
Manageability, availability and performance in
Porcupine: a highly scalable, cluster-based mail service

Yasushi Saito, Brian N. Bershad, and Henry M. Levy
Department of Computer Science and Engineering

University of Washington
{ yasushi, bershad, levy} @ cs. washington.edu

Abstract

This paper describes the motivation, design, and perfor-
mance of Porcupine, a scalable mail server. The goal of
Porcupine is to provide a highly available and scalable elec-
tronic mail service using a large cluster of commodity PCs.
We designed Porcupine to be easy to manage by emphasiz-
ing dynamic load balancing, automatic configuration, and
graceful degradation in the presence of failures. Key to the
system's manageability, availability, and performance is that
sessions, data, and underlying services are distributed ho-
mogeneously and dynamically across nodes in a cluster.

1 Introduction

The growth of the Internet has led to the need for highly
scalable and highly available services. This paper de-
scribes the Porcupine scalable electronic mail service. Por-
cupine achieves scalability by clustering many small ma-
chines (PCs), enabling them to work together in an efficient
manner. In this section, we describe system requirements for
Porcupine, relate the rationale for choosing a mail applica-
tion as our target, and review clustering alternatives.

1.1 System requirements

Porcupine defines scalability in terms of three essential sys-
tem aspects: manageability, availability, and performance.
Requirements for each follow:

1. Manageability requirements. Although a system
may be physically large, it should be easy to manage.
In particular, the system must self-conligure with re-
spect to load and data distribution and self-heM with
respect to failure and recovery. A system manager

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
@1999 ACM 1-58113-140-2/99/0012... $5.00

can simply add more machines or disks to improve
throughput and replace them when they break. Over
time, a system's nodes will perform at differing capac-
ities, but these differences should be masked (and man-
aged) by the system.

2. Availability requirements. With so many nodes, it
is likely that some will be down at any given time.
Despite component failures, the system should deliver
good service to all of its users at all times. In prac-
tice, the failure of one or more nodes may prevent some
users from accessing some of their mail. However, we
strive to avoid failure modes in which whole groups of
users find themselves without any mail service for even
short periods of time.

3. Performance requirements. Porcupine's single-node
performance should be competitive with other single-
node systems; its aggregate performance should scale
linearly with the number of nodes in the system. For
Porcupine, we target a system that scales to hundreds
of machines, which is sufficient to service a few bil-
lion mail messages per day with today's commodity
PC hardware and system area networks.

Porcupine meets these scalability requirements uniquely.
First, the system is functionally homogeneous. That is, any
node can execute part or all of any transaction, e.g., for the
delivery or retrieval of mail. Second, every transaction is
dynamically scheduled to ensure that work is uniformly dis-
tributed across all nodes in the cluster. Third, the system
automatically recontigures whenever nodes are added or re-
moved even transiently. Finally, system and user data are
automatically replicated across a number of nodes to ensure
availability.

Figure 1 shows the relationships among the central goal
of scalability, the requirements for manageability, availabil-
ity, and performance, and the key features or techniques used
in the system. For example, dynamic transaction schedul-
ing, automatic reconfiguration, and functional homogeneity
together make the system manageable, since changes to the
number or quality of machines, users, and load are handled
automatically. Similarly, dynamic scheduling and replica-
tion improve performance, because load can be distributed
dynamically to less busy machines.

Figure 1. The primary goal of Porcupine is scalability
defined in terms of manageability, availability, and per-
formance requirements. In turn, these requirements
are met through combinations of the four key tech-
niques shown above.

Today, Porcupine runs on a cluster of thirty PCs con-
nected by a high-speed network, although we show that it
is designed to scale well beyond that. Performance is lin-
ear with respect to the number of nodes in the cluster. The
system adapts automatically to changes in workload, node
capacity, and node availability. Data is available despite the
presence of a few or many failures.

1.2 Rationale for a m a i l application

Although Porcupine is a mail system, its underlying services
and architecture are appropriate for other systems in which
data is frequently written and good performance, availabil-
ity, and manageability at high volume are demanded. For ex-
ample, Usenet news, community bulletin boards, and large-
scale calendar services are good candidates for deployment
using Porcupine. Indeed, we have configured Porcupine to
act as a web server and a Usenet news node. In this paper,
however, we focus on the system's use as a large scale elec-
tronic mail server.

We chose a mail application for several reasons. First
is need. Large-scale commercial services now handle more
than ten million messages per day. Anticipating continued
growth, our goal with Porcupine is to handle billions of mes-
sages per day on a PC-based cluster. Second, email presents
a more challenging application than that served by conven-
tional web and proxy servers, which have been shown to
be quite scalable. In particular, the workload for electronic
mail is write intensive. Finally, consistency requirements
for mail, compared to those for a distributed file or database
system, are weak enough to encourage the use of replication
techniques that are both efficient and highly available.

1.3 Clustering alternatives
Existing clustering solutions have taken one of two forms.
One approach is seen with services that deliver read-only
data, such as Web servers, search engines, or proxy agents.
Here, administrators typically replicate data across a large

number of back-end hosts and deploy a front-end traffic
manager that routes requests to specific servers using a dy-
namic policy (e.g,, based on the server's specific function
[11], load or cache affinity [21]). This approach works well
in a read-only context; however, it is inappropriate for ser-
vices such as electronic mail, in which data is frequently
written as well as read, and for which persistence and data
availability are not provided by some external storage ser-
vice.

A second approach to clustering, used when data is as-
sociated with specific users, is to assign users and their data
statically to specific machines [4, 9]. A front-end intelligent
router directs an external client's request to the appropri-
ate node. We believe that such statically distributed, write-
oriented services scale poorly. In particular, as the user base
grows, so does service demand, which can be met only by
adding more machines. Unfortunately, each new machine
must be configured to handle a subset of the users, requir-
ing that users and their data migrate from older machines.
As more machines are added, the likelihood that at least
one of them is inoperable grows, diminishing availability
for users with data on the inoperable machines. In addition,
users whose accounts are on slower machines tend to receive
worse service than those on faster machines. Finally, a stati-
cally distributed system is susceptible to overload when traf-
fic is distributed nOn-uniformly across the user base.

To date, systems relying on static distribution have
worked for two reasons. First, service organizations have
been willing to substantially overcommit computing capac-
ity to mitigate short-term load imbalances. Second, organi-
zations have been willing to employ people to reconfigure
the system manually in order to balance load over the long
term. Because the degree of overcapacity determines where
short-term gives way to long-term, static systems have been
costly in terms of hardware, people, or both. For small static
systems, these costs have not been substantial; for exam-
ple, doubling the size of a small but manageable system may
yield a system that is also small and manageable. How-
ever, once the number of machines becomes large (i.e, on
the order of a few dozen), disparate (i.e., fast/slow machines,
fast/slow disks, large/small disks), and continually increas-
ing, this gross overcapacity becomes unacceptably expen-
sive in terms of hardware and people.

Porcupine seeks to address these problems by providing
a system structure that performs well as it scales, adjusts au-
tomatically to changes in configuration and load, and is easy
to manage. Our vision is that a single system administrator
can be responsible for the hardware that supports the mail
requirements of one hundred million users processing a bil-
lion messages per day. When the system begins to run out
of capacity, that administrator can improve performance for
all users simply by adding machines or even disks to the sys-
tem. Lastly, the administrator can, without inconveniencing
users, attend to the failure of machines, replacing them with
the same urgency with which one replaces light bulbs.

1.4 Organization of the paper

The remainder of this paper describes Porcupine's architec-
ture, implementation, and performance. Section 2 presents
an overview of the system's architecture. Section 3 describes
how the system adapts to changes in configuration automati-
cally, while Section 4 reveals Porcupine's approach to avail-
ability. In Section 5 we describe the system's scalable ap-
proach to fine-grained load balancing. Section 6 evaluates
the performance of the Porcupine prototype on our 30-node
cluster. Section 7 discusses some of the system's scalability
limitations and areas for additional work. In Section 8 we
discuss related work, and we draw conclusions in Section 9.

2 System architecture overview

A key aspect of Porcupine is its functionalhomogeneity: any
node can perform any function. This greatly simplifies sys-
tem configuration: the system's capacity grows and shrinks
with the number and aggregate power of the nodes, not with
how they are logically configured. Consequently, there is no
need for a system administrator to make specific service or
data placement decisions. This attribute is key to the sys-
tem's manageability.

Functional homogeneity ensures that a service is always
available, but it offers no guarantees about the data that ser-
vice may be managing. Replicated state serves this purpose.
There are two kinds of replicated state that Porcupine must
manage: hard state and soft state. Hard state consists of
information that cannot be lost and therefore must be main-
tained in stable storage. For example, an email message and
a user's password are hard state. Porcupine replicates hard
state so that its derived soft state can be reconstructed during
failure. Soft state consists of information that, if lost, can be
reconstructed from existing hard state. For example, the list
of nodes containing mail for a particular user is soft state,
because it can be reconstructed by a distributed disk scan.
Most soft state is maintained on only one node at a given
instant. The exception is directories that are themselves soft
state. Such directories are replicated on every node to im-
prove performance.

This approach minimizes persistent store updates, mes-
sage traffic, and consistency management overhead. The
disadvantage is that soft state may need to be reconstructed
from distributed persistent hard state after a failure. Our de-
sign seeks to ensure that these reconstruction costs are low
and can scale with the size of the system. In Section 6, we
demonstrate the validity of this assumption by showing that
reconstruction has nominal overhead.

The following subsections describe Porcupine's data
structures and their management.

2.1 Key data structures

Porcupine is a cluster-based, Internet mail service that sup-
ports the SMTP protocol [22] for sending and receiving mes-
sages across the Internet. Users retrieve their messages using
any mail user agent that supports either the POP or IMAP re-
trieval protocols [20, 7].

"'Alice" "Bob"

./ 3,
IN, IN=IN=IN,I
Alice:* {N2}
Bob:* {NI,N2}

] mbox

Node NI

"Chuck"

Chuc~:*l,N,, [
t mbox I
r ~gm~tq~

User map

User ~ Mailbox
profile soft fragment

state list

Mailbox
fragments

User profile
database

Figure 2. An example showing how user information
and mail messages might be distributed across a two-
node Porcupine cluster.

Porcupine consists of a collection of data structures and
a set of internal operations provided by managers running on
every node. The key data structures found in Porcupine are:

Mailbox fragment. The collection of mail messages stored
for a given user at any given node is called a mail-
box fragment; the fragment is also the unit of mail
replication. A Porcupine mailbox is therefore a logical
entity consisting of a single user's mailbox fragments
distributed and replicated across a number of nodes.
There is no single mailbox structure containing all of a
user's mail. A mailbox fragment is hard state.

Mailbox fragment list. This list describes the nodes con-
taining mailbox fragments for a given user. The mail-
box fragment list is soft state.

User profile database. This database describes Porcupine's
client population, i.e., it contains user names, pass-
words, etc. It is persistent, changes infrequently for
a given user, and is partitioned and replicated across
nodes. The user profile database is hard state.

User profile soft state. Each entry in the user profile
database is kept as soft state on exactly one node in
the cluster. Accesses and updates to the user profile
database are done first at that node. This data structure
is soft state.

User map. The user map is a table that maps the hash value
of each user name to a node currently responsible for
managing that user's profile soft state and mailbox
fragment list. The user map is soft state and is repli-
cated on each node.

Cluster membership list. Each node maintains its own
view of the set of nodes currently functioning as part
of the Porcupine cluster. Most of the time, all nodes
perceive the same membership, although a node's ar-
rival or departure may cause short-term inconsistencies
as the system establishes the new membership. During
network partition, inconsistencies may last for a long

time. Various system services automatically respond
to changes in the cluster membership list. The cluster
membership list is soft state and is replicated on each
node.

2.2 Data structure managers

The preceding data structures are distributed and maintained
on each node by several essential managers. The user man-
ager manages soft state that can be reconstructed from disk.
By spreading the responsibility for servicing accesses to the
user profile database across all nodes in the system, larger
user populations can be supported simply by adding more
machines. The user manager also maintains the mailbox
fragment list for each user.

The membership manager on each node maintains that
node's view of the overall cluster state. It tracks which nodes
are up or down and the contents of the user map. It also
participates in a membership protocol to track that state.

Two other managers, the mailbox manager and the user
pro~le manager, maintain persistent storage and enable re-
mote access to mailbox fragments and user profiles.

Each node runs a replication manager, which ensures the
consistency of replicated objects stored in that node's local
persistent storage.

On top of these managers, each node runs a delivery
proxy to handle incoming SMTP requests and a retrieval
proxy to handle POP and IMAP requests.

The Porcupine architecture leads to a rich distribution of
information in which mail storage is decoupled from user
management. For example, Figure 2 shows a sample Porcu-
pine configuration consisting of two nodes and three users.
For simplicity, messages are not shown as replicated. The
user manager on node N1 maintains Alice's and Bob's soft
state, which consists of their user profile database entries and
their mailbox fragment lists. Similarly, the user manager on
node N2 maintains Chuck's soft state.

2.3 A mail transaction in progress

In failure-free operation, mail delivery and retrieval work as
follows.

2.3.1 Mail delivery

An external mail transfer agent (MTA) delivers a message
to a user who is hosted on a Porcupine cluster by discover-
ing the IP address of any Porcupine cluster node using the
Internet's Domain Name Service [3]. Because any function
can execute on any node, there is no need for special front-
end request routers, although nothing in the system prevents
their use.

To initiate mail delivery, the MTA uses SMTP to connect
to the designated Porcupine node, which acts as a delivery
proxy. The proxy's job is to store the message on disk. To
do this, it retrieves the mailbox fragment list from the re-
cipient's user manager and then chooses the best node from
that list. If the list is empty or all choices are poor (for ex-
ample, overloaded or out of disk space), the proxy is free

to select any other node. The proxy then forwards the mes-
sage to the chosen node's mailbox manager for storage. The
storing node ensures that its participation is reflected in the
user's mailbox fragment list. If the message is to be repli-
cated (based on information in the user's profile), the proxy
selects multiple nodes on which to store the message.

2.3.2 Mail retrieval

An external mail user agent (MUA) retrieves messages for
a user whose mail is stored on a Porcupine cluster using ei-
ther the POP or IMAP transfer protocols. The MUA contacts
any node in the cluster to initiate the retrieval. The contacted
node, acting as a proxy, authenticates the request through the
user manager for the client and discovers the mailbox frag-
ment list. It then contacts the mailbox manager at each node
storing the user's mail to request mail digest information,
which it returns to the MUA. Then, for each message re-
quested, the proxy fetches the message from the appropriate
node or nodes. If the external agent deletes a message, the
proxy forwards the deletion request to the appropriate node
or nodes. When the last message for a user has been re-
moved from a node, that node removes itself from the user's
mailbox fragment list.

2.4 Advantages and tradeoffs

By decoupling the delivery and retrieval agents from the
storage services and user manager in this way, it is always
possible to deliver or retrieve mail for a user, even when
nodes storing the user's existing mail are unavailable. An-
other advantage is that mail delivery can be load balanced
dynamically; any node can store mail for any user, and no
single node is permanently responsible for a user's mail or
soft profile information. A user's mail can be replicated arbi-
trarily, independent of the replication factor for other users.
If a user manager goes down, another will take over for
that manager's users. In contrast, in a system where user
mailboxes and/or profile information are fixed to particu-
lar nodes, some nodes may become overloaded while others
idle.

The system architecture reveals a key tension that must
be addressed in the implementation. Specifically, while a
user's mail may be distributed across a large number of ma-
chines, doing so complicates both delivery and retrieval. On
delivery, each time a user's mail is stored on a node not al-
ready containing mail for that user, the user's mailbox frag-
ment list (a potentially remote data structure) must be up-
dated. On retrieval, aggregate load increases somewhat with
the number of nodes storing the retrieving user's mail. Con-
sequently, it is beneficial to limit the spread of a user's mail,
widening it primarily to deal with load imbalances and fail-
ure. In this way, lhe system behaves (and performs) like a
statically partitioned system when there are no failures and
load is well-balanced, but like a dynamically partitioned sys-
tem otherwise. Section 5 discusses this tradeoff in more de-
tail.

3 S e l f management

Porcupine must deal automatically with diverse changes, in-
cluding node failure, node recovery, node addition, and net-
work failure. In addition, change can come in bursts, creat-
ing long periods of instability, imbalance and unavailability.
It is a goal of Porcupine to manage change automatically in
order to provide good service even during periods of system
flux.

The following sections describe the Porcupine services
that detect and respond to configuration changes.

3.1 Membership services

Porcupine's cluster membership service provides the basic
mechanism for tolerating change. It maintains the current
membership set, detects node failures and recoveries, noti-
fies other services of changes in the system's membership,
and distributes new system state. We assume a symmetric
and transitive network in steady state, so that nodes eventu-
ally converge on a consistent membership set provided that
no failure occurs for a sufficiently long period (i.e., a few
seconds).

The cluster membership service uses a variant of the
Three Round Membership Protocol [5] (TRM) to detect
membership changes. In TRM, the first round begins when
any node detects a change in the configuration and becomes
the coordinator. The coordinator broadcasts a "new group"
message together with its Lamport clock [14], which acts as
a proposed epoch ID to identify a particular membership in-
carnation uniquely. If two or more nodes attempt to become
a coordinator at the same time, the one proposing the largest
epoch ID wins.

In the second round, all nodes that receive the "new
group" message reply to the coordinator with the proposed
epoch ID. After a timeout period, the coordinator defines the
new membership to be those nodes from which it received a
reply. In the third round, the coordinator broadcasts the new
membership and epoch ID to all nodes.

Once membership has been established, the coordina-
tor periodically broadcasts probe packets over the network.
Probing facilitates the merging of partitions; when a coor-
dinator receives a probe packet from a node not in its cur-
rent membership list, it initiates the TRM protocol. A newly
booted node acts as the coordinator for a group in which it
is the only member. Its probe packets are sufficient to notify
others in the network that it has recovered.

There are several ways in which a node may discover
the failure of another. The first is through a timeout that oc-
curs normally during part of a remote operation. In addition,
nodes within a membership set periodically "ping" their next
highest neighbor in IP address order, with the largest IP ad-
dress pinging the smallest. If the ping is not responded to
after several attempts, the pinging node becomes the coordi-
nator and initiates the TRM protocol.

3.2 User map

The purpose of the user map is to distribute management re-
sponsibility evenly across live nodes in the cluster. When-
ever membership services detect a configuration change,
the system must reassign that management responsibility.
Therefore, like the membership list, the user map is repli-
cated across all nodes and is recomputed during each mem-
bership change as a side effect of the TRM protocol.

After the second round, the coordinator computes a new
user map by removing the failed nodes from the current ver-
sion and uniformly redistributing available nodes across the
user map's hash buckets (the user map has many buckets, so
a node typically is assigned to more than one bucket). The
coordinator minimizes changes to the user map to simplify
reconstruction of other soft state, described in the next sec-
tion. For each bucket with a changed assignment, the coor-
dinator assigns to and includes with the bucket a timestamp
equal to the current epoch ID. The ID is used by other nodes
to determine which entries in the user map have changed.
The new user map is piggybacked on the final broadcast
message of the TRM protocol.

3 .3 S o f t state reconstruction

Once the user map has been reconstructed, it is necessary to
reconstruct the soft state at user managers with new user re-
sponsibilities. Specifically, this soft state is the user profile
soft state and the mailbox fragment list for each user. Essen-
tially, every node pushes soft state corresponding to any of
its hard state to new user managers responsible for that soft
state.

Reconstruction is a two-step process, completely dis-
tributed, but unsynchronized. The first step occurs imme-
diately after membership reconfiguration. Here, each node
compares the previous and current user maps to identify
any buckets having fresh assignments. A node considers a
bucket assignment fresh if the bucket's previous epoch ID
does not match the current epoch ID. Recall that the user
map associates nodes with hash buckets, so the relevant soft
state belonging on a node is that corresponding to those users
who hash into the buckets assigned to the node.

Each node proceeds independently to the second step.
Here, every node identifying another node's fresh bucket as-
signment sends it any soft state corresponding to the hard
state for that bucket maintained on the sending node. First,
the node locates any mailbox fragments belonging to users in
the freshly managed bucket and requests that the new man-
ager include this node in those users' mailbox fragment lists.
Second, the node scans its portion of the stored user profile
database and sends to the fresh manager all pertinent user
profiles. As the user database is replicated, only the replica
with the largest IP address among those functioning does
the transfer. The hard state stored on every node is "buck-
eted" into directories so that it can be quickly reviewed and
collected on each change to the corresponding bucket in the
user map.

The cost of rebuilding soft state during reconfiguration
is intended to be constant regardless of cluster size. The cost
is mostly determined by the number of nodes redistributed

within the user map after each failure. It therefore decreases
linearly with cluster size. Although the rate of reconfigura-
tion increases linearly with cluster size (assuming indepen-
dent failures), the two effects cancel each other out, and the
work done by each node after a failure remains about the
same.

3.4 Node addition
Porcupine's automatic reconfiguration structure makes it
easy to add a new node to the system. A system administra-
tor simply installs the Porcupine software on the node. When
the software boots, it is noticed by the membership protocol
and added to the cluster. Other nodes see the configuration
change and upload soft state onto the new node. To make
the host accessible outside of Porcupine, the administrator
may need to update border naming and routing services. Oc-
casionally, a background service rebalances replicated user
database entries across the nodes in the cluster 1.

3.5 Summary
Porcupine's dynamic reconfiguration protocols ensure that
the mail service is always available for any given user and fa-
cilitate the reconstruction and distribution of soft state. The
next section discusses the maintenance of hard state.

4 Replication and availability

This section describes object replication support in Porcu-
pine. As in previous systems (e.g., [11]), Porcupine defines
semantics tuned to its application requirements. This per-
mits a careful balance between behavior and performance.

Porcupine replicates the user database and mailbox frag-
ments to ensure their availability. Our replication service
provides the same guarantees and behavior as the Internet's
electronic-mail protocols. For example, Internet email may
arrive out of order, on occasion more than once, and may
sometimes reappear after being deleted. These anomalies
are artifacts of the non-transactional nature of the Internet's
mail protocols. Porcupine never loses electronic mail unless
all nodes on which the mail has been replicated are irretriev-
ably lost.

4.1 Replication properties
The general unit of replication in Porcupine is the object,
which is simply a named byte array that corresponds to a
single mail message or the profile of a single user. A detailed
view of Porcupine's replication strategy includes these five
high-level properties:

1. Update anywhere. An update can be initiated at any
replica. This improves availability, since updates need
not await the revival of a primary. This strategy also
eliminates the requirement that failure detection be

1 In the current implementation, the rebalancer must be run man-
ually.

precise, since there need not be agreement on which
is the primary node.

2. Eventual consistency. During periods offailure, repli-
cas may become inconsistent for short periods of time,
but conflicts are eventually resolved. We recognize
that single-copy consistency [12] is too strong a re-
quirement for many Internet-based services, and that
replica inconsistencies are tolerable as long as they are
resolved eventually. This strategy improves availabil-
ity, since accesses may occur during reconciliation or
even during periods of network partitioning.

3. Total update. An update to an object totally over-
writes that object. Since email messages are rarely
modified, this is a reasonable restriction that greatly
simplifies update propagation and replica reconcilia-
tion, while keeping costs low,

4. Lock free. There are no distributed locks. This im-
proves performance and availability and simplifies re-
covery.

5. Order ing by loosely synchronized clocks. The nodes
in the cluster have loosely synchronized clocks [17, 18]
that are used to order operations on replicated objects.

The update-anywhere attribute, combined with the fact
that any Porcupine node may act as a delivery agent, means
that incoming messages are never blocked (assuming at least
one node remains functional). If the delivery agent crashes
during delivery, the initiating host (which exists outside of
Porcupine) can reconnect to another Porcupine node. If the
candidate mailbox manager fails during delivery, the de-
livery agent will select another candidate until it succeeds.
Both of these behaviors have the same potential anomalous
outcome: if the failure occurs after the message has been
written to stable storage but before any acknowledgement
has been delivered, the end user may receive the same mes-
sage more than once. We believe that this is a reasonable
price to pay for service that is continually available.

The eventual-consistency attribute means that earlier up-
dates to an object may "disappear" after all replica inconsis-
tencies are reconciled. This behavior can be confusing, but
we believe that this is more tolerable than alternatives that
block access to data when replica contents are inconsistent.
In practice, eventual consistency for email means that a mes-
sage once deleted may temporarily reappear. This is visible
only if users attempt to retrieve their mail during the tempo-
rary inconsistency, which is expected to last at most a few
seconds.

The lock-free attribute means that multiple mail-reading
agents, acting on, behalf of the same user at the same time,
may see inconsistent data. However, POP and IMAP pro-
tocols do not require a consistent outcome with multiple
clients concurrently accessing the same user's mail.

The user profile database is replicated with the same
mechanisms used for mail messages. Because of this, it
is possible for a client to perceive an inconsistency in its
(replicated) user database entry during node recovery. Op-
erations are globally ordered by the loosely synchronized
clocks; therefore, a sequence of updates to the user profile

database will eventually converge to a consistent state. We
assume that the maximum skew of the loosely synchronized
clocks is less than the inter-arrival time of externally initi-
ated, order-dependent operations, such as Create-User and
Change-Password. In practice, clock skew is usually on the
order of tens of microseconds[18], whereas order-dependent
operations are separated by networking latencies of at least a
few milliseconds. Wall clocks, not Lamport clocks [14], are
used to synchronize updates, because wall clocks can order
events that are not logically related (e.g., an external agent
contacting two nodes in the cluster serially).

We now describe the replication manager, email opera-
tions using replicas, and the details of updating replicated
objects.

4.2 Replication manager
A replication manager running on each host exchanges mes-
sages among nodes to ensure replication consistency. The
manager is oblivious to the format of a replicated object
and does not define a specific policy regarding when and
where replicas are created. Thus, the replication manager
exports two interfaces: one for the creation and deletion
of objects, which is used by the higher level delivery and
retrieval agents, and another for interfacing to the specific
managers, which are responsible for maintaining replicated
objects. The replication manager does not coordinate object
reads. Mail retrieval proxies are free to pick any replica and
read them directly.

4.3 Sending and retrieving replicated m a i l

When a user's mail is replicated, that user's mailbox frag-
ment list reflects the set of nodes on which each fragment
is replicated. For example, if Alice has two fragments,
one replicated on nodes N1 and N2 and another replicated
on nodes N2 and N3, the mailbox fragment list for Alice
records {{N1,N2}, {N2,N3}}. To retrieve mail, the re-
trieval agent contacts the least-loaded node for each repli-
cated mailbox fragment to obtain the complete mailbox con-
tent for Alice.

To create a new replicated object (as would occur with
the delivery of a mail message), an agent generates an object
ID and the set of nodes on which the object is to be repli-
cated. An object ID is simply an opaque, unique string. For
example, mail messages have an object ID of the form (type,
username, messagelD), where type is the type of object
(mail message), username is the recipient, and messageID
is an unique mail identifier found in the mail header.

4.4 Updating objects
Given an object ID and an intended replica set, a delivery
or retrieval agent can initiate an update request to the object
by sending an update message to any replica manager in the
set. A delivery agent's update corresponds to the storing of
a message. The retrieval agent's update corresponds to the
deletion and modification of a message.

The receiving replica acts as the update coordinator and
propagates updates to its peers. The replication manager
on every node maintains a persistent update log, used to
record updates to objects that have not yet been accepted by
all replica peers maintaining that object. Each entry in the
update log is the tuple (timestamp, objectlD, target-nodes,
remaining-nodes).

• Timestamp is the tuple (wallclock time, nodelD),
where wallclock time is the time at which the update
was accepted at the coordinator named by nodeID.
Timestamp uniquely identifies and totally orders the
update.

• Target-nodes is the set of nodes that should receive the
update.

• Remaining-nodes is the set of peer nodes that have
not yet acknowledged the update. Initially, remaining-
nodes is equal to target-nodes and is pruned by the co-
ordinator as acknowledgments arrive.

The coordinating replication manager works through the log,
attempting to push updates to all the nodes found in the
remaining-nodes field of an entry. Once contact has been
made with a remaining node, the manager sends the replica's
contents and the log entry to the peer. Since updates to ob-
jects are total, multiple pending updates to the same object
on a peer are synchronized by discarding all but the newest.
If no pending update exists, or if the update request is the
newest for an object, the peer adds the update to the log,
modifies the replica, and sends an acknowledgement to the
coordinator. Once the coordinator receives acknowledge-
ments from all replica peers, it ret/res the update entry in its
own log (freeing that log space) and then notifies the peers
that they may also retire the entry.

If the coordinator fails before responding to the initiating
agent, the agent will select another coordinator. For updates
to a new object, as is the case with a new mail message,
the initiating agent will create another new object and se-
lect a new, possibly overlapping, set of replicas. This helps
to ensure that the degree of replication remains high even
in the presence of a failed coordinator. (In the current im-
plementation, if a peer fails during replication, the initiating
agent does not select an alternative replica, forcing the re-
mote client to restart the entire session.) The coordinators
and participants force their update log to disk before apply-
ing the update to ensure that the replicas remain consistent.
As an optimization, a replica receiving an update message
for which it is the only remaining node need not force its log
before applying the update. This is because the other repli-
cas are already up to date, so the sole remaining node will
never have to make them current for this update. In prac-
tice, this means that only the coordinator forces its log for
two-way replication.

Should the coordinator fail after responding to the initiat-
ing target but before the update is applied to all replicas, any
remaining replica can become the coordinator and bring oth-
ers up to date. Multiple replicas can become the coordinator
in such case, since replicas can discard duplicate updates by
comparing timestamps.

In the absence of node failures, the update log remains
relatively small for two reasons. First, the log never con-
tains more than one update to the same object. Second, up-
dates are propagated as quickly as they are logged and are
deleted as soon as all replicas acknowledge. Timely propa-
gation also narrows the window during which an inconsis-
tency could be perceived.

When a node fails for a long time, the update logs of
other nodes could grow indefinitely. To prevent this, updates
remain in the update log for at most a week. If a node is
restored after that time, it must reenter the Porcupine cluster
as a "new" node, rather than as a recovering one. A node
renews itself by deleting all of its hard state before rejoining
the system.

4.5 Summary
Porcupine's replication scheme provides high availability
through the use of consistency semantics that are weaker
than strict single-copy consistency, but strong enough to ser-
vice Internet clients using non-transactional protocols. In-
consistencies, when they occur, are short lived (the update
propagation latency between functioning hosts) and, by In-
ternet standards, unexceptional.

5 Dynamic load balancing

Porcupine uses dynamic load balancing to distribute the
workload across nodes in the cluster in order to maximize
throughput. As mentioned, Porcupine clients select an ini-
tial contact node either to deliver or to retrieve mail. That
contact node then uses the system's load-balancing services
to select the "best" set of nodes for servicing the connection.

In developing the system's load balancer, we had sev-
eral goals. First, it needed to be fine-grained, making good
decisions at the granularity of message delivery. Second, it
needed to support a heterogeneous cluster, since not all the
nodes are of equivalent power. Third, it had to be automatic
and not require the use of any "magic constants" thresh-
olds, or tuning parameters that would need to be manually
adjusted as the system evolved. Fourth, with throughput as
the primary goal, it needed to resolve the tension between
load and affinity. Specifically, in order to best balance load,
messages should be stored on idle nodes. However, it is less
expensive to store (and retrieve) a message on nodes that al-
ready contain mail for the message's recipient. Such affinity-
based scheduling reduces the amount of memory needed to
store fragment lists, increases the sequentiality of disk ac-
cesses, and decreases the number of inter-node RPCs re-
quired to read, write, or delete a message.

In Porcupine, delivery and retrieval proxies make load-
balancing decisions. There is no centralized load-balancing
node service; instead, each node keeps track of the load on
other nodes and makes decisions independently.

Load information is collected in the same ways we col-
lect liveness information (Section 3.1): (1) as a side-effect
of RPC operations (i.e., each RPC request or reply packet
contains the load information of the sender), and (2) through
a virtual ring in which load information is aggregated in a

message passed along the ring. The first approach gives a
timely but possibly narrow view of the system's load. The
second approach ensures that every node eventually discov-
ers the load from every other node.

The load on a node has two components: a boolean,
which indicates whether or not the disk is full, and an inte-
ger, which is the number of pending remote procedure calls
that might require a disk access. A node with a full disk is
always considered "very loaded" and is used only for op-
erations that read or delete existing messages. After some
experimentation, we found that it was best to exclude disk-
less operations from the load to keep it from becoming stale
too quickly. Because disk operations are so slow, a node
with many pending disk operations is likely to stay loaded
for some time.

A delivery proxy that uses load information alone to se-
lect the best node(s) on which to store a message will tend
to distribute a user's mailbox across many nodes. As a re-
suit, this broad distribution can actually reduce overall sys-
tem throughput for the reasons mentioned earlier. Conse-
quently, we define for each user a spread; the spread is a
soft upper bound on the number of different nodes on which
a given user's mail should be stored. The bound is soft to
permit the delivery agent to violate the spread if one of the
nodes storing a user's mail is not responding.

As shown in Section 6, the use of a spread-limiting load
balancer has a substantial effect on system throughput even
with a relatively narrow spread. The benefit is that a given
user's mail will be found on relatively few nodes, but those
nodes can change entirely each time the user retrieves and
deletes mail from the server.

6 System evaluation

This section presents measurements from the Porcupine pro-
totype running synthetic workloads on a 30-node cluster. We
characterize the system's scalability as a function of its size
in terms of the three key requirements:

• Performance. We show that the system performs well
on a single node and scales linearly with additional
nodes. We also show that the system outperforms a
statically partitioned configuration consisting of a clus-
ter of standard SMTP and POP servers with fixed user
mapping.

• Availability. We demonstrate that replication and re-
configuration have low cost.

• Manageability. We show that the system responds
automaticatly and rapidly to node failure and recov-
ery, while continuing to provide good performance.
We also show that incremental hardware improve-
ments can automatically result in system-wide per-
formance improvements. Lastly, we show that au-
tomatic dynamic load balancing efficiently handles
highly skewed workloads.

6.1 Platform and workload

The Porcupine system runs on Linux-based PCs with all sys-
tem services on a node executing as part of a multi-threaded
process. For the measurements in this paper, we ran on a
cluster of thirty nodes connected by 1Gb/second Ethernet
hubs. As would be expected in any large cluster, our sys-
tem contains several different hardware configurations: six
200MHz machines with 64MB of memory and 4GB SCSI
disks, eight 300 MHz machines with 128MB of memory
and 4GB IDE disks, and sixteen 350 MHz machines with
128MB of memory and 8GB IDE disks.

Some key attributes of the system's implementation fol-
low:

• The system runs on Linux 2.2.7 and uses the ext2 file
system for storage [25].

• The system consists of fourteen major components
written in C++. The total system size is about forty-one
thousand lines of code, yielding a 1MB executable.

• A mailbox fragment is stored in two files, regardless
of the number of messages contained within. One file
contains the message bodies, and the other contains
message index information.

• The size of the user map is 256 entries.

• The mailbox fragment files are grouped and stored in
directories corresponding to the hash of user names
(e.g., if Ann's hash value is 9, then her fragment files
are spool / 9 / ann and spool / 9/ann. idx). This
design allows discovery of mailbox fragments belong-
ing to a particular hash bucket - a critical operation
during membership reconfiguration - to be performed
by a single directory scan.

• Most of a node's memory is consumed by the soft user
profile state. In the current implementation, each user
entry takes 76 bytes plus 44 bytes per mailbox frag-
ment. For example, in a system with ten million users
running on 30 nodes, about 50 MB/node would be de-
voted to user soft state.

We developed a synthetic workload to evaluate Porcupine
because users at our site do not receive enough email to drive
the system into an overload condition. We did, however, de-
sign the workload generator to model the traffic pattern we
have observed on our departmental mail servers. Specifi-
cally, we model a mean message size of 4.7KB, with a fairly
fat tail up to about 1MB. Mail delivery (SMTP) accounts
for about 90% of the transactions, with mail retrieval (POP)
accounting for about 10%. Each SMTP session sends a mes-
sage to a user chosen from a population according to a Zipf
distribution with a = 1.3, unless otherwise noted in the text.

For purposes of comparison, we also measure a tightly
configured conventional mail system in which users and ser-
vices are statically partitioned across the nodes in the cluster.
In this configuration, we run SMTP/POP redirector nodes at
the front end. At the back end, we run modified versions of
the widely used Sendmail-8.9.3 and ids-popd-0.23 servers.

The front-end nodes accept SMTP and POP requests and
route them to back-end nodes by way of a hash on the user
name. To keep the front ends from becoming a bottleneck,
we determined empirically that we need to run one front end
for every fifteen back ends. The tables and graphs that follow
include the front ends in our count of the system size. Based
on a priori knowledge of the workload, we defined the hash
function to distribute users perfectly across the back-end
nodes. To further optimize the configuration, we disabled
all security checks, including user authentication, client do-
main name lookup, and system log auditing.

For both Porcupine and the conventional system, we de-
fined a user population with size equal to 160,000 times the
number of nodes in the cluster (or about 5 million users for
the 30-node configuration). Nevertheless, since the database
is distributed in Porcupine, and no authentication is per-
formed for the conventional platform, the size of the user
base is nearly irrelevant to the measurements. Each POP
session selects a user according to the same Zipf distribu-
tion, collects and then deletes all messages awaiting the user.
In the Porcupine configuration, the generator initiates a con-
nection with a Porcupine node selected at random from all
the nodes. In the conventional configuration, the generator
selects a node at random from the front-end nodes. By de-
fault, the load generator attempts to saturate the cluster by
probing for the maximum throughput, increasing the num-
ber of outstanding requests until at least 10% of them fail to
complete within two seconds. At that point, the generator
reduces the request rate and resumes probing.

We demonstrate performance by showing the maximum
number of messages the system receives per second. Only
message deliveries are counted, although message retrievals
occur as part of the workload. Thus, this figure really reflects
the number of messages the cluster can receive, write, read,
and delete per second. The error margin is smaller than 5%,
with 95% confidence for all values presented in the follow-
ing sections.

6.2 Scalability and performance

Figure 3 shows the performance of the system as a func-
tion of cluster size. The graph shows four different config-
urations: without message replication, with message repli-
cation, with message replication using NVRAM for the
logs, and finally for the conventional configuration of send-
mail+popd. Although neither replicates, the Porcupine
no-replication case outperforms and outscales conventional
sendmail. The difference is primarily due to the conven-
tional system's use of temporary files, excessive process
forking, and the use of lock-files. With some effort, we
believe the conventional system could be made to scale as
well as Porcupine without replication. However, the systems
would not be functionally identical, because Porcupine con-
tinues to deliver service to all users even when some nodes
are down.

For replication, the performance of Porcupine scales lin-
early when each incoming message is replicated on two
nodes. There is a substantial slowdown relative to the non-
replicated case, because replication increases the number of

9

"0
C
o
o

m
m

IE

800

700

600

500
400

300

200

100

0

-O-Porcupine no replication
"-~-Porcupine with

replication, NVRAM
"~-Porcupine with replication
- ~ "Sendmail+popd

I ! I I I I

0 5 10 15 20 25 30

Cluster size
Figure 3. Throughput scales with the number of hosts.
This graph shows how Porcupine and the sendmail-
based system scale with respect to cluster size.

"o 150
t -
O
O
m ~ 100

~ 50

= i
f

No
Replication

[] With one disk/node
With three disks/node

I I
Repl icat ion Replicat ion

with NVRAM

Figure 4. Summary of single-node throughput in a va-
riety of configurations.

synchronous disk writes three-fold: once for each replica
and once to update the coordinator's log. Even worse, in this
hardware configuration the log and the mailbox fragments
share the same disk on each node.

One way to improve the performance of replication is to
use non-volatile RAM for the log. Since updates are typi-
cally retired, most of the writes to NVRAM need never go
to disk and can execute at memory speeds. Although our
machines do not have NVRAM installed, we can simulate
NVRAM simply by keeping the log in standard memory. As
shown in Figure 3, NVRAM improves throughput; however,
throughput is still about half that of the non-replicated case,
because the system must do twice as many disk operations
per message.

Resource No replication With replication
CPU utilization 15% 12%
Disk utilization 75% 75%
Network send 2.5Mb/second 1.7Mb/second
Network recv 2.6Mb/second 1.7Mb/second

Table 1. Resource consumption on a single node with
one disk.

Table 1 shows the CPU, disk, and network load in-
curred by a single 350Mhz Porcupine node running at peak
throughput. For this configuration, the table indicates that
the disk is the primary impediment to single-node perfor-
mance.

To demonstrate this, we made measurements on clusters
with one and two nodes with increased I/O capacity. A sin-
gle 300MHz node with one IDE disk and two SCSI disks
delivered a throughput of 105 messages/second, as opposed
to about 23 messages/second with just one disk. We then
configured a two node cluster, each with one IDE disk and
two SCSI disks. The machines were each able to handle
38 messages/second (48 assuming NVRAM). These results
(normalized to single-node throughput) are summarized in
Figure 4.

"O 6000
i -O-No replication I

i 5000 I "a'Rep lication I . ~
4000 " []

3000 ' ; . . , " " " " " ° " " []

t~ 2000
I / } , ,1:] ~
111 , , , , 1000

0 i l l i i =
5 10 15 20 25 30

Cluster size
Figure 5. Throughput of the system configured with
infinitely fast disks.

Lastly, we measured a cluster in which disks were as-
sumed to be infinitely fast. In this case the system does not
store messages on disk but only records their digests in main
memory. Figure 5 shows that the simulated system without
the disk bottleneck achieves a six-fold improvement over the
measured system, At this point, the CPU becomes the bot-
tleneck. Thus Porcupine with replication performs compar-
atively better than on the real system.

With balanced nodes, the network clearly becomes the
bottleneck. In the non-replicated case, each message travels
the network four times ((I) Internet to delivery agent (2) to
mailbox manager (3) to retrieval agent (4) to Internet). At
an average message size of 4.7KB, a 1Gb/second network
can then handle about 6500 messages/second. With a sin-
gle "disk loaded" node able to handle 105 messages/second,
roughly 62 nodes will saturate the network as they process
562 million messages/day. With messages replicated on two
nodes, the same network can handle about 20% fewer mes-
sages (as the message must be copied one additional time to
the replica), which is about 5200 messages/second, or about
450 million mesSages/day. Using the throughput numbers
measured with the faster disks, this level of performance can
be achieved with 108 NVRAM nodes, or about 137 nodes
without NVRAM. More messages can be handled only by

10

• 101000 -
t-
O 800
o i
~ .

~ 600

400

W 200

0
. ~ " ' :7:."=-~.~

I I I

--O~D4
)(D2

~ D 1
.... e.... R
--o--S4
- --I- -$2
.... 4....$1
-'-'~-'-SM

0 0.25 0.5 1.0
S k e w

F i g u r e 6. Non-replicated throughput on a 30-node sys-
tem.

" O 4 0 0
t,,,-
o ;
o 300 -

"~ 200
03

¢n 100

0

~(,., --O~D4

~ ~ " : "" -'-°--D1"--°--$4 "-F°"'R >(-S2 D2

I I I

0 0.25 0.5 1.0
S k e w

Figure 7. Replicated throughput on a 30-node system.

increasing the aggregate network bandwidth. We address
this issue further in Section 7.

6.3 Load balancing

The previous section demonstrated Porcupine's performance
assuming a uniform workload distribution and homogeneous
node performance. In practice, though, workloads are not
uniformly distributed and the speeds of CPUs and disks on
nodes differ. This can create substantial management chal-
lenges for system administrators when they must reconfigure
the system manually to adapt to the load and configuration
imbalance.

This section shows how Porcupine automatically handles
workload skew and heterogeneous cluster configuration.

6.3.1 Adapting to workload skew

Figures 6 and 7 show the impact of Porcupine's dynamic
spread-limiting, load-balancing strategy on throughput as a
function of workload skew for our 30-node configuration (all
with a single slow disk). Both the non-replicated and repli-
cated cases are shown. Skew along the x-axis reflects the
inherent degree of balance in the incoming workload. When
the skew equals zero, recipients are chosen so that the hash

distributes uniformly across all buckets. When the skew is
one, the recipients are chosen so that they all hash into a sin-
gle user map bucket, corresponding to a highly imbalanced
workload.

The graphs compare random, static, and dynamic load
balancing policies. The random policy, labeled R on the
graph, simply selects a host at random to store each mes-
sage received; it has the effect of smoothing out any non-
uniformity in the distribution. The static spread policy,
shown by the lines labeled S 1, $2, and $4, selects a node
based on a hash of the user name spread over 1, 2 or 4 nodes,
respectively. The dynamic spread policy - the one used in
Porcupine - selects from those nodes already storing mail-
box fragments for the recipient. It is shown as D1, D2 and
D4 on the graph. Again, the spread value (1, 2, 4) controls
the maximum number of nodes (in the absence of failure)
that store a single user's mail. On message receipt, if the
size of the current fragment list for the recipient is smaller
than the maximum spread, Porcupine increases the spread
by choosing an additional node selected randomly from the
cluster.

Static spread manages affinity well but can lead to an
imbalanced load when activity is concentrated on just a few
nodes. Indeed, a static spread of one corresponds to our
sendmail+popd configuration in which users are statically
partitioned to different machines. This effect is shown as
well on the graph for the conventional sendmail+pop config-
uration (SM on Figure 6). In contrast, the dynamic spread
policy continually monitors load and adjusts the distribution
of mail over the available machines, even when spread is
one. In this case, a new mailbox manager is chosen for a
user each time his/her mailbox is emptied, allowing the sys-
tem to repair affinity-driven imbalances as necessary.

The graphs show that random and dynamic policies are
insensitive to workload skew, whereas static policies do
poorly unless the workload is evenly distributed. Random
performs worse than dynamic because of its inability to bal-
ance load and its tendency to spread a user's mail across
many machines.

Among the static policies, those with larger spread sizes
perform better under a skewed workload, since they can uti-
lize a larger number of machines for mail storage. Under
uniform workload, however, the smaller spread sizes per-
form better since they respect affinity. The key exception is
the difference between spread= 1 and spread=2. At spread= 1,
the system is unable to balance load. At spread=2, load is
balanced and throughput improves. Widening the spread be-
yond two improves balance slightly, but not substantially.
The reason for this has been demonstrated previously [10]
and is as follows: in any system where the likelihood that a
host is overloaded is p, then selecting the least loaded from a
spread of s hosts will yield a placement decision on a loaded
host with probability pS. Thus, the chance of making a good
decision (avoiding an overloaded host) improves exponen-
tially with the spread. In a nearly perfectly-balanced system,
p is small, so a small 8 yields good choices.

The effect of the loss of affinity with larger spread sizes
is not pronounced in the Linux ext2 file system because it
creates or deletes files without synchronous directory mod-
ification [25]. On other operating systems, load balancing

11

2 0 0 -
c-
O

._= ~ Iso -

-

8 =
= u) 50 -

E o -

~ _ - + D 4
-.-X--D2
.--o~$4
- -I-- -S2
. . . . e a

4-'- +

1 2 3

Number of nodes with fast disks

Figure 8. Performance improvement on a 30-node
Porcupine cluster without replication when disks are
added to a small number of nodes.

'ID 700

O
~ 600
W

"~500

t~
400

300

t

I / v ""

No failure
- - - One node

failure
Three node
failures
Six node
failures

Timeline
' ' , ' t ' , , ,

0 loo 200/~0~ t 4oo 5oo 6~0~00 8oo (s e c o n d s)
Nodes / New N ° d e S r \ , l ~ k...__ New

fail membership recover membership
determined determined

Figure 10. Reconfiguration t imeline without replica-
tion.

" ID
t -

O

._c 8

=.. O 1

m

E

1 0 0 .

~ D 4

50 - -]-" -S2

1 2 3

Number of nodes with fast disks

Figure 9. Performance improvement on a 30-node
Porcupine cluster with replication when disks are
added to a small number of nodes.

policies with larger spread sizes will be penalized more by
increased frequency of directory operations.

6.3.2 Adapting to heterogeneous configurations

As mentioned in the previous section, the easiest way to im-
prove throughput in our configuration is to increase the sys-
tem's disk I/O capacity. This can be done by adding more
machines or by adding more or faster disks to a few ma-
chines. In a statically partitioned system, it is necessary to
upgrade the disks on all machines to ensure a balanced per-
formance improvement. In contrast, because of Porcupine's
functional homogeneity and automatic load balancing, we
can improve the system's overall throughput for all users
simply by improving the throughput on a few machines. The
system will automatically find and exploit the new resources.

Figures 8 and 9 show the absolute performance improve-
ment of the 30-node configuration when adding two fast
SCSI disks to each of one, two, and three of the 300Mhz
nodes, with and without replication. The improvement for
Porcupine shows that the dynamic load balancing mecha-
nism can fully utilize the added capacity. Here, spread=4

300
C
0

250
I /)

~200
150 I/)

G)
~: 100

No failure
, " , ., : ~ 4. - - - One node

failure
~ " Three node

failures
- - - Six node

i

: failures

' ' ? t ' ' i \ ' ' T i m e l i n e
0 100 200/~0~ 400 500 6(p0'~00 800 (seconds)

Nodes / New NodeSr\,,o,___ New
fail membership recover membership

determined determined

Figure 11. Reconfiguration timeline with replication.

slightly outperforms spread=2, because the former policy is
more likely to include the faster nodes in the spread. When a
few nodes are many times faster than the rest, as is the case
with our setting, the spread size needs to be increased. On
the other hand, as described in Section 5, larger spread sizes
tend to reduce the system efficiency. Thus, spread size is one
parameter that needs to be revisited as the system becomes
more heterogeneous.

In contrast, the statically partitioned and random mes-
sage distribution policies demonstrate little improvement
with the additional disks. This is because their assignment
improves performance for only a subset of the users.

6.4 Failure recovery

As described previously, Porcupine automatically reconfig-
ures whenever nodes fail or restart. Figures 10 and 11 depict
an annotated timeline of events that occur during the fail-
ure and recovery of 1, 3, and 6 nodes in a 30-node system

12

without and with replication. Both figures show the same be-
havior. Nodes fail and throughput drops dramatically as two
things occur. First, the system goes through its reconfigura-
tion protocol, increasing its load. Next, during the reconfigu-
ration, SMTP and POP sessions that involve the failed node
are aborted. After ten seconds, the system determines the
new membership, and throughput increases as the remain-
ing nodes take over for the failed ones. The failed nodes
recover 300 seconds later and rejoin the cluster, at which
time throughput starts to rise. For the non-replicated case,
throughput increases back to the pre-failure level almost im-
mediately. With replication, throughput rises slowly as the
failed nodes reconcile while concurrently serving new re-
quests.

7 Limitations and future work

Porcupine's architecture and implementation have been de-
signed to run well in very large clusters. There are, however,
some aspects of its design and the environment in which it is
deployed that may need to be rethought as the system grows
to larger configurations.

First, Porcupine's communication patterns are fiat, with
every node as likely to talk to every other node. A
1Gb/second heavily switched network should be able to
serve about 6500 messages/second (or 560 million mes-
sages/day) without replication. With replication, the net-
work can handle 5200 messages/second, or 450 million mes-
sages/day. Beyond that, faster networks or more network-
topology-aware load balancing strategies will be required to
continue scaling.

Our membership protocol may also require adjustments
as the system grows. Presently, the membership protocol has
the coordinator receiving acknowledgment packets from all
participants in a very short period of time. Although partici-
pants currently insert a randomized delay before responding
to smooth out packet bursts at the receiver, we still need to
evaluate whether this works well at very large scale. In other
work, we are experimenting with a hierarchical membership
protocol that eliminates this problem. In time, we may use
this to replace Porcupine's current protocol.

Our strategy for reconstructing user profile soft state may
also need to be revisited for systems in which a single user
manager manages millions of users (many users, few ma-
chines). Rather than transferring the user profile soft state
in bulk, as we do now, we could modify the system to fetch
profile entries on use and cache them. This would reduce
node recovery time (possibly at the expense of making user
lookups slower, however).

8 Related work

The prototypical distributed mail service was Grapevine
[23], a wide-area service intended to support about ten thou-
sand users. Grapevine users were statically assigned to
(user-visible) registries. The system scaled through the ad-
dition of new registries having sufficient power to handle
their populations. Nevertheless, Grapevine's administrators

were often challenged to balance users across mail servers.
In contrast, Porcupine implements a flat name space man-
aged by a single cluster and automatically balances load.
Grapevine provided a replicated user database based on op-
timistic replication, but it did not replicate mail messages.
Porcupine uses optimistic replication for both mail and the
user database.

As described earlier, contemporary email cluster systems
deploy many storage nodes and partition the user population
statically among them, either using a distributed file system
[4] or protocol redirectors [9]. As we demonstrate in this
paper, this static approach is difficult to manage and scale
and has limited fault tolerance.

Numerous fault-tolerant, clustered-computing products
have been described in the past (e.g., [13, 26]). These clus-
ters are often designed specifically for database fail-over,
have limited scalability, and require proprietary hardware or
software. Unlike these systems, Porcupine's goal is to scale
to hundreds or thousands of nodes using standard off-the-
shelf hardware and software.

Fox et al. [11] describe an infrastructure for building
scalable network services based on cluster computing. They
describe a data semantics called BASE (Basically Avail-
able, Soft-state, Eventual consistency) that offers advantages
for the web-search and document-filtering applications they
present. Our work shares many of their goals - building scal-
able Internet services with a weaker semantics than tradi-
tional databases. As in the Fox work, we observe that ACID
semantics [12] may be too strong for our application and de-
fine a data model that is equal to the non-transactional model
used by the system's clients. However, unlike BASE, our se-
mantics support write-intensive applications requiring per-
sistent data. Our services are also distributed and replicated
uniformly across all nodes for greater scalability. They are
not being statically partitioned by function.

A large body of work exists on the general topic of load
sharing, but this work has been targeted mainly at systems
with long-running, CPU-bound tasks. For example, Eager et
al. [10] show that effective load sharing can be accomplished
with simple adaptive algorithms that use random probes to
determine load. In the context of clusters and the Web, sev-
eral commercial products automatically distribute requests
to cluster nodes, typically using a form of round-robin dis-
patching [6]. In [8, 19], the authors propose a class of load
distribution algorithms using a random spread of nodes and
a load-based selection from the spread. Their results show
that a spread of two is optimal for a wide variety of situa-
tions in a homogeneous cluster. Pai et al. [21] describe a
"locality-aware request distribution" mechanism for cluster-
based services. A front-end node analyzes the request con-
tent and attempts to direct requests so as to optimize the use
of buffer cache in back-end nodes, while also balancing load.
Porcupine uses load information, in part, to distribute incom-
ing mail traffic to cluster nodes. However, unlike previous
load-balancing studies that assumed complete independence
of incoming tasks, we also balance the write traffic, taking
message affinity into consideration.

The replication mechanism used in Porcupine can be
viewed as a variation of optimistic replication schemes
[1, 27], in which timestamped updates are pushed to peer

13

nodes to support multi-master replication. Porcupine's total
object update property allows it to use a single timestamp per
object, instead of timestamp matrices, to order updates. In
addition, since updates are idempotent, Porcupine can retire
updates more aggressively. These differences make Porcu-
pine's approach to replication simpler and more efficient at
scale.

Several file systems have scalability and fault tolerance
goals that are similar to Porcupine's [2, 15, 16, 24]. Unlike
these systems, Porcupine uses the semantics of the various
data structures it maintains to exploit their special properties
in order to increase performance or decrease complexity.

9 Conclusions

We have described the architecture, implementation, and
performance of the Porcupine scalable mail server. We have
shown that Porcupine meets its three primary goals:

Manageability. Porcupine automatically adapts to changes
in configuration and workload. Porcupine masks het-
erogeneity, providing for seamless system growth over
time using latest-technology components.

Availability. Porcupine continues to deliver service to its
clients, even in the presence of failures. System soft-
ware detects and recovers automatically from failures
and integrates recovering nodes.

Performance. Porcupine's single-node performance is
competitive with other systems, and its throughput
scales linearly with the number of nodes. Our experi-
ments show that the system can find and exploit added
resources for its benefit.

Porcupine achieves these goals by combining four key
architectural techniques: functional homogeneity, automatic
reconfiguration, dynamic transaction scheduling, and repli-
cation. In the future, we hope to construct, deploy and eval-
uate configurations larger and more powerful than the ones
described in this paper.

Acknowledgements

We would like to thank Eric Hoffman, Bertil Folliot, David
Becker, and other members of the Porcupine project for the
valuable discussions and comments on the Porcupine design.

This work is supported by DARPA Grant F30602-97-
2-0226 and by National Science Foundation Grant # EIA-
9870740.

References

[1] Divyakant Agrawal, Amr El Abbadi, and R. C. Steike.
Epidemic algorithms in replicated databases. In Pro-
ceedings of the 16th Symposium on Principles of
Database Systems, pages 161-172, Montreal, Canada,
May 1997.

[2] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Tim-
othy Mann, and Garret Swart. The Echo distributed
file system. Technical Report 111, Compaq Systems
Research Center, Palo Alto, CA, September 1993.

[3] Thomas P. Brisco. RFC1794: DNS support for
load balancing, April 1995. http://www.cis.ohio-
state.edu/htbin/rfc/rfc1794.html.

[4] Nick Christenson, Tim Bosserman, and David Becke-
meyer. A highly scalable electronic mail service us-
ing open systems. In USEN1X Symposium on lnternet
Technologies and Systems, Monterey, CA, December
1997.

[5] Flaviu Christian and Frank Schmuck. Agreeing on pro-
cessor group membership in asynchronous distributed
systems. Technical Report CSE95-428, UC San Diego,
1995.

[6] Cisco Systems. Local director, http://www.cisco.com/-
warp/public/751/lodir/index.html.

[7] Marc Crispin. RFC2060: Internet message ac-
cess protocol version 4 rev 1, December 1996.
http://www.cis.ohio-state.edu/htbin/rfc/rfc2060.html.

[8] Michael Dalllin. Interpreting stale load information.
In The 19th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Austin, TX,
May 1999.

[9] James Deroest. Clusters help allocate computing
resources, http://www.washington.edu/tech_home/-
windows/issue 18/clusters.html, 1996.

[10] Derek L. Eager, Edward D. Lazowska, and John Za-
horjan. Adaptive load sharing in homogeneous dis-
tributed systems. IEEE Trans. on Software Engineer-
ing, 12(5):662-675, May 1986.

[11] Armando Fox, Steven D. Gribble, Yatin Chawathe,
Eric A. Brewer, and Paul Gauthier. Cluster-based scal-
able network services. In 16th Symposium on Operat-
ing Systems Principles, pages 78-91, St. Malo, France,
October 1997.

[12] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan-Kaufmann, 1993.

[13] Nancy P. Kronenberg, Henry M. Levy, and William D.
Strecker. Vaxclusters: A closely-coupled distributed
system. ACM Trans. on Computer Systems, 4(2):130-
146, 1986.

[14] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21(7):558-565, July 1978.

[15] Edward K. Lee and Chandramohan Thekkath. Petal:
Distributed virtual disks. In 7th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 84-92, Cam-
bridge, MA, October 1996.

14

[16] Barbara Liskov, Sanjay Ghemawat, Robert Gruber,
Paul Johnson, Liuba Shrira, and Michael Williams.
Replication in the Harp file system. In 13th Sympo-
sium on Operating Systems Principles, pages 226-238,
Pacific Grove, CA, October 1991.

[17] David L. Mills. RFC1305: Network time proto-
col (version 3), March 1992. http://www.cis.ohio-
state.edu/htbin/r fc/rfc 1305.html.

[18] David L. Mills. Improved algorithms for synchronizing
computer network clocks. In ACM SIGCOMM, pages
317-327, London, UK, September 1994.

[19] Michael Mitzenmacher. How useful is old informa-
tion? Technical Report 98-002, Compaq Systems Re-
search Center, Palo Alto, CA, February 1998.

[20] John G. Myers and Marshall T. Rose. RFC1939:
Post office protocol version 3, May 1996.
http://www.cis.ohio-state.edu/htbin/rfc/rfc 1939.html.

[21] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael
Svendsen, Peter Druschel, Willy Zwaenepoel, and
Erich Nahum. Locality-aware request distribution in
cluster-based network servers. In 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 206-216,
San Jose, CA, October 1998.

[22] Jonathan Postel. RFC821: Simple mail trans-
fer protocol, August 1982. http://www.cis.ohio-
state.edu/htbin/rfc/rfc821.html.

[23] Michael D. Schroeder, Andrew D. Birrell, and
Roger M. Needham. Experience with Grapevine: The
growth of a distributed system. ACM Transactions on
Computer Systems, 2(1) :3-23, February 1984.

[24] Chandramohan Thekkath, Timothy Mann, and Edward
Lee. Frangipani: A scalable distributed file system.
In 16th Symposium on Operating Systems Principles,
pages 224-237, St. Malo, France, October 1997.

[25] Theodore Ts'o. Ext2 home page, 1999. http:l/web.-
mit.edu/tytso/www/linux/ext2.html.

[26] Werner Vogels, Dan Dumitriu, Ken Birman, Rod
Gamache, Mike Massa, Rob Short, John Vert, Joe Bar-
rera, and Jim Gray. The design and architecture of the
Microsoft cluster service. In 28th International Sym-
posium on Fault-Tolerant Computing, pages 422-431,
Munich, Germany, June 1998.

[27] Gene T. J. Wuu and Arthur J. Bernstein. Efficient so-
lutions to the replicated log and dictionary problems.
In Proceedings of the 3rd Symposium on Principles
of Distributed Computing, pages 233-242, Vancouver,
Canada, August 1984.

15

