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Existence and uniqueness of solutions to characteristic evolution in Bondi-Sachs
coordinates in general relativity
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We show that the theorem of Duff on the existence and uniqueness of solutions to linear characteristic
initial-value problems holds in the case of linearized characteristic evolution in Bondi-Sachs coordinates in
general relativity. This represents the characteristic equivalent to the manifest existence and uniqueness of the
case of standard Cauchy problems. This extends Sachs’ original work on the characteristic approach to the
Einstein equations, by considering a null-timelike approach rather than a null-asymptotic one.
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I. INTRODUCTION

The characteristic approach to general relativity was
troduced by Bondiet al. @1# and Sachs@2# in the early 1960s,
and was followed up by a number of authors in subsequ
years ~for a comprehensive list see@3#!. Its distinguishing
feature is that it considers spacetime to be foliated by a
quence of null hypersurfaces, each of which is generated
the outgoing null rays emanating from a central geodesic~or
the null normals to a spacelike two-surface!.

In this approach, the projections of the Einstein equati
along three independent directions tangent to the null sl
yield a set of six second-order partial differential equatio
for the six independent components of the metric in terms
coordinates adapted to the null foliation, referred to as
main equations. The projections of the Einstein equation
along the incoming null direction~which sticks out of the
null slices!, and along mixed incoming-tangent direction
yield a set of four second-order partial differential equatio
which can be considered as conditions on the data for
other six, since they are preserved by them. For definiten
the equations are written with respect to a specific coordin
system referred to as the Bondi-Sachs coordinates, w
essentially consitute coordinates adapted to the foliation

The characteristic approach was first introduced to st
the problem of gravitational radiation emitted by isolat
systems. In this context, it has been used to construct s
tions from data prescribed at infinite distances from the i
lated source, and a number of results have been obta
concerning the existence and uniqueness of solutions bu
this fashion@4,2,5,6#. It is perhaps not completely trivial to
point out that the earlier results@2,4# are based on radiativ
treatments of the scalar wave equation, whereas the
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work by Friedrich@6,7# makes use of newly available con
formal compactification techniques and the exact conform
Einstein equations.

More recently, interest has shifted to the case where d
are prescribed, in a complementary fashion, both along
null slice, considered as initial, and along an interior wo
tube, which generates the outgoing null surfaces in the se
discussed above, in Bondi-Sachs coordinates. This cas
often referred to as characteristic evolution~CE! for general
relativity. Although CE has generally been viewed as a sli
modification to the original asymptotic approach, to o
knowledge, little of rigor can be found in the literature co
cerning the properties of the existence and uniquenes
solutions to such an initial-value problem.

A standard argument for the construction of a uniq
regular solution to a system of quasilinear partial differen
equations from given initial data is provided by the Cauch
Kowalewsky theorem. A strong condition for the Cauch
Kowalewsky theorem to hold is that the data should be p
scribed on a surface that is spacelike with respect to
system of quasilinear partial differential equations. Howev
surfaces that are null with respect to the spacetime metric
known to be characteristic with respect to the Einstein eq
tions as well~for recent references, see@8–10#!; thus CE
cannot be accomodated within the standard Cauc
Kowalewsky framework. It is of interest to us to point o
that the Cauchy-Kowalewski theorem has been general
by Duff @11# to generic linear characteristic initial-valu
problems. Here we show that CE fits the hypothesis of t
adapted Cauchy-Kowalesky theorem. This means that
linearized regime of CE has a unique regular solution
every set of data. The importance of this simple observa
stems from the following considerations.

Characteristic initial-value problems in general are ma
festly ill posed in the following sense. Since the initial su
face is characteristic with respect to the system of equatio
the differential operator is internal to the surface and fails
provide the outward derivatives of a number of the variabl
This is well known to be the source of the lack of uniquene

s
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to a generic characteristic initial-value problem. Sac
showed that the solution to the characteristic problem in g
eral relativity in Bondi-Sachs coordinates is unique if ad
tional data are prescribed at infinity, considered as a bou
ary for the spacetime. The work by Duff@11#, here adapted
to general relativity, on the other hand, shows that the s
tion exists and is unique if, in addition to the subset of fr
initial data, complementary data are prescribed on a nonc
acteristic surface, which can be considered as a bound
Thus the two regimes of interest, namely, local a
asymptotic, are so far shown to give rise to unique regu
solutions, in the context of the Einstein equations in Bon
Sachs coordinates.

For the sake of completeness, we reproduce the fra
work of CE of general relativity in Sec. II. The statement
Duff’s theorem is found in Sec. III, as well as the proof th
its hypotheses are satisfied in the case of CE. The argum
is extended to consider the boundary at null infinity in S
IV. We comment on the reach and relevance of our resu
Sec. V.

II. CHARACTERISTIC EVOLUTION
IN GENERAL RELATIVITY

The characteristic approach to general relativity int
duces a foliation based on a sequence of null cones ema
ing from a central timelike geodesic or, alternatively, a fa
ily of null surfaces emanating from a timelike or null wor
tubeG. Each null surface runs out to infinity, covering th
the entire spacetime~outside G). The set of ten Einstein
equations is projected down to each null slice and out o
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consequently splitting, respectively, into a set of sixmain
equationswhich rule the evolution, and a set of four equ
tions which are preserved by the main ones and can
thought of as conditions on the set of the, otherwise fr
data onG.

In the present work, we concern ourselves only with t
main equations, since our results apply to the entire se
data, in particular to the data restricted by the preserved c
ditions.

In the characteristic approach, a coordinate syst
adapted to the slices may be defined in the following w
suppose we foliate the spacetime with a sequence of light
hypersurfaces. We letu label these hypersurfaces;xA(A
52,3), label each null ray on a specific hypersurface, anr
be a surface area coordinate. In the resultingxa5(u,r ,xA)
coordinates, the metric takes the Bondi-Sachs form@12–15#

ds252S e2b
V

r
2r 2hABUAUBDdu222e2bdudr

22r 2hABUBdudxA1r 2hABdxAdxB, ~1!

where det(hAB)5det(qAB), with qAB a unit sphere metric.
The main variables areb,UA,V, and hAB . Geometrically,
the tensor fieldhAB measures the departure from spheric
symmetry of the surfaces of constantu andr. b measures the
expansion of the light rays.UA measures the shift of the
angular coordinates from one hypersurface to another~at
constantr ) andV contains the mass aspect of the system

The main equations are@13#
r ~rhAB,u! ,r2
1

2
~rVhAB,r ! ,r52ebDADBeb2r 2hACDBU ,r

C2
r 2

2
hAB,rDCUC1

r 4

2
e22bhAChBDU ,r

CU ,r
D2r 2UCDChAB,r

22rhACDBUC1r 2hAC,r~hBEhCDDDUE2DBUC!1
1

2
hABF2r 2h,r

CDS hCD,u2
V

2r
hCD,r D

22ebDCDCeb1DC~r 2UC! ,r2
1

2
r 4e22bhCDU ,r

CU ,r
DG , ~2a!

b ,r5
1

16
rhAChBDhAB,rhCD,r , ~2b!

~r 4e22bhABU ,r
B ! ,r52r 4~r 22b ,A! ,r2r 2hBCDChAB,r , ~2c!

2e22bV,r5R22DADAb22DAbDAb1r 22e22bDA~r 4UA! ,r2
1

2
r 4e24bhABU ,r

AU ,r
B , ~2d!
2-2
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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO . . . PHYSICAL REVIEW D59 084012
where DA is the covariant derivative associated wi
hAB(DChAB50) and R the curvature scalar of the two
metrichAB . We have definedhAB via hABhBC5dC

A and use it
to raise indicesA,B, . . . . These equations represent a r
version of the actual equations used in CE, which use
complex stereographic coordinates on the spacelike sec
at constantu and r. Equations~2b!–~2d! are exactly Eqs.
~9!–~11! in @15#. Equation~2a! can be reobtained by expres
ing Eq. ~25! of @15# in terms of our current variables.

In their standard form, the characteristic equations~2!
have the following properties. In the first place, from t
point of view of partial differential equations, they constitu
a second-order system~irrespective of the fact that they d
not display second derivatives with respect to the null co
dinateu).

Second, and most important, adopting the viewpoint t
u acts like a time for evolution, one recognizes the prese
of only two evolution equations~2a!, which are first order in
time. Hence, the other equations can be regarded as
straints that the field variables must satisfy on each null s
face. Consequently, the set of characteristic equations is
ventiently organized in a hierarchical manner@16#, allowing
for a straightforward procedure to construct a solution.

Given initial data consisting ofhAB on a characteristic
hypersurfaceN0 at some initial timeu5u0 and sufficiently
smooth boundary data,b is obtained by integrating Eq.~2b!
radially outwards starting fromG. Notably, sincehAB is
known on the entire surface, Eq.~2b! can be regarded as a
ordinary equation forb. Then,UA, which follows next in
the hierarchy~2c!, is analogously integrated since bothhAB
and b are now known onN0 . Finally, V is obtained by
integrating Eq.~2d!, which completely determines the metr
onN0 .

The metric information on the first hypersurface can n
be used to obtain (rhAB) ,ur from Eq. ~2a!. In the last step of
the evolution cycle, thef AB

lm
,u are integrated in time, henc

furnishing hAB on a new hypersurfaceNu01du at time u

5u01du.
The simplicity of this hierarchy has been exploited in t

realm of numerical relativity@13,17,14,18#, obtaining excel-
lent results.

III. DUFF’S THEOREM APPLIED
TO CHARACTERISTIC EVOLUTION

IN GENERAL RELATIVITY

In this section we consider systems ofR first-order linear
partial differential equations forR variablesus in N space-
time dimensions, of the form

aa
rs

]us

]xa
1brsus5 f r ,

r ,s51, . . . ,R and a51, . . . ,N, ~3!
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where summation over repeated indices is understood, o
matrix notation,

Aa
]u

]xa
1Bu5f. ~4!

A surfacef(xa)50 is referred to as characteristic with re
spect to Eq.~4! if and only if the determinant of the charac
teristic matrix@19#, namely, the matrix obtained by contrac
ing Aa with f,a , vanishes:

det~Aaf,a!50. ~5!

The characteristic surfacef(xa)50 is said to be of multi-
plicity m if the rank ofAaf,a is R2m.

If f50 is a characteristic surface, then the characteri
matrix Aaf,a has a set ofm linearly independent unit righ
null vectorsz(a) and a set ofm linearly independent unit left
null vectorsy(a) in the sense that

Aaf,az~a!50, ~6!

y~a!Aaf,a50, a51, . . . ,m.
~7!

In this context, Duff proved the following theorem.
Theorem. Let G given byf(xa)50 be a characteristic

surface of multiplicitym relative to the analytic linear system

Aa
]u

]xa
1Bu5f

of R first-order linear equations. Let T given byc(xa)50 be
noncharacteristic, intersecting G in an edge C such that

det~y~a!Aac,az~b!!Þ0. ~8!

Then there exists a unique analytic solution which satis
R2m initial conditions on G andm boundary conditions on
T. The initial conditions are the R2m linearly independent
values of

Aaf,au on f50 ~9!

and the boundary conditions are them values of

y~a!Aac,au on c50. ~10!

In the remainder of this work, we restrict our attention
the linearization of the characteristic equations~2! around
Schwarzschild spacetime. Linearization around flat spa
time is obtained in the usual manner, by settingm50, and is
therefore contained in what follows. The line element of th
spacetime can be written as
2-3
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ds252S r 22m

r Ddu222dudr1r 2qABdxAdxB, ~11!

which corresponds to the choiceb50,UA50,V5r 22m,
andhAB5qAB ~with qAB the unit sphere metric!.

In spacetimes where the departure from Schwarzsc
spacetime can be considered small, the quantitiesb andUA

are of first order, as well as the departuresV2r 12m and
hAB2qAB , which we consider as our variables. To exam
the solutions in this regime, we introduce a notation rela
to that of @15#

W[V2r 12m, ~12!

JAB[hAB2qAB . ~13!
08401
ld

d

In order to formulate the problem as a first-order system,
define additional first-order variables, which are of first ord
in the departure from Schwarzschild space as well, of
form

BA[b,A , ~14!

MABC[JAB,C , ~15!

QA[UA,r , ~16!

PAB[JAB,r . ~17!

In terms of these variables, the linearized characteristic eq
tions become
6

r 2PAB,u2
1

2
r ~r 22m!PAB,r2DABB1

1

2
r 2qACDBKC1rqACDBUC1

1

2
qABDCBC2

1

2
rqABDCUC

2
1

4
r 2qABDCKC2~r 2m!PAB1rJAB,u50, ~18!

b,r50, ~19!

r 4qABQB,r1r 2qBCDCPAB14rBA14r 3qABQB50, ~20!

2W,r12DABA2DAQA24rD AUA22qABqCDDDMABC50, ~21!

and the following two equations are satisfied as well, as a consequence of Eqs.~14!, ~15!, ~17!, and~19!:

MABC,r5PAB,C , ~22!

BA,r50. ~23!

The system consisting of Eqs.~18!, ~19!, ~20!, ~21!, ~16!, ~17!, ~22!, and ~23! constitutes a linear first-order system of 1
equations for 16 variables, namely, the metric (JAB ,b,W,UA) and those of its first spatial derivatives (PAB ,MABC ,BA ,QA)
necessary to put the system into first-order form. In matrix notation, the system~16!–~23! has the form
2-4
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3 1
r 2 0 0 0 r 0 0 0

0

0

0

0

0

0

0

2 ]

]u

11
2r ~r 22m!/2

1

1

r 4qAB

1

1

2

1

2 ]

]r
1LB

]

]xB
1B4 1

PAB

MABC

BA

QA

JAB

b

W

UA

2 50. ~24!
a

e
-

ix

s

of
ce

r

ac
In relation to the system~24!, our claim is that~i! a surface
u50 is characteristic of multiplicitym514, ~ii ! a surfacer
5r 0(r 0.2m) is noncharacteristic, and~iii ! there exists a
unique analytic solution for every set of 2 pieces of dataPAB
on u50 and 14 pieces of dat
(MABC ,BA ,QA,JAB ,b,W,UA) on r 5r 0.2m. The geom-
etry of our problem is depicted in Fig. 1.

To prove ~i!, we only need to notice that the surfac
f(xa)[u2u050 has gradientf,a5(1,0,0,0) and the char
acteristic matrixAaf,a is the coefficient of]/]u in Eq. ~24!.
Thus, the characteristic matrix has rank 2516214, which
means thatu5u0 is characteristic of multiplicitym514, as
long asr .r 0 .

To prove ~ii !, we notice that the surfacec(xa)[r 2r 0

FIG. 1. The geometry of our characteristic problem. The surf
u5u0 is characteristic and null, whereas the surfacer 5r 0 is non-
characteristic and timelike.
08401
50 has gradientc,a5(0,1,0,0) and the characteristic matr
Aac,a is the coefficient of]/]r in Eq. ~24!. This matrix has
determinant2(r 22m)r 5det(qAB), which is nonsingular as
long asr 0.2m. Thus r 5r 0 is noncharacteristic as long a
r 0Þ2m.

To prove ~iii !, we only need to show that the 14314
matrix y(a)Aac,az(b) has rank 14, so that the hypotheses
Duff’s theorem are satisfied. This is straightforward, sin
the left null vectors of the coefficient of]/]u in Eq. ~24! are
simply the 14 basis vectorsyi

(a)5d i
(a) ~with i 52, . . .,16),

while the right null vectors arezj
(b)5(d j

(b)2rd j
JdP

(b)) ~with
j 52, . . .,16, and whered j

J and dP
(b) represent Kronecke

symbols which are nonvanishing only for values ofj corre-
sponding to the label for the two variablesJAB and for values
of b corresponding to the label for the two variablesPAB);
hence,

y~a!Aac,az~b!

51
2r ~r 22m!/2

1

1

r 4qAB

2r 1

1

2

1

2 ,

~25!

e

2-5
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SIMONETTA FRITTELLI AND LUIS LEHNER PHYSICAL REVIEW D 59 084012
which has rank 14 on the surfaceu5u0 , r 5r 0.2m, wher-
ever the angular coordinates do not degenerate, an ass
tion that is understood throughout this work.

The first-order system~24! by itself has more solutions
than the second-order linearized characteristic equations~2!.
However, the solutions to the original second-order eq
tions are singled out by prescribing data that satisfy Eqs.~14!
and ~15! on r 5r 0 . Equations~14! and ~15! constitute con-
straints on the boundary data on the surfacer 5r 0 , and are
trivially propagated by the system~24!. At this point we
should remind the reader that, in order to obtain a solution
the full set of linearized Einstein equations, the data or
5r 0 must be further restricted by the four constraints, m
tioned in Sec. I, which we ignore in our present consid
ations.

The application of Duff’s theorem to the Einstein equ
tions in the form~24! is, thus, extremely simple. This is du
to our having at hand the characteristic initial-value probl
in its canonical form relative to the characteristic surfac
~see@11#, p. 130!, namely, in coordinates adapted to the in
tial characteristic surface. Any characteristic initial-val
problem reduced to canonical form splits its variables int
set ofnormal variables, which evolve according to the evo
lution equations, and a set ofnull variables, for which no
evolution equation is available. The normal variables are
early independent combinations of

v[Aafau, ~26!

which areR2m in number since the rank of the characte
istic matrix isR2m. In our case, there are two normal va
ables,PAB .

The null variables are linearly independent combinatio
of

wa[y~a!Aacau, ~27!

which arem in number. In our case, there are 14 null va
ables (MABC ,BA ,QA,JAB ,b,W,UA). The splitting is a con-
sequence of the existence of the 14 left null vectors of
characteristic matrix, since contracting Eq.~4! on the left
with y(a) produces 14 ‘‘hypersurface equations’’ due to t
vanishing of the coefficient of]/]u on the initial character-
istic surface.
08401
p-

-

to

-
-

-

a

-

s

e

IV. INCLUSION OF THE NULL BOUNDARY

The arguments in the previous section guarantee the e
tence and uniqueness of solutions constructed from d
given on an initial null sliceu5u0 and a boundary world
tuber 5r 0 , the solutions extending up to any finite values
u andr greater than the starting ones. This is important, si
r can reach a value as large as desired. However, a rigou
study of the gravitational radiation can only be attained
null infinity ~corresponding tor→`, namely, the boundary
of the spacetime!. Ideally, one would like to be able to reac
infinity in a practical manner and in a way that would let
infer the properties of the obtained solution.

Our analysis of the previous section is not well suited
this purpose, because the boundary is located atr 5`, which
is outside the domain of our coordinater. In particular, our
previous argument does not rule out solutions that diverg
r→`, but only those that diverge at finite radiusr. ~The null
variables are controlled by the proof of existence, wher
the normal variables are controlled by the assumption
regular—analytic—data on the entire initial surface.!

We need to introduce a coordinate that would ‘‘bring
infinity into a finite radius, such as

x[
r

R1r
. ~28!

The points at the boundary of the spacetime are thus rea
when the compactified radial coordinatex takes the value 1.
The introduction of this compactified coordinate is motivat
by @18#, which in turn is inspired from Penrose’s compac
fication @20#.

In asymptotically flat spacetimes, the variableW diverges
at infinity at the rate ofr 2 ~see@13,16#!. Therefore it is con-
venient to introduce a slight modification and define a n
malized variable that behaves regularly at infinity:

W̃[
W

r 2
5

~12x!2

x2

W

R2
. ~29!

The remaining variables do not diverge at infinity. Th
change of coordinater→x transforms our linearized equa
tions ~16!–~23! into the following system:
x2R2PAB,u2
1

2
x2R2S DBQA2

1

2
qABDCQCD2

1

2
x~12x!2PAB,x@xR22m~12x!#

1x~12x!RJAB,u1x~12x!RS DBUA2PAB2
1

2
qABDCUCD2~12x!2S DABB2

1

2
qABDCBCD50, ~30a!

~12x!2MABC,x2RPAB,C50, ~30b!

~12x!2BA,x50, ~30c!
2-6
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x3~12x!R2QA,x14x2R2QA1x~12x!RDBPAB14~12x!2BA50, ~30d!

~12x!2JAB,x2RPAB50, ~30e!

~12x!2b,x50, ~30f!

4x2~12x!2RW̃,x14xRW̃24xRDAUA1~12x!~2DABA2DAQA22qABqCDDCMABD!50, ~30g!

~12x!2UA,x2RQA50, ~30h!

where the coefficients are analytic functions of the coordinates.~Analyticity of the coefficients is one condition required fo
Duff’s arguments.! In matrix notation, the system~30! reads

3 1
x2R2 0 0 0 x~12x!R 0 0 0

0

0

0

0

0

0

0

2 ]

]u
1~12x!

31
2x~12x!~xR22m~12x!!R/2

~12x!

~12x!

x3R2qAB

~12x!

~12x!

4x2R

~12x!

2
3

]

]x
1L̃B

]

]xB
1B̃4 1

PAB

MABC

BA

QA

JAB

beta

W̃

UA

2 50. ~31!
084012-7
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SIMONETTA FRITTELLI AND LUIS LEHNER PHYSICAL REVIEW D 59 084012
We can see that, by the same arguments as in the prev
section, the prescription ofPAB on u5u0 and the remaining
variables on x5x0 with 2m/(R12m),x0,1 yields a
unique regular solution in the rangeu>u0 and x0<x<1.
The arguments follow because the only modifications w
respect to the previous section have been the appearan
factors multiplying existent nonvanishing elements of t
matrices, but the vanishing elements of the coefficient ma
ces remain the same. The region where the solution ex
and is unique is shown in Fig. 2.

This means that we can construct a solution at null infin
by starting at an interior worldtube~and initial null slice!.
The solution at null infinity is regular and can be used to re
the radiation given off by the isolated system. This sche
has been implemented successfully in numerical codes@13#
and is currently being actively pursued.

On the other hand, it is also clear now that the surfacx
51 is different from any other surfacex5x0.0. The sur-
face x51 is actually a characteristic surface of the syst
~30!, since the matrix that is the coefficient of]/]x is degen-
erate atx51. Therefore, we cannot guarantee by this meth
the existence and uniqueness of solutions to the charact
tic problem with data given at null infinity in addition to da
given on a starting null surface. This is the inverse proble
knowing the radiation at infinity, can we reconstruct t
gravitational fields in the interior in a unique regular fashio

Apparently the answer isyes, certainly not from Duff’s
theorem, but from work by Sachs and Friedlander in
1960s. Sachs showed that the characteristic initial va
problem has a unique solution~if the solution exists! when
additional data is prescribed at null infinity@2#. On the other
hand, Friedlander obtained an argument, based on the s
wave equation, to ensure the existence of regular solut
constructed from asymptotic data on null surfaces@4#. Both
works used asymptotic expansions in terms of inverse p
ers of r. Friedrich @6# adapted Duff’s theorem to the cas
when the boundary is a characteristic of the system of eq
tions, to show existence and uniqueness in the case o
conformal Einstein equations. Possibly his argument co
be used in our case of Bondi-Sachs type coordinates.

FIG. 2. The region where existence and uniqueness hold,
data specified on the initial null sliceu5u0 and world tube atx
5x0 .
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V. CONCLUSION

Since the concept of asymptotic flatness was introdu
@20#, null infinity has become an ideal setting for the study
the gravitational radiation given off by an isolated syste
From a numerical point of view, when modeling a particu
problem, it is convenient to choose a set of field variab
and foliation such that the variables involved in the simu
tion appear as smooth as possible. This configuration
usually imply fewer steep gradients which is always des
able for stability reasons. In particular, when dealing w
gravitational waves that propagate along null directions
description with respect to lightlike surfaces results in
smoother appearance of these disturbances than that obt
from a spacelike foliation of the spacetime.~This is analo-
gous to describing the propagation of outgoing eletrom
netic waves; while in a spacelike foliation they depend
time and space, in a foliation adapted to the null cones t
only depend on time; thus being constant on each null co!

Consequently, as more extensively argued in@3#, the char-
acteristic approach constitutes a valuable tool for numer
models aiming to study gravitational radiation and has b
actively pursued@13,21,17,22#. Its effectiveness as a tool t
model three-dimensional spacetimes has, in recent ye
been demonstrated to an impressive degree of reliab
@13,14#, taking three-dimensional simulations in numeric
relativity to the regime of arbitrarily-long-time evolutio
@23#.

Numerical integration, as well as other approximati
methods, share the properties of physical systems
proached by observation and measurement, in the sense
there is an error inherent to the procedure which must
controlled. Courant’s judgement on the necessary requ
ments that a system of partial differential equations m
satisfy in order to represent a physical system~p. 227 of
@19#! is as follows:~1! The solution must exist;~2! the solu-
tion should be uniquely determined;~3! the solution should
depend continuously on the data~requirement of stability!.

The first requirement is important because it elimina
the possibility that a solution might diverge at a finite tim
Any divergent solutions would eventually spoil the integr
tion by unavoidable mixing at the order of error. The seco
requirement is natural. But it is the third requirement that
crucial to any observable natural phenomenon, becaus
the associated finite precision in measurement, or to any
proximation method, such as a numerical integration o
because of finite errors in the prescription of initial data a
in the discretization.

A problem that satisfies all three requirements above
referred to as well posed, regardless of the possibility
additional properties possessed by the problem, such as
perbolicity or parabolicity. A suitable method for determi
ing whether a problem is well posed is by establishing e
mates between the norm of the solution at a later time
the norm of the solution at the initial time, referred to
energy estimates~see, for instance,@19#, p. 661, and@24#!.
Energy estimates, in turn, lead to algebraic criteria in
case of hyperbolic problems, namely, strict, strong, or sy

or
2-8
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metric hyperbolicity, which simplify in great measure th
task of establishing well posedness. These standard cri
are applicable in cases of Cauchy initial-value problem
namely, when data are specified on a surface that is spac
with respect to the equations. In recent years, the Cau
approach to general relativity has yielded a variety of we
posed schemes~see, for instance,@8,9,25,10#!.

Characteristic initial-value problems do not fit the fram
work of the standard algebraic criteria for well posedne
Furthermore, so far, there appear to exist no standard cri
for the well posedness of generic characteristic initial-va
problems. Some results exist for special characteristic p
lems. A theorem due to Balean@26# establishes the well pos
edness of the scalar wave equation in three spatial dim
sions, with data specified on a null-timelike boundary.
our knowledge, no such result is available yet for the nu
timelike boundary-value problem in general relativity, a
though it now appears possible@27# to establish it by com-
bining techniques appearing in@28# and@29#. In view of the
results obtained here and, especially, from the fact that
merical evolution can be carried out to long times, it is re
sonable to expect that the well posedness of CE could
established, although nonstandard methods to do this ma
necessary.
c.
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Although uniqueness and existence are not sufficient c
ditions for well posedness, they are quite necessary, rai
the characteristic scheme to the level of a generic Cau
problem. It may be objected that the validity of the existe
results is limited to the linearized regime of the Einste
equations. However, because of the quasilinear characte
the Einstein equations~namely, the fact that the highest de
rivatives appear linearly!, the results might be extended t
the exact case as well. The existence and uniqueness
quasilinear system may in principle be obtained from
existence and uniqueness of the corresponding linear
system via iterations~see p. 975 of@19#!. We do not concern
ourselves with this issue at this time.

ACKNOWLEDGMENTS

Jeff Winicour has been a generous source of informat
relevant to the characteristic approach. We are indebte
Richard Matzner for interesting suggestions and to Robe
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