
An Overview of the Andrew Message System

A Portable, Distributed System for Multi-media Electronic Communication

Jonathan Rosenberg
Craig F. Everhart

Nathaniel S. Borenstein

Information Technology Center
Carnegie Mellon University

Pittsburgh, PA 15213

July 1987

l- Introduction
This paper provides an overview of the Andrew Message System,
which is in operation within the Andrew project at Carnegie Mellon
University. The Andrew environment currently consists of 300 high-
function workstations (typified by the IBM RT-PC) each running
Berkeley Unix and attached to a large campus-wide network. A
central file system provides transparently the appearance of a large,
monolithic Unix file system. In addition, there are approximately 600
IBM PC’s and 300 (University-owned) Apple Macintoshes that may
also participate in the network.

The Andrew Message System (often referred to in this paper as the
AMS) is a suite of programs that provides powerful mechanisms for
viewing, creating and manipulating multi-media mail and bulletin
board messages. The AMS is usable from both high-function
Andrew workstations and low-end workstations, such as IBM PC’s

and Macintoshes. This paper discusses our goals in designing the

message system, the primary parts of the system, some of our
design decisions and a number of the problems we encountered im-
plementing such an ambitious system in our environment. In ad-
dition, we present some directions for future work and some statistics
about our system.

2. Prior Work
Although space does not permit a complete survey of previous work
on message systems, a few efforts influenced our design so strongly
that they should be mentioned. The Grapevine system [21, 31 first
demonstrated the feasibility and utility of truly distributed electronic

message SyStemS. Malone’s work on the information Lens [15] has
stimulated our interest in mechanisms for dealing with information
flood, and indeed we hope to implement some of Malone’s ideas in
future versions of the AMS (section 6.2).

Our ideas about user interlaces have been shaped by a succession
of mail and bulletin board systems, most notably TOPS-10 RdMail
[13], various Emacs-based message systems, earlier Andrew sys-

tems for mail and bulletin boards [4] and interfaces to the Unix Net-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1988 ACM 0-89791-245-4/88/0001/0099 $1.50

news system 122, lo]. Our passion for an integrated communication
environment with a coherent and clean design can be traced in large

part to personal experience with communication systems lacking in
these aspects [6].

Other proposals have been made for distributed mail systems. Our
design of a remote protocol for message system clients may seem
similar to the Post Office Protocol 171. The similarity is superficial,
however, as the Post Office Protocol (POP2) server merely provides
a method for retrieving and deleting mail from a remote host. POP2
contains no support for error recovery, bulletin boards, message
transmission or message database manipulation. Our more compli-
cated remote messaging protocol provides support for ail of these
functions and more (section 5.3.1). Pcmail [9]. a distributed mail sys-
tem done at MIT, defines a still higher-level protocol for communica-
tion between a user’s agent and a remote mail repository. Pcmail
afiows- considerable- separation- between~ the- user agent- and- the
repository, and is designed to provide reasonable service even when
the user agent machine is only infrequently connected to the
repository. This design requires user agents to maintain local state,
though, and to be able to resynchronize their local state with the
repository’s state. The facilities available to the Pcmail user do not
include multi-media mail or as comprehensive a set of information
sources as are provided by the AMS

3. Andrew
The Andrew project is a joint venture of IBM and Carnegie Mellon
University, the goal of which is to produce a suitable working en-
vironment for academic use of computers. The project is described

in detail in the paper by Morris et. al. [16], but a few key points are
noted here.

In Andrew, each user works on a high-function workstation (currently
an IBM RT, Sun 2, Sun 3 or Dee MicroVAX) with 2 to 4 MB of RAM,
a 1 MegaPixel bitmap display, a mouse and 40-70 MB of fixed disk
local storage. Each workstation is running Berkeley Unix (or its
equivalent) and is connected to a campus-wide network over which it
can talk to several dedicated file server machines. Running in this
environment are two basic components that make up Andrew: VIR-
TUE and VICE.

VIRTUE is the user interface portion, which runs on the workstation,
and includes a window manager and a multi-media editor subroutine
library (known as the base editor library). Use of the base editor
library provides an easy methodology for manipulating multi-media

99

documents. In addition, VIRTUE provides a number of application
programs (a text editor, for example) that exploit the facilities offered
by the base editor library.

VICE (purported to be an acronym for vast integrated Computing
Environment) is the central file system [20]; ii emulates a Unix file
system, so that as users move from one workstation to another, their
picture of the file system remains consistent. In VICE a client

process, called Venus, runs on each workstation and acts as the
user’s agent in making requests of the central file system. Small
modifications to the Unix kernel allow it to route remote file requests
to Venus. Venus then uses a remote procedure call protocol to
make requests of a server process executing on a dedicated file
server.

VICE works by performing who/e file transfer: when a file is
referenced from a workstation, Venus transfers the entire file from
the remote file server into a cache on the workstation’s local file sys-
tem. From that point on, the file is treated as a local file by the
workstation operating system. Venus may be told to invalidate the
cached file in the event that the remote file system has changed the
copy of the file stored there. For the purposes of writing, the client
process treats the local disk as a write-through cache.

The use of whole file transfer has some advantages over the alter-

native scheme of executing remote file read and write operations.
First, once the file is transferred, remaining accesses are as fast as
using a local file system. In addition. whole file transfer means that
the unit of granularity in VICE is the file. This allows VICE to notify

clients efficiently of invalid cache entries; a client need only be
notified when an entire file is stored, not when individual records

change.

Of course, there are disadvantages to whole file transfer. The most
glaring problem, and the one that affects people the most, is that an
entire file is transferred even if only a small portion is going to be
read. Studies have shown that this is not generally a problem be-
cause most applications read all the way through a file [19]. It is
clear, however, that whole file transfer is entirely inappropriate for
database applications. Many of the functions provided by the AMS
are database applications, and discussions of how the design of
VICE affected our work will be found throughout this paper.

To provide flexible security for files, VICE allows an access /is! to be
attached to each directory. These lists allows selective access to be
given or denied to individual users or groups of users. The access
rights allowed are read, lookup (ability to see the file names in a
directory), write, delete, insert, lock (ability to lock files in the
directory) and administer access.

Both major parts of Andrew have strongly influenced the design of
the Andrew Message System. Each has made some parts of the
system easier and some parts more difficult. VIRTUE has, through
the base editor library, made it almost trivial to deal with multi-media
messages,’ but has thus introduced serious complexities into the
manner in which messages are sent and received to non-Andrew
systems. VICE has made it easy to create a message database that
is entirely location-independent, but has introduced, by its distributed
nature, new failure conditions neither expected nor dealt with

‘But. se8 section 6.1.

robustly by software written for typical, standalone systems. In par-
ticular, the file system conceptually simplified the mail delivery
mechanism, but at the same time mandated a complete replacement
of the existing mail delivery programs.

The stated objective of the Andrew project was to produce an effec-
tive working environment for high-function workstations. One of the
goals of the Andrew Message System was to produce software that
was usable from such lower-functionality machines as IBM PC’s and
Apple Macintoshes, and this required that our design be more
general than Andrew’s, and in particular that our communication

mechanisms, though based on VICE, be more general and more
portable than VICE.

4. Goals of The Andrew Message System
The Andrew Message System is an ongoing project with the goal of
producing a production-quality electronic communication environ-
ment with several types of functionality that hitherto either have not

been provided by electronic message systems or have been found
only in experimental systems. To accomplish this, we set the follow-

ing subgoals:

Reliability: As users grow to rely on electronic communication, they
come to expect and demand that the underlying transport systems
never lose their messages. Reliability is, therefore, of the utmost
importance in an electronic messaging system. While there are
many reliable message systems, the task of constructing such a sys-

tern in the Andrew environment was especially challenging.

Machine and location Independence: The AMS should allow
users to read mail and bulletin boards from virtually any kind of
workstation, transparently preserving user profile information to
maintain a consistent message system state.

Integrated message database: The AMS should treat mail and
bulletin boards uniformly as consisting of messages, allowing users
to manipulate both with a single intetiace. Thus, we can provide a
small set of tools that allow the manipulation of many kinds of infor-
mation.

Separation of interface from functionality: The AMS architecture
should make it easy lo support multiple user interfaces while
preserving for each the highest functionality.

Support for multi-media communication: The AMS should sup-
port messages that include formatted text, vector graphics, raster
images. equations and other multi-media objects. Of course, some
of these messages will look their best only when viewed on more
powerful displays.

Support for coping with information flood: There should be
mechanisms in the AMS for dealing with the flood of information that
increasingly overwhelms users of large electronic communication
systems. The AMS should avoid performance degradation in the
face of a large volume of messages from diverse sites on various
networks.

Flexible Architecture: The AMS should aflow for easy expansion to
include various kinds of functions not yet foreseen or implemented.
We believe this is accomplished by having an open-ended architec-

100

ture that provides high-level manipulations of the message database
as one of Is services.

Flexible addressing: The AMS should allow messages to be ad-

dressed using a variety of user-friendly address forms. A user
should be able to specify a recipient by user id, by name, or even by
making a best guess at the user’s name.

5. Parts of the Message System
The Andrew Message System consists of several separable com-
ponents: the message delivery system, the white pages, the mes-
sage database and message server, and the user interface
programs, The delivery system is responsible for accepting new

messages for delivery and moving them through the various delivery
queues and into users’ in-boxes via a collection of daemons. The
white pages is a database and access mechanism that provides
sophisticated mappings from user-spectfied names to final mail des-
tinations. The message database is the entire collection of public
and private messages. The message server provides a high-level
program interface to these underlying components: it is the
procedural interface to the message database and also provides in-
terfaces to the validation of mail destinations (via the white pages)
and to sending and receiving mail (via the delivery system). The
user interface programs are clients of the message server (which
may execute on a different machine than the message server); their
task is to present the capabilities of the message server to users in a
way tailored to the capabilities of their environment.

5.1. The Delivery System
The delivery system is a set of programs responsible for many of the
steps involved in delivering a message. The responsibilities of the
delivery system include

l acceptance of messages for delivery to and from non-
Andrew systems

l construction and return of error messages to originators
of messages that were victims of failed delivery

l mapping from user-specified addresses to a list of
recipients

l acceptance of messages for delivery from Andrew ap-
plications (via the dropoff interface)

l document format translation between Andrew and non-
Andrew systems

It is our belief that the most important attribute of a delivery system is
reliability. For the Andrew delivery system, we define reliability as
the successful disposi?ion of a message at the following points:

1. When a message is accepted from another system;
and

2. When an invocation of the dropoft interface succeeds.

Furthermore, a message is successfully disposed of when, for each
recipient: the message is successfully delivered or an appropriate
error message has been constructed and delivered to the originator.
For Andrew recipients, successful delivery of a message consists of
storing a copy of the message into the recipient’s mailbox. Success-

ful delivery to a non-Andrew system consists of transferring the mes-
sage to the remote system’s mail transfer agent.

While there is nothing special about this definition of reliability, there
are special design and implementation problems on Andrew due to
the semantics of the VICE file system. The primary complication is
the fact that a remote, distributed file system provides new error
modes: in particular, temporary errors, which are errors that will
eventually succeed if retried. On a standard timesharing system with
a local file system, an application program, for all practical purposes
cannot see a temporary error during a file operation. With VICE,
however, these kinds of errors are relatively common. They may be
caused by the temporary outage of a remote file server or a network
error.

As a concrete example of this, consider the delivery of a message to
a user’s mailbox, which consists of creating a file in a designated
directory. On a local file system an attempt to open a new file can

result in success or in a one of a small number of permanent failure
modes: permission denied, user over quota or hardware failure, for
example. In the case of such a permanent failure, the appropriate
response is to abort the delivery attempt and reject the message
back to the originator. On Andrew, we have the additional possibility
of a new failure mode: the file open failed because the remote server
that would hold the file was down. In this case it is not appropriate to
abort the delivery attempt; instead the message should be held and
delivery attempted again.

Typically, code that performs reliable file system operations is riddled
with assumptions about possible failure modes. The introduction of
new modes by VICE has necessitated the creation of new delivery
software for the Andrew environment. We have managed, however,

to retain the use of sendmait (11 as our SMTP user and server by
modifying it and restricting its execution environment.

Many messages constructed on Andrew take advantage of the multi-
media capability-afforded by the base editor library (section 3). The
external representation of such messages contains ASCII encodings
of fonts, structure information and multi-media objects. This
datastream allows users of the advanced interface (section 5.4.2) to
view all of the objects in the original message. When a formatted
message is transmitted outside of Andrew, however, the datastream
format may make the message unreadable. To avoid this problem,
the delivery system formats the message for a “standard” display
device: all font information is removed, lines are formatted to be 80
characters wide, text is centered as appropriate and other reason-

able transformations are performed. Ot course, attempting to format
certain kinds of objects for an arbitrary display device--graphics,
raster and equations, for example--is imoractical. Althouah. ‘we have
not actually had to deal with these objects yet (Section 6.1) we an-
ticipate that such objects ‘will simply be replaced by an “object
omitted” marker.

Other &es are running Andrew and, thus, have the ability to recog-
nize the base editor datastream. It would be nice if messages trans-
mitted to these systems retained the formatting information. For this
reason, the delivery system maintains a list of external sites that are
running Andrew and transmits messages to these systems un-
touched. This is not a perfect solution: some users at the remote site
may be using an interface without graphics capabilities, or the
recipient may have his mail forwarded to a system not running
Andrew. This is a difficult problem and the ideal solution depends on
the widespread acceptance of mail and multi-media document stan-
dards [8, 111.

101

The delivery system supports some special addressing services by
interpreting specially tagged address forms. These addresses have

the syntax

+ <keyword>+ cargsr

This is an open-ended notation that allows us to add keywords and
new functionality as the need arises. Currently the delivery system
supports two special services. The special form

+dist+cfile name>

will cause the delivery system to treat the contents of cfile name> as
a distribution list. Besides a list of addresses, the file contains infor-
mation specifying the address to which delivery errors should be
sent. The address

+dir-insert+cdirectory name>

tells the delivery system to insert the message into the specified
directory, just as if it were a mailbox directory.

5.2. The White Pages
The white pages facility contains both a database of recognized mail
addresses and a library of procedures for mapping name probes to
those addresses. This facility is used both by the delivery system
(section 5.1) and by message composition (se’ction 5.4). The
delivery system uses the white pages to map the destination names
given with a message to a list of mail addresses. During message
composition an interface uses exactly the same facility to validate the
destination names given by a user. The validation occurs inter-
actively, so the user may correct addressing errors immediately
rather than having to wait for a rejection notice. Using the same
procedure in both places guarantees that a consistent interpretation
is placed on all addresses.

The white pages facility supports one of the primary goals for the
AMS: flexible naming of mail destinations, We wanted to allow
people to address mail to Andrew users by specifying incomplete
forms of users’ names--their best guesses--as well as by specifying a
unique user id. For example, we allow user “Jell0 Biafra,” with user

id “jb34”, to be addressed in any of the following ways:

jb34@andrew.anu.edu
Jello.Biafra@andrew.cmu.edu
J.Biafra@andrer.cmu.edu

and even
Gell.Byafro@andrew.cmu.edu

We assume that these addresses unambiguously identify Jello
Biafra. The last form of addressing is permissible because we are
currently installing heuristics for recognizing many accidental
misspellings of user names.

The procedure that does the lookup in the white pages returns an
indication of how many matches there were for a name and how
flexible it needed to be in order to find the matches. Thus, when the
delivery system uses the white pages to look up a name, if the name
turns out to be ambiguous, the delivery system uses the white pages
to compose an error message to the sender that lists the names that
matched. Also, if a name turns out to be only a heuristic match, the
delivery system can choose to send an advisory note back to the
sender, or even to reject the delivery attempt completely and return
an error message. Correspondingly, when an interface validates an

address given by the user, the white pages may indicate that the
address matches many possibilities, or is only a heuristic match for a
mail destination. In such cases, the message Composition system
can ask the user either to choose from a list of possible matches to
the given name or to confirm or reject the result of the heuristic

match. This facility has proven to be quite useful with a large system
such as Andrew (currently with over 4700 users); the support for
sending to parts of names encourages people to attempt abbrevia-
tions of their correspondents’ names. Immediate validation of mail
destination addresses at message composition time grants users the
freedom to experiment.

The white pages stores information about users and special mail-
boxes; the information includes users’ names, possible aliases, user
ids, home directories (used to find the mail in-box directory) and for-
warding addresses. The information is gathered from many sources,

including the list of accounts (/etc/passwd) and a list of special mail-
boxes.

Building the white pages database on VICE has been a challenge.
While it might be reasonable to store the entire database as a single
Unix file, if is not reasonable to store ft as a single file in VICE. This
is because VICE insists that an entire file be transferred to the
workstation to read even a small piece. Secondly, we have sup-
ported the Unix convention wherein users establish a mail forwarding
address by creating a file named “.forward” in their home directories.
In order to keep the white pages up to date, a daemon must periodi-
cally look for changes to all users’ .forward files, and must be able to
distinguish and to tolerate temporary inabilities to examine users’
home directories.

While the white pages database can grow to be very large, clients
generally need to reference only a small portion. This locality of

reference has allowed us to install a large database in VICE without
requiring the transfer of large files to workstations. The B-tree dis-
cipline was designed to fit large amounts of data into a collection of
fixed-size nodes, typically pages on a disk. We built a B-tree
representation that uses a collection of VICE files as nodes, so that
no file to be transferred need be larger than a reasonable size
(currently up to 40,000 bytes). Our B-tree discipline supports con-
current reading and updating, using the Blink-tree variant described
by Lehman and Yao [14], in which readers need do no locking.

We store records describing users and indices to those records in
the same B-tree, so that locating a user generally requires fetching
only one or two leaves of the tree. This representation of the white

pages has recently replaced our initial, interim representation, which
used an existing facility that stored the database as a single file. The
size of that file had grown to over one megabyte, and it was taking
so long for addresses to be validated that our users required ways to
circumvent validation. With the new representation, performance is
much better, and we are able to remove our circumvention
mechanisms.

Every night a daemon verifies the white pages database, incorporat-
ing new accounts, removing deleted accounts and checking for
changes to the mail forwarding addresses in users’ .fonvard files. It
has been crucial that this verification process be able to tolerate the
temporary unavailability of a user’s home directory and files, even
though the verification process cannot then know whether the user
had a .forward file, much less what Is contents would be. If the

102

verification process detects this temporaty unavailability, it leaves the

old mail forwarding information in place, with the expectation that
having old information is better than having none. The initial state for
a new account is to have a distinguished value unknown as its for-
warding address. If the delivery system tries to deliver mail to an
account whose fotwarding address still has lhis distinguished value,
it will attempt at that point to read the .forward file.

Eventually we will provide users with ways of updating parts of the
white pages on-line. Users and administrators will send formatted
messages to a designated address, and a daemon will carry out
those requests, after verifying that the sender has appropriate per-
mission. Once this mechanism is in place, we will no longer have to
scan home directories boking for .forward files.

5.3. The Message Database
The message database is a hierarchical collection of all of the mes-
sages that may be manipulated by the AMS. The database is
represented as a forest of directed acyclic graphs, similar in structure

to the Unix file system. Each node is either a message directory or a
message. A message directory may contain messages and other
message directories. All of the nodes are stored in VICE so that
although the database is distributed, if appears monolithic to users
and application programs. Figure 5-l presents a simplified view of
the Andrew message database.

ext
home dir for home dir for

ir cfe right-wing

ir/ILs tLJJrsonal iail ’

A r c sot

1 g me!?

Flgure 5-l : The Message Database

There are several interesting things to note about this picture. Some

of the message directories are public and are stored in directorie;
owned bv Andrew administration. For examole. the too-level mes-
sage directories ext is public and centrally administered. Ofher
directories are owned and administered by users: for example, per-
sonal mail directories and the right-wing directory.

Although the AMS is aware of the public message directories, and by
convention can determine the location of personal mail directories,
there is no root that can be used to find all the nodes of the message
database. This means that the message database access routines
(section 53.1) need not have a priori knowledge of the complete
structure of the database. Users can create and maintain their own
message directories without needing to register them in any manner
with a central authority. For example, the right-wing message direc-
tory could have been created by a group of interested users without
intervention by any Andrew administrators.

This ability provides great flexibility in the AMS by making it easy for
any user to create and maintain a bulletin board. For convenience, a

user may ask lo have a bulletin board registered and its name will
then be placed in a public, known location. Although this will make
the name of the bulletin board publicly visible, it does not imply that
anyone may read or post to this bulletin board. Because the bulletin
board is stored as a VICE directory, the directory access list may be
used to control access to the bulletin board.

A message directory is implemented as a VICE directory containing
a distinguished file plus nested subdirectories and files containing

the text of messages. This distinguished file contains administrative
information as well as a StNCtured record for each message in the
directory. These records, known as snapshots, are of fixed size and
allow rapid access to useful information about the messages. In
particular, the snapshot for each message contains a time stamp and

a condensed version of Me header information from the message.
The time stamp is used for ordering the messages and the con-

densed header information by user interlaces (section 5.4) to present
summary information about a message. The user may then choose
whether to view the entire message by inspecting this summary.

5.3.1. The Message Server
One particular goal we had for the AMS--to have the system avail-

able on the widest possible range of machines-has played a major
role in its architecture. In order to make the system available on
low-end machines, such as the lBM PC and Apple ‘Macintosh, it was
necessary to segment the functionality of the system into fwo major
parts: the part that has access to the information in the database
and the part that interacts with the user. The former, which we call
the messwe sefvef (MS), must run on a machine with full access to
the message database as stored in the VICE file system. The latter,

the user interface component, need onfy be able to talk to a mes-
sage server via an agreed-upon mechanism.

The mechanism by which the message server and its clients com-
municate is called SNAP (for s@e &Work &plication protocol),
SNAP is a remote procedure call mechanism that was developed for
the AMS and for use in connecting low-function workstations to the
VICE file system [18]. SNAP runs on top of UDP [17] and supports
sequencing, encryption and segmenting, thus providing a reliable
packet protocol. The client code for SNAP (written in C) has been
kept extremely simple to facilitate portability to multiple machines.
To date, SNAP is running on the fF3fvl RT-PC, Sun 2 and Sun 3
(under Berkeley Unix), the DEC MicroVAX (under Berkeley Unix and
VW), the IBM PC (under DOS) and the Macintosh.

The MS exports a subroutine interface that provide useful services
for gaining access to and modifying the message database and for
sending messages [5]. For example, the MS provides the following

subroutines:

MS-SnapshotsSince
This routine is used to retrieve a set of snap-
shots fmm a designated message directory. The
snapshots for the messages in the designated
directoty that have been entered since a
specifii date are returned. The message as-
sociated with each snapshot is marked with a
unique id.

MS-GetPartialBodyThis routine is used to retrieve the body of a
specified message, identified by. its unique id.
The message may be retrieved in fixed-size

103

chunks as specified by the client.

MS-CreateNewMessageDirectory
This routine is used to create a new message
directory as a child of an existing message direc-
tory.

MS-SubmitMessage
This routine is used to submit a message for
delivery to a list of specified addresses.

5.4. User Interfaces
The client-server design for access to the message database makes
it relatively easy lo create new user interfaces for the AMS to run on
virtually any machine type. The implementor of an interface can
program as if he were using a simple subroutine library. This allows
him to ignore the intricacies of the message database regardless of
the machine type on which the orooram will be executina. We

provide a subroutine library, known as the CUILIB, that hides the
complexities of the SNAP interlace and allows the programmer to
make local subroutine calls.

The ease of creating new interfaces is evidenced by the number of
user interlaces that are available. The current intetfaces of which we
are aware are illustrated in figure 5-2.

Andrew VAXiVMS PC

Batmoil X
Figure 5-2: Current User Interfaces

In this figure, the first three interfaces were developed and are sup-

ported by the Andrew support and development staff. The Batmail
interface is a popular, user developed and supported interlace that
runs within the EMACS text editor.

54.1. The CUI
The GUI common user Interface) is a simple, text-oriented interlace

that makes use of no graphics, screen or special input capabilities.
The CUI is, thus, suitable to run on any terminal (even hard-copy)
and in virtually any environment. The GUI has been ported to
several machines (figure 5-2) and is, therefore, useful for the person
wanting to learn only a single interface for use in many environ-
ments. An example of interaction with the CUI is shown in figure 5-3.

5.4.2. The Messages Program
Although the GUI provides full access to the AMS, it does not take
advantage of the advanced features available on high-function
Andrew workstations. For example, no use is made of the high-
resolution graphics capabilities or of the mouse. For these reasons

CUI Version 3.30
GUI> update ext.nn.talk.origins
Checking ext.nn.talk.origins . . .
1 l-Jul-07 Reality gold@bbn.com (508)
2 7-~~1-87 Purpose BruceOsri (5558)

CUI READ> (Type '?I for help) [type]: type
From: jgold@cc6.bbn.com
Newsgroups: talk.origins
Subject: Re: The Nature of Reality
Date: 27 Jul 87 15:28:17 GMT

body omitted

CUI READ> (Type '?' for help) [next]: quit
GUI> guit

Figure 5-3: Using the GUI

we have implemented an interlace that makes use of these features,

known as Messages; an example of its display is shown in figure
5-4.

sages
---- --.-~~~~o~~.~i~~

1 Subscribed Folder WithNewMessager

q -/ officialandrew (Bboard you can edit 0 of363 new)
a4 org.itc (Local Bboard, 0 of 537 new)

a4 exmn.rec.xts.books (External Bboard 0 of319 new)

4 27-Jul-87 syslrile UPM- David Tilbrook (123)
J .27-J&87 fir ts dead. really, - Carolyn D. Councill(l728)
J 27-Jul-87 Re:e:fir IS dead. really. - David KOVK (314)
/ ?7-Jul-87 conso& (5.14] gwickfix - Adam Staller (645)
J 27-J&87 Xe: fir ts dead. recdiy. - Adam Staller (1757)
J 28-J&87 Re: sysMfe UP,!4 - David Tilbrook (246)

console.be2 [5.14]
{RT and Sun3)

maintainer:AdamStoller<gtmti+>

QuickFix:
1) You will now be able co specify a parh far the ConsoleLog to be

Flgure 5-4: The Messages Interface

The Messages program is the interface of choice for most Andrew
users. Considerable work has gone into the design of the interface
that Messages presents; we have gone through several screen
layouts and interaction styles before settling on one that seemed to
please the widest number of users and styles of use In fact, we

currently offer two screen layouts, which differ in the placemenr 01
the message directory names, which appear in the top panel in figure
5-4. This technique of offering several alternative interfaces to users
and collecting information on user reactions has been quite useful in
the development of user interfaces on Andrew.

The Messages program is used to manipulate both mail and bulletin
board messages. In fact, our initial design for the AMS included no
distinction between personal mail and bulletin boards. While this
may seem just plain wrong, consider that personal mail and bulletin
boards are just two extreme points in a two-dimensional space of
message directories. The axes are the number of users who may
read messages on this message directory and the number of users
who may post messages on fhis directory. Personal mail is a direc-
tory to which any user can post messages, but which only one user

104

can read. On the other hand, a public bulletin board is a directory to
which any user can post and which any user can read.

There are other reasonable, useful points in this space. Consider a
message directory that is readable by any user but only postable by
a small number of designated users. This corresponds to an
“official” bulletin board: any user may read messages and be as-
sured that they were posted by authorized users. Another useful
message directory is one that is postable by any user but may only
be read by a small number of users. This kind of message directory
could be used by a manager for his personal mail as it allows his
secretary lo also read (and, possibly, manipulate) his mail. Figure

5-5 displays some of the directory types available in the AMS.

0
renders IO6

Figure 5-5: The Message Directory Space

The Messages program also supports an interface for composing
and sending messages that uses the multi-media editing facilities of
the base editor library (section 3). The user thus has access to a
multi-media editor interface that is standardized across many
Andrew applications.

The message composition interface takes full advantage of the
flexible addressing afforded by the delivery system (section 5.1). In
particular, the interface performs on-line validation of all forms of ad-

dresses. This provides immediate feedback to the user about local
addressing errors and avoids the “send, receive error, correct error,
resend” cycle.

In addition, the Messages composition interface provides two new
forms of addresses: personal macros and bulletin board names. A
user may maintain a list of personal macros in a designated file that
is read by the Messages program. The appearance of one of these

macros in an address list is expanded into the specified list of ad-
dresses. This is convenient for specifying commonly-used groups of
users or for abbreviating long addresses. An example of such a
personal file might be

group cfe, ghoti, nsb, jr
=a group, mc35, WS@vma.cc.aau.edu
due-folks +dist+-postman/am-folks.dl.

The macro expansion may reference other macros, or any other form
of address.

Posting a message lo a bulletin board is done simply by using the
name of the bulletin board as a destination. For example, a mes-
sage may be posted to the Netnews message group rec.arts.books
by addressing the message to ext.nn.rec.arts.books (the Andrew
name of the bulletin board). This form of addressing works regard-

less of the method of redistribution for the bulletin board. For ex-
ample, messages addressed to Netnews are automatically routed to
a daemon that transmits the message via the Netnews protocol [i 21.
This form of addressing allows a message to be sent to both users

and bulletin boards.

Section 5.3 discusses the fact that users can create new private
message directory trees without the need for intervention from sys-

tem programmers. In addition, at designated places in the public
database hierarchy ii is possible for users to create a new message
directory as a child of an existing directory. For example, referring

once again to figure 5-1, it is possible for a user to create a new
message directory under the node andrew.market. This would be
useful, for example, if many postings on this bboard were about the
sale of cars. Any interested user could decide that cars for sale
warranted a bulletin board of their own, so as not to clutter the
market bulletin board. This user could then create the new bulletin
board simply by addressing a message lo andrew.market.cars.

5.5. The PCmsgs Program
Although the WI is available on IBM PC’s, another interface that
takes advantage of the display capabilities is available. This inter-
face is known as PCmsgs and, like the CUI uses the CUILIB
(section 5.4). In the same manner as Messages, PCmsgs presents
displays listing message directories and message snapshots. Unlike
Messages, which uses the mouse for input, users of PCmsgs
maneuver around the screen using keyboard commands. Figure 5-6

shows a PCmsgs screen that displays the snapshots of the user’s

il

new mail.

lusrlandrew/binhrui
_---..- ..-... .-..--.-

I’

Figure 5-6: The PCmsgs Interface

Although PCmsgs was developed initially for the IBM PC (section

5.5), we have built a version of it that uses the Unix termcap inter-
face [2] and, thus, runs on any display device that is supported by
the user’s particular Unix system. This version is especially useful
when dialing in to Andrew.

105

6. Future Development
Although the Andrew Message System is already a rather sophis-
ticated messaging system, it can be viewed as just the beginning.
The delivery system, white pages, message database and the user

interfaces can be thought of as the tools on which we might build an
information utility. An information utility would provide users with ac-
cess to a large number of diverse databases and access methods.
Besides electronic bulletin boards and mail, there might be
databases containing the full texts of popular newspapers dic-
tionaries and encyclopedias.

Designing, integrating and implementing such databases and as-
sociated access mechanisms is a difficult task. The job is even more

difficult in a distributed system like Andrew. The most serious
problem on Andrew is that the VICE file system, with its whole file
transfer- paradigm (section 3), was not designed to support large
databases. An efficient implementation for general database access

on Andrew is an open question.

The proposed information utility contains a wide assortment of data
with different timeliness constraints and modes of use. We would
expect that there would be a corresponding need for different forms
of user interfaces. While the bulletin board paradigm is appropriate
for some databases, it is not clear that it is appropriate for viewing a
newspaper. We need to investigate and experiment with new forms
of. interfaces

Although we are looking forward to progressing towards this utopian
information utility, more work remains to be done on the current
AMS. The remainder of this section provides brief discussions of
some of the most important tasks that we will undertake in the near
future.

6.1. Integration of the hlulti-media Editor
Several times in this paper we have mentioned the multi-media
capabilities of the AMS. Any Andrew application can obtain these
mu&-media capabilities by using the base editor library. The base
editor library is a suite of subroutines that provide an application with

the ability to create, view, edit, print, read and write multi-media
documents. These documents may contain text (including multiple
fonts and complex structure, such as headings, chapters and
paragraphs), vector graphics, raster images, equations and spread
sheets. In fact, the base editor architecture is open ended and new
multi-media objects may be added at any time. An example of a
multi-media document, displayed using a base editor library applica-
tion, is shown in figure 6-l

While this picture is rosy, the truth is that the multi-media version Of
the base editor library is only just becoming available for use by ap-
plications. The current Messages interface uses an earlier version of
the base editor library that supports only text (albeit with multiple
fonts and complex structure). Integration of the Messages program
with the new base editor libraty is underway. We expect to have a
working multi-media version of Messages by October of this year.

6.2. Bulletin Board Reorganization-Real and Virtual
We have several plans for extending the services that the AMS
provides for its users. We expect to complete a reorganization of our
tree of bulletin boards this summer. The reorganization will not only

lcmu/itdaioluilinsetslbxdemolzio more it
Picture-figures, the width/height is arbitrarily set to 256 each way.)

Here follows a file-re?kence (ie, the source document contains
qualitied file-name) to that famous, complex graphic usazip:

a fulh

kow we have an embedded Zip-stream lpfl (ie, the Zip ASCII

characters are right here andwithin the sentence).

Figure 6.1: A Multi-media Document

clarify the position of the Andrew community on our CamPus and in
the world at large, but will also altow departments and other or-
ganizations to publish their private bulletin boards in well-known

locations. Also, we are implementing an extension language

(FLAMES, the Eiltering Language for the Andrew MEssage system)
in which users will be able to compose calls to the message server
without having to program in C. Perhaps our most novel extension

will be an adaptation and extension of some of the work done in
Malone’s lnfomation Lens system [15]--in particular, the work done
by its “anyone server”, in which users tell the system the kind of
public messages that they would like to have sent to them. We ex-
pect to Support a comparable service for a much larger user corn-
munity by building on the services available in the extension lan-
guage.

The goal of the message server extension language, FLAMES, is to
allow message sewer clients to specify complex operations, includ-
ing powerful database manipulations, that can be executed com-
pletely within the message server. Interface programs will have ac-
cess to database manipulation primitives without having to re-code
them for each new interface, and the database manipulations can
take place in the message setver rather than in the machine running
the interface program. The advantage of moving complex computa-
tions to the message server host is that the message server is
guaranteed to run on a high-function processor, connected over fast

communication lines to VICE, whereas interface programs may ex-
ecute on limited machines or over slow communications links.

The extension language is being buift with a simple Lisp syntax, and
we envision having two interpreters: a simple interpreter running
FLAMES within the message server itself, and a full Lisp system
running extended FLAMES (X-FLAMES). X-FLAMES will be avail-

able as a client of the message server. All interface programs will be
able to ask a message server to execute a command in FLAMES.
More complicated operations, such as we anticipate providing as a
system service, can be handled by invoking the X-FLAMES inter-
preter directly.

106

lt is this latter ability that we expect to exploit in building a massive
information lens. A user of the information lens posts a predicate
specifying the kinds of messages that are of interest. For example,

someone might want to read all messages that are about
automobiles or are from a specific message source and are about
California wines. The user might post a predicate like

(union
(word-search "automobile")
(word-search "autos")
(word-search "cars")
(intersection

(word-search "California")
(word-search "wine")
(bboard "rec.food.drink")))

This is a predicate that matches both messages that contain the
words “automobile”, “autos”, or “cars”, as well as messages from

the bulletin board rec.food.drlnk containing both the word “wine”
and the word ‘California”.

In principle it would be possible for an interface program to find the
set of all messages currently matching this predicate, then to sub-
tract from that set the ones that the user has seen already, and
finally to present to the user the new messages that match the predi-
cate. This action would be too expensive to carry out today, but we
hope to be able to support such actions by clever preprocessing per-
formed by a special lens system application written in X-FLAMES.
Our plan is to collect all the predicates posted by the lens users, to
find common sub-expressions of these predicates (such as “(word-

search “cars”)“) the results of which would accelerate the evaluation
of later predicates. The lens system application would sift through all
incoming messages and identify those messages that match the
common sub-expressions. Suppose the Lens system application ex-
amined every incoming message destined for a public bulletin board
and posted all messages that contained the word “automobiles” to a
bulletin board named lens.wordsearch.automoblles. This

preprocessing would make it more efficient to evaluate pans of predi-
cates. If the first three word searches in the example above were

maintained by the Lens system, evaluating the entire predicate
would be fast indeed: a program would need to check for messages
on only the three lens.wordsearch bulletin boards and the single
bulletin board rec.food.drink before identifying the new messages of
interest. With this kind of pre-indexing, in which the community of

users influence the kinds of indices kept, we expect to be able to
support the advanced information needs of a large community.

7. Statistics
This section contains a number of statistics related to Andrew and to
the Andrew Message System. The figures are presented without
commentary and are intended to give the reader a feel for the size of
Andrew and its message system.

l 300 Andrew workstations

. 11,000 campus network access wall outlets

.4700 Andrew accounts

. 17 gigabytes of storage available in VICE

. 1000 public bulletin boards

l 1 bulletin board post per minute (averaged over a 24
hour day)

07 posts per hour received for ARPAnet
bboards

040 posts per hour received for Netnews
bboards

l 4 posts per hour received for local bboards

l 24 non-bboard messages per hour received from other
sites

l 10 posts per day sent to Netnews bboards

l 34 messages per day sent to non-Andrew sites

Acknowledgements
Besides the authors, Adam Staller is the fourth full-time member of
the Andrew Message System group. Adam’s primary job is to ad-

minister the AMS. This includes monitoring of the message system
server machines (of which there are currently five), administration of
the message database, answering users’ requests and gripes (a
never-ending and thankless task on Andrew) and other related
problems that fall through the cracks. Without Adam, the Andrew
Message System would not be as reliable, robust and responsive as
it is today.

The message system would have been impossible to implement
without the help of the entire Information Technology Center staff. In

particular, we would like to thank the VICE file system group for be-

ing responsive to our needs and to the bugs we uncovered.

References

111

PI

A

141

PI

PI

[71

Eric Allman.
SENDMAIL -- An fnternetwork Mail Router.
In UNIX System Managers Manual. University of California,

Berkeley, 1986.

Kenneth C. R. C. Arnold.
Screen Updating and Cursor Movement Optimization: A

Library Package.
In UNIX Programmer’s Manual: Supplementary Documents.

Universitv of California. Berkelev. 1984

Andrew D. Birrelt, Roy Levin, Roger M. Needham and Mich-
ael D. Schroeder.
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274. April, 1982.

Sandra J. Bond.
Module 4: The Andrew Mail and News Systems.
Information Technology Center, Carnegie Mellon University,

Pittsburgh, PA, 1988.

Nathaniel S. Borenstein.
The Andrew Message System Server-Client Interface.
Internal documentation, Information Technology Center, Car-

negie Mellon University, Pittsburgh, PA, November, 1986.

Nathaniel S. Borenstein.
A House of Cards: A History of the Inorganic Evolution of the

CMU Bboard System Software.
Technical Report CMU-CS-85-152, Computer Science

Departmen!, Carnegie Mellon University, Pittsburgh, PA
15213,1985.

M. Butler, J. Postel. D. Chase, J. Goldberger and
J. K. Reynolds.
RFC 937: Post office Protocol - Version 2.
USC, Information Sciences Institute, 1985.

107

181

PI

1101

1111

1121

1131

1141

1151

1’61

M’l

I191

PO1

WI

Study Group VII.
Red Book, Volume VIII, Fascicle VIII. 7: Data communication

networks: message handling systems. Rewmmen-
dations X.400-X.430.

CCIlT, the International Telegraph and Telephone Consul-
tative Committee, 1984.

David D. Clark and Mark L. Lambert.
RFC 993: PCMAIL: A Distributed Mail System for Personal

Computers.
Massachusetts Institute of Technology, 1986.

Mark Ft. Horton.
RFC 850: Standard for Interchange of USENET Messages.
USC, Information Sciences Institute, 1983.

IS0 TC97lSC18.
Information Processing - Text and Office Systems Office

Document Architecture @DA) and Interchange Format.
Technical Report ISO/DIS8613, International Organization for

Standardization, June, 1987.

Brian Kantor and Phil Lapsley.
RFC 977: Network News Transfer Protocol
UC San Diego, 1986.

David Alex Lamb.
RdMail Message Management System: User’s Guide and

Reference
Seventh edition, CMU Computer Science Department, Pitts-

burgh, PA, 1982.

Philip L. Lehman and S. Bing Yao.
Efficient Locking for Concurrent Operations on B-Trees.
ACM Transactions on Database Systems 6(4):650-670,

December, 1981.

Thomas W. Malone, Kenneth Ft. Grant, Franklyn A. Turbak,
Stephen A. Brobst and Michael D. Cohen.
Intelligent Information-Sharing Systems.
Communications of the ACM 30(5):390-402, May, 1987.

James H. Morris, Mahadev Satyanarayanan, Michael
H. Conner, John H. Howard, David S. H. Rosenthal and
F. Donelson Smith.
Andrew: A Distributed Personal Computing Environment.
Communications of the ACM 29(3):184-201, March, 1986.

J. Postel.
RFC 768: User Datagram Protocol
USC, Information Sciences Institute, 1980.

Larry K. Raper.
The CMU PC Server Project.
Technical Report CMU-ITC-051, fnformation Technology

Center, Carnegie Mellon University, February, 1986.

M Satyanarayanan.
A study of file sizes and lifetimes.
In Proceedings of the 8th Symposium on Operating Systems

Principles. Asilomar, CA, December, 1981.

M. Satyanarayanan, John H. Howard, David A. Nichols,
Robert N. Sidebotham. Alfred 2. Spector and Michael
J. West.
The ITC Distributed File System: Principles and Design.
In Proceedings of the 70th Symposium on Operating Sys-

terns Principles. December, 1985.

Michael D. Schroeder, Andrew D. Birrell and Roger
M. Needham.
Experience with Grapevine: The Growth of a Distributed Sys-

tem.
ACM Transactions on Computer Systems 2(1):3-23,

February, 1984.

1221 Larry Wall.
RN Manual Page.
1985.
RN is distributed via netnews; the author’s mail address is

Iwall@sdcrdcf. UUCP.

108

