting time is needed. We have

assumed a simple framework in which disutility from
waiting is proportional to the time spent waiting.
However, filler tasks could be performed that could
alter consumers’ perceptions of the time spent wait-
ing. These filler tasks could be used to actively col-
lect information related to the query or could be
totally unrelated and simply occupy the user while
the search is proceeding. All of these comments point
to the fact that further study in integrating consumer
behavior models to improve shopbot design could be
quite fruitful. We believe our research is only a first
step in this direction.

An online appendix to this paper is available at
mansci.pubs.informs.org/ecompanion.html.
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