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Abstract 

This paper describes the motivation, design, and perfor- 
mance of Porcupine, a scalable mail server. The goal of 
Porcupine is to provide a highly available and scalable elec- 
tronic mail service using a large cluster of commodity PCs. 
We designed Porcupine to be easy to manage by emphasiz- 
ing dynamic load balancing, automatic configuration, and 
graceful degradation in the presence of failures. Key to the 
system's manageability, availability, and performance is that 
sessions, data, and underlying services are distributed ho- 
mogeneously and dynamically across nodes in a cluster. 

1 Introduction 

The growth of the Internet has led to the need for highly 
scalable and highly available services. This paper de- 
scribes the Porcupine scalable electronic mail service. Por- 
cupine achieves scalability by clustering many small ma- 
chines (PCs), enabling them to work together in an efficient 
manner. In this section, we describe system requirements for 
Porcupine, relate the rationale for choosing a mail applica- 
tion as our target, and review clustering alternatives. 

1.1 System requirements 

Porcupine defines scalability in terms of three essential sys- 
tem aspects: manageability, availability, and performance. 
Requirements for each follow: 

1. Manageability requirements. Although a system 
may be physically large, it should be easy to manage. 
In particular, the system must self-conligure with re- 
spect to load and data distribution and self-heM with 
respect to failure and recovery. A system manager 
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can simply add more machines or disks to improve 
throughput and replace them when they break. Over 
time, a system's nodes will perform at differing capac- 
ities, but these differences should be masked (and man- 
aged) by the system. 

2. Availability requirements. With so many nodes, it 
is likely that some will be down at any given time. 
Despite component failures, the system should deliver 
good service to all of its users at all times. In prac- 
tice, the failure of one or more nodes may prevent some 
users from accessing some of their mail. However, we 
strive to avoid failure modes in which whole groups of 
users find themselves without any mail service for even 
short periods of time. 

3. Performance requirements. Porcupine's single-node 
performance should be competitive with other single- 
node systems; its aggregate performance should scale 
linearly with the number of nodes in the system. For 
Porcupine, we target a system that scales to hundreds 
of machines, which is sufficient to service a few bil- 
lion mail messages per day with today's commodity 
PC hardware and system area networks. 

Porcupine meets these scalability requirements uniquely. 
First, the system is functionally homogeneous. That is, any 
node can execute part or all of any transaction, e.g., for the 
delivery or retrieval of mail. Second, every transaction is 
dynamically scheduled to ensure that work is uniformly dis- 
tributed across all nodes in the cluster. Third, the system 
automatically recontigures whenever nodes are added or re- 
moved even transiently. Finally, system and user data are 
automatically replicated across a number of nodes to ensure 
availability. 

Figure 1 shows the relationships among the central goal 
of scalability, the requirements for manageability, availabil- 
ity, and performance, and the key features or techniques used 
in the system. For example, dynamic transaction schedul- 
ing, automatic reconfiguration, and functional homogeneity 
together make the system manageable, since changes to the 
number or quality of machines, users, and load are handled 
automatically. Similarly, dynamic scheduling and replica- 
tion improve performance, because load can be distributed 
dynamically to less busy machines. 



Figure 1. The primary goal of Porcupine is scalability 
defined in terms of manageability, availability, and per- 
formance requirements. In turn, these requirements 
are met through combinations of the four key tech- 
niques shown above. 

Today, Porcupine runs on a cluster of thirty PCs con- 
nected by a high-speed network, although we show that it 
is designed to scale well beyond that. Performance is lin- 
ear with respect to the number of nodes in the cluster. The 
system adapts automatically to changes in workload, node 
capacity, and node availability. Data is available despite the 
presence of a few or many failures. 

1.2 Rationale for a m a i l  application 

Although Porcupine is a mail system, its underlying services 
and architecture are appropriate for other systems in which 
data is frequently written and good performance, availabil- 
ity, and manageability at high volume are demanded. For ex- 
ample, Usenet news, community bulletin boards, and large- 
scale calendar services are good candidates for deployment 
using Porcupine. Indeed, we have configured Porcupine to 
act as a web server and a Usenet news node. In this paper, 
however, we focus on the system's use as a large scale elec- 
tronic mail server. 

We chose a mail application for several reasons. First 
is need. Large-scale commercial services now handle more 
than ten million messages per day. Anticipating continued 
growth, our goal with Porcupine is to handle billions of mes- 
sages per day on a PC-based cluster. Second, email presents 
a more challenging application than that served by conven- 
tional web and proxy servers, which have been shown to 
be quite scalable. In particular, the workload for electronic 
mail is write intensive. Finally, consistency requirements 
for mail, compared to those for a distributed file or database 
system, are weak enough to encourage the use of replication 
techniques that are both efficient and highly available. 

1.3 Clustering alternatives 
Existing clustering solutions have taken one of two forms. 
One approach is seen with services that deliver read-only 
data, such as Web servers, search engines, or proxy agents. 
Here, administrators typically replicate data across a large 

number of back-end hosts and deploy a front-end traffic 
manager that routes requests to specific servers using a dy- 
namic policy (e.g,, based on the server's specific function 
[11], load or cache affinity [21]). This approach works well 
in a read-only context; however, it is inappropriate for ser- 
vices such as electronic mail, in which data is frequently 
written as well as read, and for which persistence and data 
availability are not provided by some external storage ser- 
vice. 

A second approach to clustering, used when data is as- 
sociated with specific users, is to assign users and their data 
statically to specific machines [4, 9]. A front-end intelligent 
router directs an external client's request to the appropri- 
ate node. We believe that such statically distributed, write- 
oriented services scale poorly. In particular, as the user base 
grows, so does service demand, which can be met only by 
adding more machines. Unfortunately, each new machine 
must be configured to handle a subset of the users, requir- 
ing that users and their data migrate from older machines. 
As more machines are added, the likelihood that at least 
one of them is inoperable grows, diminishing availability 
for users with data on the inoperable machines. In addition, 
users whose accounts are on slower machines tend to receive 
worse service than those on faster machines. Finally, a stati- 
cally distributed system is susceptible to overload when traf- 
fic is distributed nOn-uniformly across the user base. 

To date, systems relying on static distribution have 
worked for two reasons. First, service organizations have 
been willing to substantially overcommit computing capac- 
ity to mitigate short-term load imbalances. Second, organi- 
zations have been willing to employ people to reconfigure 
the system manually in order to balance load over the long 
term. Because the degree of overcapacity determines where 
short-term gives way to long-term, static systems have been 
costly in terms of hardware, people, or both. For small static 
systems, these costs have not been substantial; for exam- 
ple, doubling the size of a small but manageable system may 
yield a system that is also small and manageable. How- 
ever, once the number of machines becomes large (i.e, on 
the order of a few dozen), disparate (i.e., fast/slow machines, 
fast/slow disks, large/small disks), and continually increas- 
ing, this gross overcapacity becomes unacceptably expen- 
sive in terms of hardware and people. 

Porcupine seeks to address these problems by providing 
a system structure that performs well as it scales, adjusts au- 
tomatically to changes in configuration and load, and is easy 
to manage. Our vision is that a single system administrator 
can be responsible for the hardware that supports the mail 
requirements of one hundred million users processing a bil- 
lion messages per day. When the system begins to run out 
of capacity, that administrator can improve performance for 
all users simply by adding machines or even disks to the sys- 
tem. Lastly, the administrator can, without inconveniencing 
users, attend to the failure of machines, replacing them with 
the same urgency with which one replaces light bulbs. 



1.4 Organization of the paper 

The remainder of this paper describes Porcupine's architec- 
ture, implementation, and performance. Section 2 presents 
an overview of the system's architecture. Section 3 describes 
how the system adapts to changes in configuration automati- 
cally, while Section 4 reveals Porcupine's approach to avail- 
ability. In Section 5 we describe the system's scalable ap- 
proach to fine-grained load balancing. Section 6 evaluates 
the performance of the Porcupine prototype on our 30-node 
cluster. Section 7 discusses some of the system's scalability 
limitations and areas for additional work. In Section 8 we 
discuss related work, and we draw conclusions in Section 9. 

2 System architecture overview 

A key aspect of Porcupine is its functionalhomogeneity: any 
node can perform any function. This greatly simplifies sys- 
tem configuration: the system's capacity grows and shrinks 
with the number and aggregate power of the nodes, not with 
how they are logically configured. Consequently, there is no 
need for a system administrator to make specific service or 
data placement decisions. This attribute is key to the sys- 
tem's manageability. 

Functional homogeneity ensures that a service is always 
available, but it offers no guarantees about the data that ser- 
vice may be managing. Replicated state serves this purpose. 
There are two kinds of replicated state that Porcupine must 
manage: hard state and soft state. Hard state consists of 
information that cannot be lost and therefore must be main- 
tained in stable storage. For example, an email message and 
a user's password are hard state. Porcupine replicates hard 
state so that its derived soft state can be reconstructed during 
failure. Soft  state consists of information that, if lost, can be 
reconstructed from existing hard state. For example, the list 
of nodes containing mail for a particular user is soft state, 
because it can be reconstructed by a distributed disk scan. 
Most soft state is maintained on only one node at a given 
instant. The exception is directories that are themselves soft 
state. Such directories are replicated on every node to im- 
prove performance. 

This approach minimizes persistent store updates, mes- 
sage traffic, and consistency management overhead. The 
disadvantage is that soft state may need to be reconstructed 
from distributed persistent hard state after a failure. Our de- 
sign seeks to ensure that these reconstruction costs are low 
and can scale with the size of the system. In Section 6, we 
demonstrate the validity of this assumption by showing that 
reconstruction has nominal overhead. 

The following subsections describe Porcupine's data 
structures and their management. 

2.1 Key data structures 

Porcupine is a cluster-based, Internet mail service that sup- 
ports the SMTP protocol [22] for sending and receiving mes- 
sages across the Internet. Users retrieve their messages using 
any mail user agent that supports either the POP or IMAP re- 
trieval protocols [20, 7]. 
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Figure 2. An example showing how user information 
and mail messages might be distributed across a two- 
node Porcupine cluster. 

Porcupine consists of a collection of data structures and 
a set of internal operations provided by managers running on 
every node. The key data structures found in Porcupine are: 

Mailbox fragment. The collection of mail messages stored 
for a given user at any given node is called a mail- 
box fragment; the fragment is also the unit of mail 
replication. A Porcupine mailbox is therefore a logical 
entity consisting of a single user's mailbox fragments 
distributed and replicated across a number of nodes. 
There is no single mailbox structure containing all of a 
user's mail. A mailbox fragment is hard state. 

Mailbox fragment list. This list describes the nodes con- 
taining mailbox fragments for a given user. The mail- 
box fragment list is soft state. 

User profile database. This database describes Porcupine's 
client population, i.e., it contains user names, pass- 
words, etc. It is persistent, changes infrequently for 
a given user, and is partitioned and replicated across 
nodes. The user profile database is hard state. 

User profile soft state. Each entry in the user profile 
database is kept as soft state on exactly one node in 
the cluster. Accesses and updates to the user profile 
database are done first at that node. This data structure 
is soft  state. 

User map. The user map is a table that maps the hash value 
of each user name to a node currently responsible for 
managing that user's profile soft state and mailbox 
fragment list. The user map is soft  state and is repli- 
cated on each node. 

Cluster membership list. Each node maintains its own 
view of the set of nodes currently functioning as part 
of the Porcupine cluster. Most of the time, all nodes 
perceive the same membership, although a node's ar- 
rival or departure may cause short-term inconsistencies 
as the system establishes the new membership. During 
network partition, inconsistencies may last for a long 



time. Various system services automatically respond 
to changes in the cluster membership list. The cluster 
membership list is soft state and is replicated on each 
node. 

2.2 Data structure managers 

The preceding data structures are distributed and maintained 
on each node by several essential managers. The user man- 
ager manages soft state that can be reconstructed from disk. 
By spreading the responsibility for servicing accesses to the 
user profile database across all nodes in the system, larger 
user populations can be supported simply by adding more 
machines. The user manager also maintains the mailbox 
fragment list for each user. 

The membership manager on each node maintains that 
node's view of the overall cluster state. It tracks which nodes 
are up or down and the contents of the user map. It also 
participates in a membership protocol to track that state. 

Two other managers, the mailbox manager and the user 
pro~le manager, maintain persistent storage and enable re- 
mote access to mailbox fragments and user profiles. 

Each node runs a replication manager, which ensures the 
consistency of replicated objects stored in that node's local 
persistent storage. 

On top of these managers, each node runs a delivery 
proxy to handle incoming SMTP requests and a retrieval 
proxy to handle POP and IMAP requests. 

The Porcupine architecture leads to a rich distribution of 
information in which mail storage is decoupled from user 
management. For example, Figure 2 shows a sample Porcu- 
pine configuration consisting of two nodes and three users. 
For simplicity, messages are not shown as replicated. The 
user manager on node N1 maintains Alice's and Bob's soft 
state, which consists of their user profile database entries and 
their mailbox fragment lists. Similarly, the user manager on 
node N2 maintains Chuck's soft state. 

2.3 A mail transaction in progress 

In failure-free operation, mail delivery and retrieval work as 
follows. 

2.3.1 Mail  delivery 

An external mail transfer agent (MTA) delivers a message 
to a user who is hosted on a Porcupine cluster by discover- 
ing the IP address of any Porcupine cluster node using the 
Internet's Domain Name Service [3]. Because any function 
can execute on any node, there is no need for special front- 
end request routers, although nothing in the system prevents 
their use. 

To initiate mail delivery, the MTA uses SMTP to connect 
to the designated Porcupine node, which acts as a delivery 
proxy. The proxy's job is to store the message on disk. To 
do this, it retrieves the mailbox fragment list from the re- 
cipient's user manager and then chooses the best node from 
that list. If the list is empty or all choices are poor (for ex- 
ample, overloaded or out of disk space), the proxy is free 

to select any other node. The proxy then forwards the mes- 
sage to the chosen node's mailbox manager for storage. The 
storing node ensures that its participation is reflected in the 
user's mailbox fragment list. If the message is to be repli- 
cated (based on information in the user's profile), the proxy 
selects multiple nodes on which to store the message. 

2.3.2 Mail  retrieval 

An external mail user agent (MUA) retrieves messages for 
a user whose mail is stored on a Porcupine cluster using ei- 
ther the POP or IMAP transfer protocols. The MUA contacts 
any node in the cluster to initiate the retrieval. The contacted 
node, acting as a proxy, authenticates the request through the 
user manager for the client and discovers the mailbox frag- 
ment list. It then contacts the mailbox manager at each node 
storing the user's mail to request mail digest information, 
which it returns to the MUA. Then, for each message re- 
quested, the proxy fetches the message from the appropriate 
node or nodes. If the external agent deletes a message, the 
proxy forwards the deletion request to the appropriate node 
or nodes. When the last message for a user has been re- 
moved from a node, that node removes itself from the user's 
mailbox fragment list. 

2.4 Advantages and tradeoffs 

By decoupling the delivery and retrieval agents from the 
storage services and user manager in this way, it is always 
possible to deliver or retrieve mail for a user, even when 
nodes storing the user's existing mail are unavailable. An- 
other advantage is that mail delivery can be load balanced 
dynamically; any node can store mail for any user, and no 
single node is permanently responsible for a user's mail or 
soft profile information. A user's mail can be replicated arbi- 
trarily, independent of the replication factor for other users. 
If a user manager goes down, another will take over for 
that manager's users. In contrast, in a system where user 
mailboxes and/or profile information are fixed to particu- 
lar nodes, some nodes may become overloaded while others 
idle. 

The system architecture reveals a key tension that must 
be addressed in the implementation. Specifically, while a 
user's mail may be distributed across a large number of ma- 
chines, doing so complicates both delivery and retrieval. On 
delivery, each time a user's mail is stored on a node not al- 
ready containing mail for that user, the user's mailbox frag- 
ment list (a potentially remote data structure) must be up- 
dated. On retrieval, aggregate load increases somewhat with 
the number of nodes storing the retrieving user's mail. Con- 
sequently, it is beneficial to limit the spread of a user's mail, 
widening it primarily to deal with load imbalances and fail- 
ure. In this way, lhe system behaves (and performs) like a 
statically partitioned system when there are no failures and 
load is well-balanced, but like a dynamically partitioned sys- 
tem otherwise. Section 5 discusses this tradeoff in more de- 
tail. 



3 S e l f  management 

Porcupine must deal automatically with diverse changes, in- 
cluding node failure, node recovery, node addition, and net- 
work failure. In addition, change can come in bursts, creat- 
ing long periods of instability, imbalance and unavailability. 
It is a goal of Porcupine to manage change automatically in 
order to provide good service even during periods of system 
flux. 

The following sections describe the Porcupine services 
that detect and respond to configuration changes. 

3.1 Membership services 

Porcupine's cluster membership service provides the basic 
mechanism for tolerating change. It maintains the current 
membership set, detects node failures and recoveries, noti- 
fies other services of changes in the system's membership, 
and distributes new system state. We assume a symmetric 
and transitive network in steady state, so that nodes eventu- 
ally converge on a consistent membership set provided that 
no failure occurs for a sufficiently long period (i.e., a few 
seconds). 

The cluster membership service uses a variant of the 
Three Round Membership Protocol [5] (TRM) to detect 
membership changes. In TRM, the first round begins when 
any node detects a change in the configuration and becomes 
the coordinator. The coordinator broadcasts a "new group" 
message together with its Lamport clock [14], which acts as 
a proposed epoch ID to identify a particular membership in- 
carnation uniquely. If two or more nodes attempt to become 
a coordinator at the same time, the one proposing the largest 
epoch ID wins. 

In the second round, all nodes that receive the "new 
group" message reply to the coordinator with the proposed 
epoch ID. After a timeout period, the coordinator defines the 
new membership to be those nodes from which it received a 
reply. In the third round, the coordinator broadcasts the new 
membership and epoch ID to all nodes. 

Once membership has been established, the coordina- 
tor periodically broadcasts probe packets over the network. 
Probing facilitates the merging of partitions; when a coor- 
dinator receives a probe packet from a node not in its cur- 
rent membership list, it initiates the TRM protocol. A newly 
booted node acts as the coordinator for a group in which it 
is the only member. Its probe packets are sufficient to notify 
others in the network that it has recovered. 

There are several ways in which a node may discover 
the failure of another. The first is through a timeout that oc- 
curs normally during part of a remote operation. In addition, 
nodes within a membership set periodically "ping" their next 
highest neighbor in IP address order, with the largest IP ad- 
dress pinging the smallest. If  the ping is not responded to 
after several attempts, the pinging node becomes the coordi- 
nator and initiates the TRM protocol. 

3.2 User map 

The purpose of the user map is to distribute management re- 
sponsibility evenly across live nodes in the cluster. When- 
ever membership services detect a configuration change, 
the system must reassign that management responsibility. 
Therefore, like the membership list, the user map is repli- 
cated across all nodes and is recomputed during each mem- 
bership change as a side effect of the TRM protocol. 

After the second round, the coordinator computes a new 
user map by removing the failed nodes from the current ver- 
sion and uniformly redistributing available nodes across the 
user map's hash buckets (the user map has many buckets, so 
a node typically is assigned to more than one bucket). The 
coordinator minimizes changes to the user map to simplify 
reconstruction of other soft state, described in the next sec- 
tion. For each bucket with a changed assignment, the coor- 
dinator assigns to and includes with the bucket a timestamp 
equal to the current epoch ID. The ID is used by other nodes 
to determine which entries in the user map have changed. 
The new user map is piggybacked on the final broadcast 
message of the TRM protocol. 

3 .3 S o f t  state reconstruction 

Once the user map has been reconstructed, it is necessary to 
reconstruct the soft state at user managers with new user re- 
sponsibilities. Specifically, this soft state is the user profile 
soft state and the mailbox fragment list for each user. Essen- 
tially, every node pushes soft state corresponding to any of 
its hard state to new user managers responsible for that soft 
state. 

Reconstruction is a two-step process, completely dis- 
tributed, but unsynchronized. The first step occurs imme- 
diately after membership reconfiguration. Here, each node 
compares the previous and current user maps to identify 
any buckets having fresh assignments. A node considers a 
bucket assignment fresh if the bucket's previous epoch ID 
does not match the current epoch ID. Recall that the user 
map associates nodes with hash buckets, so the relevant soft 
state belonging on a node is that corresponding to those users 
who hash into the buckets assigned to the node. 

Each node proceeds independently to the second step. 
Here, every node identifying another node's fresh bucket as- 
signment sends it any soft state corresponding to the hard 
state for that bucket maintained on the sending node. First, 
the node locates any mailbox fragments belonging to users in 
the freshly managed bucket and requests that the new man- 
ager include this node in those users' mailbox fragment lists. 
Second, the node scans its portion of the stored user profile 
database and sends to the fresh manager all pertinent user 
profiles. As the user database is replicated, only the replica 
with the largest IP address among those functioning does 
the transfer. The hard state stored on every node is "buck- 
eted" into directories so that it can be quickly reviewed and 
collected on each change to the corresponding bucket in the 
user map. 

The cost of rebuilding soft state during reconfiguration 
is intended to be constant regardless of cluster size. The cost 
is mostly determined by the number of nodes redistributed 



within the user map after each failure. It therefore decreases 
linearly with cluster size. Although the rate of reconfigura- 
tion increases linearly with cluster size (assuming indepen- 
dent failures), the two effects cancel each other out, and the 
work done by each node after a failure remains about the 
same. 

3.4 Node addition 
Porcupine's automatic reconfiguration structure makes it 
easy to add a new node to the system. A system administra- 
tor simply installs the Porcupine software on the node. When 
the software boots, it is noticed by the membership protocol 
and added to the cluster. Other nodes see the configuration 
change and upload soft state onto the new node. To make 
the host accessible outside of Porcupine, the administrator 
may need to update border naming and routing services. Oc- 
casionally, a background service rebalances replicated user 
database entries across the nodes in the cluster 1. 

3.5 Summary 
Porcupine's dynamic reconfiguration protocols ensure that 
the mail service is always available for any given user and fa- 
cilitate the reconstruction and distribution of soft state. The 
next section discusses the maintenance of hard state. 

4 Replication and availability 

This section describes object replication support in Porcu- 
pine. As in previous systems (e.g., [11]), Porcupine defines 
semantics tuned to its application requirements. This per- 
mits a careful balance between behavior and performance. 

Porcupine replicates the user database and mailbox frag- 
ments to ensure their availability. Our replication service 
provides the same guarantees and behavior as the Internet's 
electronic-mail protocols. For example, Internet email may 
arrive out of order, on occasion more than once, and may 
sometimes reappear after being deleted. These anomalies 
are artifacts of the non-transactional nature of the Internet's 
mail protocols. Porcupine never loses electronic mail unless 
all nodes on which the mail has been replicated are irretriev- 
ably lost. 

4.1 Replication properties 
The general unit of replication in Porcupine is the object, 
which is simply a named byte array that corresponds to a 
single mail message or the profile of a single user. A detailed 
view of Porcupine's replication strategy includes these five 
high-level properties: 

1. Update anywhere. An update can be initiated at any 
replica. This improves availability, since updates need 
not await the revival of a primary. This strategy also 
eliminates the requirement that failure detection be 

1 In the current implementation, the rebalancer must be run man- 
ually. 

precise, since there need not be agreement on which 
is the primary node. 

2. Eventual consistency. During periods offailure, repli- 
cas may become inconsistent for short periods of time, 
but conflicts are eventually resolved. We recognize 
that single-copy consistency [12] is too strong a re- 
quirement for many Internet-based services, and that 
replica inconsistencies are tolerable as long as they are 
resolved eventually. This strategy improves availabil- 
ity, since accesses may occur during reconciliation or 
even during periods of network partitioning. 

3. Total update.  An update to an object totally over- 
writes that object. Since email messages are rarely 
modified, this is a reasonable restriction that greatly 
simplifies update propagation and replica reconcilia- 
tion, while keeping costs low, 

4. Lock free. There are no distributed locks. This im- 
proves performance and availability and simplifies re- 
covery. 

5. Order ing by loosely synchronized clocks. The nodes 
in the cluster have loosely synchronized clocks [ 17, 18] 
that are used to order operations on replicated objects. 

The update-anywhere attribute, combined with the fact 
that any Porcupine node may act as a delivery agent, means 
that incoming messages are never blocked (assuming at least 
one node remains functional). If  the delivery agent crashes 
during delivery, the initiating host (which exists outside of 
Porcupine) can reconnect to another Porcupine node. If  the 
candidate mailbox manager fails during delivery, the de- 
livery agent will select another candidate until it succeeds. 
Both of these behaviors have the same potential anomalous 
outcome: if the failure occurs after the message has been 
written to stable storage but before any acknowledgement 
has been delivered, the end user may receive the same mes- 
sage more than once. We believe that this is a reasonable 
price to pay for service that is continually available. 

The eventual-consistency attribute means that earlier up- 
dates to an object may "disappear" after all replica inconsis- 
tencies are reconciled. This behavior can be confusing, but 
we believe that this is more tolerable than alternatives that 
block access to data when replica contents are inconsistent. 
In practice, eventual consistency for email means that a mes- 
sage once deleted may temporarily reappear. This is visible 
only if users attempt to retrieve their mail during the tempo- 
rary inconsistency, which is expected to last at most a few 
seconds. 

The lock-free attribute means that multiple mail-reading 
agents, acting on, behalf of the same user at the same time, 
may see inconsistent data. However, POP and IMAP pro- 
tocols do not require a consistent outcome with multiple 
clients concurrently accessing the same user's mail. 

The user profile database is replicated with the same 
mechanisms used for mail messages. Because of this, it 
is possible for a client to perceive an inconsistency in its 
(replicated) user database entry during node recovery. Op- 
erations are globally ordered by the loosely synchronized 
clocks; therefore, a sequence of updates to the user profile 



database will eventually converge to a consistent state. We 
assume that the maximum skew of the loosely synchronized 
clocks is less than the inter-arrival time of externally initi- 
ated, order-dependent operations, such as Create-User and 
Change-Password. In practice, clock skew is usually on the 
order of tens of microseconds[ 18], whereas order-dependent 
operations are separated by networking latencies of at least a 
few milliseconds. Wall clocks, not Lamport clocks [14], are 
used to synchronize updates, because wall clocks can order 
events that are not logically related (e.g., an external agent 
contacting two nodes in the cluster serially). 

We now describe the replication manager, email opera- 
tions using replicas, and the details of updating replicated 
objects. 

4.2 Replication manager 
A replication manager running on each host exchanges mes- 
sages among nodes to ensure replication consistency. The 
manager is oblivious to the format of a replicated object 
and does not define a specific policy regarding when and 
where replicas are created. Thus, the replication manager 
exports two interfaces: one for the creation and deletion 
of objects, which is used by the higher level delivery and 
retrieval agents, and another for interfacing to the specific 
managers, which are responsible for maintaining replicated 
objects. The replication manager does not coordinate object 
reads. Mail retrieval proxies are free to pick any replica and 
read them directly. 

4.3 Sending and retrieving replicated m a i l  

When a user's mail is replicated, that user's mailbox frag- 
ment list reflects the set of nodes on which each fragment 
is replicated. For example, if Alice has two fragments, 
one replicated on nodes N1 and N2 and another replicated 
on nodes N2 and N3, the mailbox fragment list for Alice 
records {{N1,N2}, {N2,N3}}. To retrieve mail, the re- 
trieval agent contacts the least-loaded node for each repli- 
cated mailbox fragment to obtain the complete mailbox con- 
tent for Alice. 

To create a new replicated object (as would occur with 
the delivery of a mail message), an agent generates an object 
ID and the set of nodes on which the object is to be repli- 
cated. An object ID is simply an opaque, unique string. For 
example, mail messages have an object ID of the form (type, 
username, messagelD), where type is the type of object 
(mail message), username is the recipient, and messageID 
is an unique mail identifier found in the mail header. 

4.4 Updating objects 
Given an object ID and an intended replica set, a delivery 
or retrieval agent can initiate an update request to the object 
by sending an update message to any replica manager in the 
set. A delivery agent's update corresponds to the storing of 
a message. The retrieval agent's update corresponds to the 
deletion and modification of a message. 

The receiving replica acts as the update coordinator and 
propagates updates to its peers. The replication manager 
on every node maintains a persistent update log, used to 
record updates to objects that have not yet been accepted by 
all replica peers maintaining that object. Each entry in the 
update log is the tuple (timestamp, objectlD, target-nodes, 
remaining-nodes). 

• Timestamp is the tuple (wallclock time, nodelD), 
where wallclock time is the time at which the update 
was accepted at the coordinator named by nodeID. 
Timestamp uniquely identifies and totally orders the 
update. 

• Target-nodes is the set of nodes that should receive the 
update. 

• Remaining-nodes is the set of peer nodes that have 
not yet acknowledged the update. Initially, remaining- 
nodes is equal to target-nodes and is pruned by the co- 
ordinator as acknowledgments arrive. 

The coordinating replication manager works through the log, 
attempting to push updates to all the nodes found in the 
remaining-nodes field of an entry. Once contact has been 
made with a remaining node, the manager sends the replica's 
contents and the log entry to the peer. Since updates to ob- 
jects are total, multiple pending updates to the same object 
on a peer are synchronized by discarding all but the newest. 
If  no pending update exists, or if the update request is the 
newest for an object, the peer adds the update to the log, 
modifies the replica, and sends an acknowledgement to the 
coordinator. Once the coordinator receives acknowledge- 
ments from all replica peers, it ret/res the update entry in its 
own log (freeing that log space) and then notifies the peers 
that they may also retire the entry. 

If  the coordinator fails before responding to the initiating 
agent, the agent will select another coordinator. For updates 
to a new object, as is the case with a new mail message, 
the initiating agent will create another new object and se- 
lect a new, possibly overlapping, set of replicas. This helps 
to ensure that the degree of replication remains high even 
in the presence of a failed coordinator. (In the current im- 
plementation, if a peer fails during replication, the initiating 
agent does not select an alternative replica, forcing the re- 
mote client to restart the entire session.) The coordinators 
and participants force their update log to disk before apply- 
ing the update to ensure that the replicas remain consistent. 
As an optimization, a replica receiving an update message 
for which it is the only remaining node need not force its log 
before applying the update. This is because the other repli- 
cas are already up to date, so the sole remaining node will 
never have to make them current for this update. In prac- 
tice, this means that only the coordinator forces its log for 
two-way replication. 

Should the coordinator fail after responding to the initiat- 
ing target but before the update is applied to all replicas, any 
remaining replica can become the coordinator and bring oth- 
ers up to date. Multiple replicas can become the coordinator 
in such case, since replicas can discard duplicate updates by 
comparing timestamps. 



In the absence of node failures, the update log remains 
relatively small for two reasons. First, the log never con- 
tains more than one update to the same object. Second, up- 
dates are propagated as quickly as they are logged and are 
deleted as soon as all replicas acknowledge. Timely propa- 
gation also narrows the window during which an inconsis- 
tency could be perceived. 

When a node fails for a long time, the update logs of 
other nodes could grow indefinitely. To prevent this, updates 
remain in the update log for at most a week. If  a node is 
restored after that time, it must reenter the Porcupine cluster 
as a "new" node, rather than as a recovering one. A node 
renews itself by deleting all of its hard state before rejoining 
the system. 

4.5 Summary 
Porcupine's replication scheme provides high availability 
through the use of consistency semantics that are weaker 
than strict single-copy consistency, but strong enough to ser- 
vice Internet clients using non-transactional protocols. In- 
consistencies, when they occur, are short lived (the update 
propagation latency between functioning hosts) and, by In- 
ternet standards, unexceptional. 

5 Dynamic load balancing 

Porcupine uses dynamic load balancing to distribute the 
workload across nodes in the cluster in order to maximize 
throughput. As mentioned, Porcupine clients select an ini- 
tial contact node either to deliver or to retrieve mail. That 
contact node then uses the system's load-balancing services 
to select the "best" set of nodes for servicing the connection. 

In developing the system's load balancer, we had sev- 
eral goals. First, it needed to be fine-grained, making good 
decisions at the granularity of message delivery. Second, it 
needed to support a heterogeneous cluster, since not all the 
nodes are of equivalent power. Third, it had to be automatic 
and not require the use of any "magic constants" thresh- 
olds, or tuning parameters that would need to be manually 
adjusted as the system evolved. Fourth, with throughput as 
the primary goal, it needed to resolve the tension between 
load and affinity. Specifically, in order to best balance load, 
messages should be stored on idle nodes. However, it is less 
expensive to store (and retrieve) a message on nodes that al- 
ready contain mail for the message's recipient. Such affinity- 
based scheduling reduces the amount of memory needed to 
store fragment lists, increases the sequentiality of disk ac- 
cesses, and decreases the number of inter-node RPCs re- 
quired to read, write, or delete a message. 

In Porcupine, delivery and retrieval proxies make load- 
balancing decisions. There is no centralized load-balancing 
node service; instead, each node keeps track of the load on 
other nodes and makes decisions independently. 

Load information is collected in the same ways we col- 
lect liveness information (Section 3.1): (1) as a side-effect 
of RPC operations (i.e., each RPC request or reply packet 
contains the load information of the sender), and (2) through 
a virtual ring in which load information is aggregated in a 

message passed along the ring. The first approach gives a 
timely but possibly narrow view of the system's load. The 
second approach ensures that every node eventually discov- 
ers the load from every other node. 

The load on a node has two components: a boolean, 
which indicates whether or not the disk is full, and an inte- 
ger, which is the number of pending remote procedure calls 
that might require a disk access. A node with a full disk is 
always considered "very loaded" and is used only for op- 
erations that read or delete existing messages. After some 
experimentation, we found that it was best to exclude disk- 
less operations from the load to keep it from becoming stale 
too quickly. Because disk operations are so slow, a node 
with many pending disk operations is likely to stay loaded 
for some time. 

A delivery proxy that uses load information alone to se- 
lect the best node(s) on which to store a message will tend 
to distribute a user's mailbox across many nodes. As a re- 
suit, this broad distribution can actually reduce overall sys- 
tem throughput for the reasons mentioned earlier. Conse- 
quently, we define for each user a spread; the spread is a 
soft upper bound on the number of different nodes on which 
a given user's mail should be stored. The bound is soft to 
permit the delivery agent to violate the spread if one of the 
nodes storing a user's mail is not responding. 

As shown in Section 6, the use of a spread-limiting load 
balancer has a substantial effect on system throughput even 
with a relatively narrow spread. The benefit is that a given 
user's mail will be found on relatively few nodes, but those 
nodes can change entirely each time the user retrieves and 
deletes mail from the server. 

6 System evaluation 

This section presents measurements from the Porcupine pro- 
totype running synthetic workloads on a 30-node cluster. We 
characterize the system's scalability as a function of its size 
in terms of the three key requirements: 

• Performance.  We show that the system performs well 
on a single node and scales linearly with additional 
nodes. We also show that the system outperforms a 
statically partitioned configuration consisting of a clus- 
ter of standard SMTP and POP servers with fixed user 
mapping. 

• Availability. We demonstrate that replication and re- 
configuration have low cost. 

• Manageability. We show that the system responds 
automaticatly and rapidly to node failure and recov- 
ery, while continuing to provide good performance. 
We also show that incremental hardware improve- 
ments can automatically result in system-wide per- 
formance improvements. Lastly, we show that au- 
tomatic dynamic load balancing efficiently handles 
highly skewed workloads. 



6.1 Platform and workload 

The Porcupine system runs on Linux-based PCs with all sys- 
tem services on a node executing as part of a multi-threaded 
process. For the measurements in this paper, we ran on a 
cluster of thirty nodes connected by 1Gb/second Ethernet 
hubs. As would be expected in any large cluster, our sys- 
tem contains several different hardware configurations: six 
200MHz machines with 64MB of memory and 4GB SCSI 
disks, eight 300 MHz machines with 128MB of memory 
and 4GB IDE disks, and sixteen 350 MHz machines with 
128MB of memory and 8GB IDE disks. 

Some key attributes of the system's implementation fol- 
low: 

• The system runs on Linux 2.2.7 and uses the ext2 file 
system for storage [25]. 

• The system consists of fourteen major components 
written in C++. The total system size is about forty-one 
thousand lines of code, yielding a 1MB executable. 

• A mailbox fragment is stored in two files, regardless 
of the number of messages contained within. One file 
contains the message bodies, and the other contains 
message index information. 

• The size of the user map is 256 entries. 

• The mailbox fragment files are grouped and stored in 
directories corresponding to the hash of user names 
(e.g., if Ann's hash value is 9, then her fragment files 
are spool / 9 / ann and spool / 9/ann. idx). This 
design allows discovery of mailbox fragments belong- 
ing to a particular hash bucket - a critical operation 
during membership reconfiguration - to be performed 
by a single directory scan. 

• Most of a node's memory is consumed by the soft user 
profile state. In the current implementation, each user 
entry takes 76 bytes plus 44 bytes per mailbox frag- 
ment. For example, in a system with ten million users 
running on 30 nodes, about 50 MB/node would be de- 
voted to user soft state. 

We developed a synthetic workload to evaluate Porcupine 
because users at our site do not receive enough email to drive 
the system into an overload condition. We did, however, de- 
sign the workload generator to model the traffic pattern we 
have observed on our departmental mail servers. Specifi- 
cally, we model a mean message size of 4.7KB, with a fairly 
fat tail up to about 1MB. Mail delivery (SMTP) accounts 
for about 90% of the transactions, with mail retrieval (POP) 
accounting for about 10%. Each SMTP session sends a mes- 
sage to a user chosen from a population according to a Zipf 
distribution with a = 1.3, unless otherwise noted in the text. 

For purposes of comparison, we also measure a tightly 
configured conventional mail system in which users and ser- 
vices are statically partitioned across the nodes in the cluster. 
In this configuration, we run SMTP/POP redirector nodes at 
the front end. At the back end, we run modified versions of 
the widely used Sendmail-8.9.3 and ids-popd-0.23 servers. 

The front-end nodes accept SMTP and POP requests and 
route them to back-end nodes by way of a hash on the user 
name. To keep the front ends from becoming a bottleneck, 
we determined empirically that we need to run one front end 
for every fifteen back ends. The tables and graphs that follow 
include the front ends in our count of the system size. Based 
on a priori knowledge of the workload, we defined the hash 
function to distribute users perfectly across the back-end 
nodes. To further optimize the configuration, we disabled 
all security checks, including user authentication, client do- 
main name lookup, and system log auditing. 

For both Porcupine and the conventional system, we de- 
fined a user population with size equal to 160,000 times the 
number of nodes in the cluster (or about 5 million users for 
the 30-node configuration). Nevertheless, since the database 
is distributed in Porcupine, and no authentication is per- 
formed for the conventional platform, the size of the user 
base is nearly irrelevant to the measurements. Each POP 
session selects a user according to the same Zipf distribu- 
tion, collects and then deletes all messages awaiting the user. 
In the Porcupine configuration, the generator initiates a con- 
nection with a Porcupine node selected at random from all 
the nodes. In the conventional configuration, the generator 
selects a node at random from the front-end nodes. By de- 
fault, the load generator attempts to saturate the cluster by 
probing for the maximum throughput, increasing the num- 
ber of outstanding requests until at least 10% of them fail to 
complete within two seconds. At that point, the generator 
reduces the request rate and resumes probing. 

We demonstrate performance by showing the maximum 
number of messages the system receives per second. Only 
message deliveries are counted, although message retrievals 
occur as part of the workload. Thus, this figure really reflects 
the number of messages the cluster can receive, write, read, 
and delete per second. The error margin is smaller than 5%, 
with 95% confidence for all values presented in the follow- 
ing sections. 

6.2 Scalability and performance 

Figure 3 shows the performance of the system as a func- 
tion of cluster size. The graph shows four different config- 
urations: without message replication, with message repli- 
cation, with message replication using NVRAM for the 
logs, and finally for the conventional configuration of send- 
mail+popd. Although neither replicates, the Porcupine 
no-replication case outperforms and outscales conventional 
sendmail. The difference is primarily due to the conven- 
tional system's use of temporary files, excessive process 
forking, and the use of lock-files. With some effort, we 
believe the conventional system could be made to scale as 
well as Porcupine without replication. However, the systems 
would not be functionally identical, because Porcupine con- 
tinues to deliver service to all users even when some nodes 
are down. 

For replication, the performance of Porcupine scales lin- 
early when each incoming message is replicated on two 
nodes. There is a substantial slowdown relative to the non- 
replicated case, because replication increases the number of 

9 



"0 
C 
o 
o 

m 
m 

IE 

800 

700 

600 

500 
400 

300 

200 

100 

0 

-O-Porcupine no replication 
"-~-Porcupine with 

replication, NVRAM 
"~-Porcupine with replication 
- ~ "Sendmail+popd 

I ! I I I I 

0 5 10 15 20 25 30 

Cluster size 
Figure 3. Throughput scales with the number of hosts. 
This graph shows how Porcupine and the sendmail- 
based system scale with respect to cluster size. 

"o 150 
t -  
O 
O 
m ~ 100 

~ 50 

= i 
f 

No 
Replication 

[ ]  With one disk/node 
With three disks/node 

I I 
Repl icat ion Replicat ion 

with NVRAM 

Figure 4. Summary of single-node throughput in a va- 
riety of configurations. 

synchronous disk writes three-fold: once for each replica 
and once to update the coordinator's log. Even worse, in this 
hardware configuration the log and the mailbox fragments 
share the same disk on each node. 

One way to improve the performance of replication is to 
use non-volatile RAM for the log. Since updates are typi- 
cally retired, most of the writes to NVRAM need never go 
to disk and can execute at memory speeds. Although our 
machines do not have NVRAM installed, we can simulate 
NVRAM simply by keeping the log in standard memory. As 
shown in Figure 3, NVRAM improves throughput; however, 
throughput is still about half that of the non-replicated case, 
because the system must do twice as many disk operations 
per message. 

Resource  No replication With replication 
CPU utilization 15% 12% 
Disk utilization 75% 75% 
Network send 2.5Mb/second 1.7Mb/second 
Network recv 2.6Mb/second 1.7Mb/second 

Table 1. Resource consumption on a single node with 
one disk. 

Table 1 shows the CPU, disk, and network load in- 
curred by a single 350Mhz Porcupine node running at peak 
throughput. For this configuration, the table indicates that 
the disk is the primary impediment to single-node perfor- 
mance. 

To demonstrate this, we made measurements on clusters 
with one and two nodes with increased I/O capacity. A sin- 
gle 300MHz node with one IDE disk and two SCSI disks 
delivered a throughput of 105 messages/second, as opposed 
to about 23 messages/second with just one disk. We then 
configured a two node cluster, each with one IDE disk and 
two SCSI disks. The machines were each able to handle 
38 messages/second (48 assuming NVRAM). These results 
(normalized to single-node throughput) are summarized in 
Figure 4. 
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Figure 5. Throughput of the system configured with 
infinitely fast disks. 

Lastly, we measured a cluster in which disks were as- 
sumed to be infinitely fast. In this case the system does not 
store messages on disk but only records their digests in main 
memory. Figure 5 shows that the simulated system without 
the disk bottleneck achieves a six-fold improvement over the 
measured system, At this point, the CPU becomes the bot- 
tleneck. Thus Porcupine with replication performs compar- 
atively better than on the real system. 

With balanced nodes, the network clearly becomes the 
bottleneck. In the non-replicated case, each message travels 
the network four times ((I) Internet to delivery agent (2) to 
mailbox manager (3) to retrieval agent (4) to Internet). At 
an average message size of 4.7KB, a 1Gb/second network 
can then handle about 6500 messages/second. With a sin- 
gle "disk loaded" node able to handle 105 messages/second, 
roughly 62 nodes will saturate the network as they process 
562 million messages/day. With messages replicated on two 
nodes, the same network can handle about 20% fewer mes- 
sages (as the message must be copied one additional time to 
the replica), which is about 5200 messages/second, or about 
450 million mesSages/day. Using the throughput numbers 
measured with the faster disks, this level of performance can 
be achieved with 108 NVRAM nodes, or about 137 nodes 
without NVRAM. More messages can be handled only by 
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increasing the aggregate network bandwidth. We address 
this issue further in Section 7. 

6.3 Load balancing 

The previous section demonstrated Porcupine's performance 
assuming a uniform workload distribution and homogeneous 
node performance. In practice, though, workloads are not 
uniformly distributed and the speeds of CPUs and disks on 
nodes differ. This can create substantial management chal- 
lenges for system administrators when they must reconfigure 
the system manually to adapt to the load and configuration 
imbalance. 

This section shows how Porcupine automatically handles 
workload skew and heterogeneous cluster configuration. 

6.3.1 Adapting to workload skew 

Figures 6 and 7 show the impact of Porcupine's dynamic 
spread-limiting, load-balancing strategy on throughput as a 
function of workload skew for our 30-node configuration (all 
with a single slow disk). Both the non-replicated and repli- 
cated cases are shown. Skew along the x-axis reflects the 
inherent degree of balance in the incoming workload. When 
the skew equals zero, recipients are chosen so that the hash 

distributes uniformly across all buckets. When the skew is 
one, the recipients are chosen so that they all hash into a sin- 
gle user map bucket, corresponding to a highly imbalanced 
workload. 

The graphs compare random, static, and dynamic load 
balancing policies. The random policy, labeled R on the 
graph, simply selects a host at random to store each mes- 
sage received; it has the effect of smoothing out any non- 
uniformity in the distribution. The static spread policy, 
shown by the lines labeled S 1, $2, and $4, selects a node 
based on a hash of the user name spread over 1, 2 or 4 nodes, 
respectively. The dynamic spread policy - the one used in 
Porcupine - selects from those nodes already storing mail- 
box fragments for the recipient. It is shown as D1, D2 and 
D4 on the graph. Again, the spread value (1, 2, 4) controls 
the maximum number of nodes (in the absence of failure) 
that store a single user's mail. On message receipt, if the 
size of the current fragment list for the recipient is smaller 
than the maximum spread, Porcupine increases the spread 
by choosing an additional node selected randomly from the 
cluster. 

Static spread manages affinity well but can lead to an 
imbalanced load when activity is concentrated on just a few 
nodes. Indeed, a static spread of one corresponds to our 
sendmail+popd configuration in which users are statically 
partitioned to different machines. This effect is shown as 
well on the graph for the conventional sendmail+pop config- 
uration (SM on Figure 6). In contrast, the dynamic spread 
policy continually monitors load and adjusts the distribution 
of mail over the available machines, even when spread is 
one. In this case, a new mailbox manager is chosen for a 
user each time his/her mailbox is emptied, allowing the sys- 
tem to repair affinity-driven imbalances as necessary. 

The graphs show that random and dynamic policies are 
insensitive to workload skew, whereas static policies do 
poorly unless the workload is evenly distributed. Random 
performs worse than dynamic because of its inability to bal- 
ance load and its tendency to spread a user's mail across 
many machines. 

Among the static policies, those with larger spread sizes 
perform better under a skewed workload, since they can uti- 
lize a larger number of machines for mail storage. Under 
uniform workload, however, the smaller spread sizes per- 
form better since they respect affinity. The key exception is 
the difference between spread= 1 and spread=2. At spread= 1, 
the system is unable to balance load. At spread=2, load is 
balanced and throughput improves. Widening the spread be- 
yond two improves balance slightly, but not substantially. 
The reason for this has been demonstrated previously [10] 
and is as follows: in any system where the likelihood that a 
host is overloaded is p, then selecting the least loaded from a 
spread of s hosts will yield a placement decision on a loaded 
host with probability pS. Thus, the chance of making a good 
decision (avoiding an overloaded host) improves exponen- 
tially with the spread. In a nearly perfectly-balanced system, 
p is small, so a small 8 yields good choices. 

The effect of the loss of affinity with larger spread sizes 
is not pronounced in the Linux ext2 file system because it 
creates or deletes files without synchronous directory mod- 
ification [25]. On other operating systems, load balancing 
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policies with larger spread sizes will be penalized more by 
increased frequency of directory operations. 

6.3.2 Adapting to heterogeneous configurations 

As mentioned in the previous section, the easiest way to im- 
prove throughput in our configuration is to increase the sys- 
tem's disk I/O capacity. This can be done by adding more 
machines or by adding more or faster disks to a few ma- 
chines. In a statically partitioned system, it is necessary to 
upgrade the disks on all machines to ensure a balanced per- 
formance improvement. In contrast, because of Porcupine's 
functional homogeneity and automatic load balancing, we 
can improve the system's overall throughput for all users 
simply by improving the throughput on a few machines. The 
system will automatically find and exploit the new resources. 

Figures 8 and 9 show the absolute performance improve- 
ment of  the 30-node configuration when adding two fast 
SCSI disks to each of one, two, and three of the 300Mhz 
nodes, with and without replication. The improvement for 
Porcupine shows that the dynamic load balancing mecha- 
nism can fully utilize the added capacity. Here, spread=4 
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Figure 11. Reconfiguration timeline with replication. 

slightly outperforms spread=2, because the former policy is 
more likely to include the faster nodes in the spread. When a 
few nodes are many times faster than the rest, as is the case 
with our setting, the spread size needs to be increased. On 
the other hand, as described in Section 5, larger spread sizes 
tend to reduce the system efficiency. Thus, spread size is one 
parameter that needs to be revisited as the system becomes 
more heterogeneous. 

In contrast, the statically partitioned and random mes- 
sage distribution policies demonstrate little improvement 
with the additional disks. This is because their assignment 
improves performance for only a subset of the users. 

6.4 Failure recovery 

As described previously, Porcupine automatically reconfig- 
ures whenever nodes fail or restart. Figures 10 and 11 depict 
an annotated timeline of events that occur during the fail- 
ure and recovery of 1, 3, and 6 nodes in a 30-node system 
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without and with replication. Both figures show the same be- 
havior. Nodes fail and throughput drops dramatically as two 
things occur. First, the system goes through its reconfigura- 
tion protocol, increasing its load. Next, during the reconfigu- 
ration, SMTP and POP sessions that involve the failed node 
are aborted. After ten seconds, the system determines the 
new membership, and throughput increases as the remain- 
ing nodes take over for the failed ones. The failed nodes 
recover 300 seconds later and rejoin the cluster, at which 
time throughput starts to rise. For the non-replicated case, 
throughput increases back to the pre-failure level almost im- 
mediately. With replication, throughput rises slowly as the 
failed nodes reconcile while concurrently serving new re- 
quests. 

7 Limitations and future work 

Porcupine's architecture and implementation have been de- 
signed to run well in very large clusters. There are, however, 
some aspects of its design and the environment in which it is 
deployed that may need to be rethought as the system grows 
to larger configurations. 

First, Porcupine's communication patterns are fiat, with 
every node as likely to talk to every other node. A 
1Gb/second heavily switched network should be able to 
serve about 6500 messages/second (or 560 million mes- 
sages/day) without replication. With replication, the net- 
work can handle 5200 messages/second, or 450 million mes- 
sages/day. Beyond that, faster networks or more network- 
topology-aware load balancing strategies will be required to 
continue scaling. 

Our membership protocol may also require adjustments 
as the system grows. Presently, the membership protocol has 
the coordinator receiving acknowledgment packets from all 
participants in a very short period of time. Although partici- 
pants currently insert a randomized delay before responding 
to smooth out packet bursts at the receiver, we still need to 
evaluate whether this works well at very large scale. In other 
work, we are experimenting with a hierarchical membership 
protocol that eliminates this problem. In time, we may use 
this to replace Porcupine's current protocol. 

Our strategy for reconstructing user profile soft state may 
also need to be revisited for systems in which a single user 
manager manages millions of users (many users, few ma- 
chines). Rather than transferring the user profile soft state 
in bulk, as we do now, we could modify the system to fetch 
profile entries on use and cache them. This would reduce 
node recovery time (possibly at the expense of making user 
lookups slower, however). 

8 Related work 

The prototypical distributed mail service was Grapevine 
[23], a wide-area service intended to support about ten thou- 
sand users. Grapevine users were statically assigned to 
(user-visible) registries. The system scaled through the ad- 
dition of new registries having sufficient power to handle 
their populations. Nevertheless, Grapevine's administrators 

were often challenged to balance users across mail servers. 
In contrast, Porcupine implements a flat name space man- 
aged by a single cluster and automatically balances load. 
Grapevine provided a replicated user database based on op- 
timistic replication, but it did not replicate mail messages. 
Porcupine uses optimistic replication for both mail and the 
user database. 

As described earlier, contemporary email cluster systems 
deploy many storage nodes and partition the user population 
statically among them, either using a distributed file system 
[4] or protocol redirectors [9]. As we demonstrate in this 
paper, this static approach is difficult to manage and scale 
and has limited fault tolerance. 

Numerous fault-tolerant, clustered-computing products 
have been described in the past (e.g., [13, 26]). These clus- 
ters are often designed specifically for database fail-over, 
have limited scalability, and require proprietary hardware or 
software. Unlike these systems, Porcupine's goal is to scale 
to hundreds or thousands of nodes using standard off-the- 
shelf hardware and software. 

Fox et al. [11] describe an infrastructure for building 
scalable network services based on cluster computing. They 
describe a data semantics called BASE (Basically Avail- 
able, Soft-state, Eventual consistency) that offers advantages 
for the web-search and document-filtering applications they 
present. Our work shares many of their goals - building scal- 
able Internet services with a weaker semantics than tradi- 
tional databases. As in the Fox work, we observe that ACID 
semantics [12] may be too strong for our application and de- 
fine a data model that is equal to the non-transactional model 
used by the system's clients. However, unlike BASE, our se- 
mantics support write-intensive applications requiring per- 
sistent data. Our services are also distributed and replicated 
uniformly across all nodes for greater scalability. They are 
not being statically partitioned by function. 

A large body of work exists on the general topic of load 
sharing, but this work has been targeted mainly at systems 
with long-running, CPU-bound tasks. For example, Eager et 
al. [ 10] show that effective load sharing can be accomplished 
with simple adaptive algorithms that use random probes to 
determine load. In the context of clusters and the Web, sev- 
eral commercial products automatically distribute requests 
to cluster nodes, typically using a form of round-robin dis- 
patching [6]. In [8, 19], the authors propose a class of load 
distribution algorithms using a random spread of nodes and 
a load-based selection from the spread. Their results show 
that a spread of two is optimal for a wide variety of situa- 
tions in a homogeneous cluster. Pai et al. [21] describe a 
"locality-aware request distribution" mechanism for cluster- 
based services. A front-end node analyzes the request con- 
tent and attempts to direct requests so as to optimize the use 
of buffer cache in back-end nodes, while also balancing load. 
Porcupine uses load information, in part, to distribute incom- 
ing mail traffic to cluster nodes. However, unlike previous 
load-balancing studies that assumed complete independence 
of incoming tasks, we also balance the write traffic, taking 
message affinity into consideration. 

The replication mechanism used in Porcupine can be 
viewed as a variation of optimistic replication schemes 
[1, 27], in which timestamped updates are pushed to peer 
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nodes to support multi-master replication. Porcupine's total 
object update property allows it to use a single timestamp per 
object, instead of timestamp matrices, to order updates. In 
addition, since updates are idempotent, Porcupine can retire 
updates more aggressively. These differences make Porcu- 
pine's approach to replication simpler and more efficient at 
scale. 

Several file systems have scalability and fault tolerance 
goals that are similar to Porcupine's [2, 15, 16, 24]. Unlike 
these systems, Porcupine uses the semantics of the various 
data structures it maintains to exploit their special properties 
in order to increase performance or decrease complexity. 

9 Conclusions 

We have described the architecture, implementation, and 
performance of the Porcupine scalable mail server. We have 
shown that Porcupine meets its three primary goals: 

Manageability. Porcupine automatically adapts to changes 
in configuration and workload. Porcupine masks het- 
erogeneity, providing for seamless system growth over 
time using latest-technology components. 

Availability. Porcupine continues to deliver service to its 
clients, even in the presence of failures. System soft- 
ware detects and recovers automatically from failures 
and integrates recovering nodes. 

Performance. Porcupine's single-node performance is 
competitive with other systems, and its throughput 
scales linearly with the number of nodes. Our experi- 
ments show that the system can find and exploit added 
resources for its benefit. 

Porcupine achieves these goals by combining four key 
architectural techniques: functional homogeneity, automatic 
reconfiguration, dynamic transaction scheduling, and repli- 
cation. In the future, we hope to construct, deploy and eval- 
uate configurations larger and more powerful than the ones 
described in this paper. 
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