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Existence and uniqueness of solutions to characteristic evolution in Bondi-Sachs
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We show that the theorem of Duff on the existence and uniqueness of solutions to linear characteristic
initial-value problems holds in the case of linearized characteristic evolution in Bondi-Sachs coordinates in
general relativity. This represents the characteristic equivalent to the manifest existence and uniqueness of the
case of standard Cauchy problems. This extends Sachs’ original work on the characteristic approach to the
Einstein equations, by considering a null-timelike approach rather than a null-asymptotic one.
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[. INTRODUCTION work by Friedrich[6,7] makes use of newly available con-
formal compactification techniques and the exact conformal
The characteristic approach to general relativity was inEinstein equations.
troduced by Bondet al.[1] and Sach§2] in the early 1960s, More recently, interest has shifted to the case where data
and was followed up by a number of authors in subsequerre prescribed, in a complementary fashion, both along one
years (for a comprehensive list sg&@]). Its distinguishing null slice, considered as initial, and along an interior world
feature is that it considers spacetime to be foliated by a sdube, which generates the outgoing null surfaces in the sense
quence of null hypersurfaces, each of which is generated b§iscussed above, in Bondi-Sachs coordinates. This case is
the outgoing null rays emanating from a central geod@sic often r_eferred to as characteristic evolutl(@E) for general_
the null normals to a spacelike two-surface relat!v_lty._AIthough CE has generally been viewed as a slight
In this approach, the projections of the Einstein equationgmd'f'catlon to the _orlglnal asymptotic apprpach, to our
along three independent directions tangent to the null slice novyledge, little of rigor can be fqund in the Iltergture con-
yield a set of six second-order partial differential equationscglrSt'iT)%;rlg Spurgﬁzrt:eiiitgl Taeluzxpl)sr:)ebr}g?n and uniqueness of
for the six independent components of the metric in terms of A standard argument for the construction of a unique

coo_rdlnates_ adapted to _the_null follatlon,_referred to as th?egular solution to a system of quasilinear partial differential
main equationsThe projections of the Einstein equations g,ations from given initial data is provided by the Cauchy-
along the incoming null directiofwhich sticks out of the Kowalewsky theorem. A strong condition for the Cauchy-
null slices, and along mixed incoming-tangent directions,  gwalewsky theorem to hold is that the data should be pre-
yield a set of four second-order partial differential equationsseriped on a surface that is spacelike with respect to the
which can be considered as conditions on the data for thgystem of quasilinear partial differential equations. However,
other six, since they are preserved by them. For definitenessyrfaces that are null with respect to the spacetime metric are
the equations are written with respect to a specific coordinatRnown to be characteristic with respect to the Einstein equa-
system referred to as the Bondi-Sachs coordinates, whictions as well(for recent references, s¢8—10Q); thus CE
essentially consitute coordinates adapted to the foliation. cannot be accomodated within the standard Cauchy-
The characteristic approach was first introduced to studowalewsky framework. It is of interest to us to point out
the problem of gravitational radiation emitted by isolatedthat the Cauchy-Kowalewski theorem has been generalized
systems. In this context, it has been used to construct solly Duff [11] to generic linear characteristic initial-value
tions from data prescribed at infinite distances from the isoproblems. Here we show that CE fits the hypothesis of this
lated source, and a number of results have been obtainetiapted Cauchy-Kowalesky theorem. This means that the
concerning the existence and uniqueness of solutions built iinearized regime of CE has a unique regular solution to
this fashion[4,2,5,8. It is perhaps not completely trivial to every set of data. The importance of this simple observation
point out that the earlier resulf®,4] are based on radiative stems from the following considerations.
treatments of the scalar wave equation, whereas the later Characteristic initial-value problems in general are mani-
festly ill posed in the following sense. Since the initial sur-
face is characteristic with respect to the system of equations,

*Email address: simo@mayu.physics.dug.edu the differential operator is internal to the surface and fails to
TCurrent address: Center for Relativity, The University of Texasprovide the outward derivatives of a number of the variables.
at Austin, Austin, TX 78712. This is well known to be the source of the lack of uniqueness
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to a generic characteristic initial-value problem. Sachsconsequently splitting, respectively, into a set of siain
showed that the solution to the characteristic problem in genequationswhich rule the evolution, and a set of four equa-
eral relativity in Bondi-Sachs coordinates is unique if addi-tions which are preserved by the main ones and can be
tional data are prescribed at infinity, considered as a boundhought of as conditions on the set of the, otherwise free,
ary for the spacetime. The work by DUff1], here adapted data onl.
to general relativity, on the other hand, shows that the solu- In the present work, we concern ourselves only with the
tion exists and is unique if, in addition to the subset of freemain equations, since our results apply to the entire set of
initial data, complementary data are prescribed on a nonchadata, in particular to the data restricted by the preserved con-
acteristic surface, which can be considered as a boundargitions.
Thus the two regimes of interest, namely, local and In the characteristic approach, a coordinate system
asymptotic, are so far shown to give rise to unique regulandapted to the slices may be defined in the following way:
solutions, in the context of the Einstein equations in Bondi-suppose we foliate the spacetime with a sequence of lightlike
Sachs coordinates. hypersurfaces. We leti label these hypersurfaces®(A

For the sake of completeness, we reproduce the frame=2,3), label each null ray on a specific hypersurface, mand
work of CE of general relativity in Sec. Il. The statement of be a surface area coordinate. In the resultifigs (u,r,x?)
Duff’s theorem is found in Sec. I, as well as the proof that coordinates, the metric takes the Bondi-Sachs fotth-15
its hypotheses are satisfied in the case of CE. The argument
is extended to consider the boundary at null infinity in Sec.
IV. We comment on the reach and relevance of our result in ds?= — eZB!—rzhABUAUB du?— 2e28dudr
Sec. V.
Il. CHARACTERISTIC EVOLUTION —2r%hpgUPdudx+r*hagdxdx®, @

IN GENERAL RELATIVITY where dethi,g) =det(qag), With gag @ unit sphere metric.

The characteristic approach to general relativity intro-The main variables ar@,UAV, andh,g. Geometrically,
duces a foliation based on a sequence of null cones emandbe tensor fielchyg measures the departure from spherical
ing from a central timelike geodesic or, alternatively, a fam-symmetry of the surfaces of constarandr. 8 measures the
ily of null surfaces emanating from a timelike or null world expansion of the light raydJ” measures the shift of the
tubeI". Each null surface runs out to infinity, covering thus angular coordinates from one hypersurface to another
the entire spacetiméoutsideI’). The set of ten Einstein constantr) andV contains the mass aspect of the system.
equations is projected down to each null slice and out of it, The main equations afd 3]

1 r2 ré
r(rhagu) = E(thAB,r),rzzeBDADBeﬁ_ rzhAcDBU,?_ EhAB,rDcUC+ ?eizﬁhAChBDU,C]:UPr_ r2UCDchAB,r

1
—2rhacDgU%+r?hc, (hgeh®PDpUE-DU®) + EhAB

\%
_rzh,?D(hCD,u_ Ehco,r)

—2ePDDC%P+ DC(rZUC)Yr—%r“e’thCDUﬁU? , (2a)

B.,= %rhAChBDhAB,,hCD,r, (2b)
(r*e™2PhpgU%) ,=2r%(r=28.4) ,—r?hBDchyg,, (20
2e 2PV (=R—2D"DAB—2D"BDpB+r1 2 2PD(r*UA) — %r"’e*"’ﬂhABU”?Uﬁ : (20)
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where D, is the covariant derivative associated with where summation over repeated indices is understood, or, in
hag(Dchag=0) and R the curvature scalar of the two- matrix notation,
metrich,g. We have defineti*® via h"Bhg = 62 and use it

to raise indicesA,B, ... . These equations represent a real P
version of the actual equations used in CE, which use two Aa_u+Bu:f_ 4)
complex stereographic coordinates on the spacelike sections ax2

at constantu andr. Equations(2b)—(2d) are exactly Egs.

(9)—(11) in [15]. Equation(2a) can be reobtained by express- A surface (x*) =0 is referred to as characteristic with re-

ing Eq. (25) of [15] in terms of our current variables. spect to Eq(4) if and only if the determinant of the charac-
In their standard form, the characteristic equati¢@s teristic matrix[19], namely, the matrix obtained by contract-

have the following properties. In the first place, from theing A* with ¢,,, vanishes:

point of view of partial differential equations, they constitute

a second-order systefirrespective of the fact that they do de(A%¢,,)=0. (5)
not display second derivatives with respect to the null coor- @
dinateu). The characteristic surfacg(x?)=0 is said to be of multi-

Second, and most important, adopting the viewpoint thaplicity . if the rank of A%, , is R— .

u acts like a time for evolution, one recognizes the presence |f =0 is a characteristic surface, then the characteristic
of only two evolution equation&a), which are first order in - matrix A%¢,, has a set ofu linearly independent unit right

time. Hence, the other equations can be regarded as cofyj| vectorsZ® and a set of linearly independent unit left
straints that the field variables must satisfy on each null surpy| vectorsy(® in the sense that

face. Consequently, the set of characteristic equations is con-

ventiently organized in a hierarchical manih&6], allowing

for a straightforward procedure to construct a solution. A2, 2 =0, (6)
Given initial data consisting oh,g on a characteristic

hypersurfaceV, at some initial timeu=u, and sufficiently VARG, =0, a=1

smooth boundary datg@ is obtained by integrating Eq2b) e R @

radially outwards starting froml”. Notably, sinceh,g is

known on the entire surface, E(b) can be regarded as an |n this context, Duff proved the following theorem.

ordinary equation ford. Then,U”, which follows next in Theorem. Let G given by(x?)=0 be a characteristic

the hierarchy(2¢), is analogously integrated since bdtRs  surface of multiplicityu relative to the analytic linear system
and B8 are now known on\,. Finally, V is obtained by

integrating Eq(2d), which completely determines the metric

onNp. A""&—u +Bu=f
The metric information on the first hypersurface can now axa u=
be used to obtainrfisg) ., from Eq.(28). In the last step of

the evolution cycle, thé s, are integrated in time, hence of R first-order linear equations. Let T given bByx?) =0 be

furnishing hag on a new hypersun‘aca/uoﬂju at timeu noncharacteristic, intersecting G in an edge C such that
=ug+du.

The simplicity of this hierarchy has been exploited in the d A3y ABY£0 8
realm of numerical relativity13,17,14,18 obtaining excel- ety ¥1a2 ") #0. ®
lent results. Then there exists a unique analytic solution which satisfies

R—u initial conditions on G andu boundary conditions on
T. The initial conditions are the Ru linearly independent

lll. DUFF'S THEOREM APPLIED values of

TO CHARACTERISTIC EVOLUTION
IN GENERAL RELATIVITY
. . . , . A%¢p,.u on ¢=0 (9)
In this section we consider systemsRfirst-order linear

partial differential equations foR variablesug in N space- and the boundary conditions are thevalues of
time dimensions, of the form

YAy, u - on ¢=0. (10)
2 s In the remainder of this work, we restrict our attention to
a rs§+brsus:fr’ the linearization of the characteristic equatid@s around

Schwarzschild spacetime. Linearization around flat space-

time is obtained in the usual manner, by setting 0, and is

therefore contained in what follows. The line element of this
rs=1,...R and a=1,...N, 3 spacetime can be written as
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) ) B In order to formulate the problem as a first-order system, we
)dU —2dudr+rfgagdx™dx®, (11)  define additional first-order variables, which are of first order
in the departure from Schwarzschild space as well, of the

which corresponds to the choig@=0U"=0V=r—2m, form
andhag=Qag (With gag the unit sphere metric

In spacetimes where the departure from Schwarzschild Ba=8ia, (14)
spacetime can be considered small, the quantgiesd U
are of first order, as well as the departukésr+2m and

ds?=

(r—Zm

hag—0ag, Which we consider as our variables. To examine Masc=Jagc: (15

the solutions in this regime, we introduce a notation related

to that of[15] Qh=UA,, (16)
WEV—I’+2m, (12) PABE‘JAB,I' . (17)

In terms of these variables, the linearized characteristic equa-
Jag=hag—0as- (13)  tions become

r’p —Er(r—Zm)P —DB+1r2 DgKC+r DUC+E DB —Er DcUC
ABUT 5 AB,r ABBT 5 qacPs JacPs ZQAB cT 3 dasPc

_%rZQABDcKC_(r_m)PAB"’r\]AB,u:Oy (18

B.+=0, (19

raasQ®, +r?q°DcPagt 4rBa+4r’gasQ®=0, (20)
2W,,+2D”By—DAQ"—4rD ,U”A—20”Bq°PDpM ppc=0, (21

and the following two equations are satisfied as well, as a consequence diLBq$15), (17), and(19):

MABC,r: PAB,C! (22

Ba,r=0. (23)

The system consisting of Eg&l8), (19), (20), (21), (16), (17), (22), and (23) constitutes a linear first-order system of 16
equations for 16 variables, namely, the metdgd,3,W,U”) and those of its first spatial derivativeB {g,M agc,Ba,Q%)
necessary to put the system into first-order form. In matrix notation, the sy&®m(23) has the form
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"/r2 000r 00O
0

—r(r—2m)/2 7

] ]
+ 1 —r+LB—+B =0. (24)

In relation to the systen?4), our claim is thati) a surface =0 has gradient,,=(0,1,0,0) and the characteristic matrix
u=0 is characteristic of multiplicityu = 14, (ii) a surfacer A%y, , is the coefficient o/ dr in Eq. (24). This matrix has
=ro(ro>2m) is noncharacteristic, andii) there exists a determinant— (r —2m)r°det(qag), Which is nonsingular as
unique analytic solution for every set of 2 pieces of dRfg  long asr,>2m. Thusr=r is noncharacteristic as long as

on u=0 and 14 pieces of data rg#2m.
(Magc,Ba,Q%Jag. 8, W,UA) on r=ry,>2m. The geom- To prove (iii), we only need to show that the %44
etry of our problem is depicted in Fig. 1. matrix Y'Y A%y, . Z2#) has rank 14, so that the hypotheses of

To prove (i), we only need to notice that the surface Duff's theorem are satisfied. This is straightforward, since
d(x¥)=u—uy=0 has gradient,,=(1,0,0,0) and the char- the left null vectors of the coefficient @ du in Eq. (24) are
acteristic matrixA®¢,, is the coefficient ob/du in Eq.(24).  simply the 14 basis vectord®” =¥ (with i=2,...,16),
Thus, the characteristic matrix has rank 26— 14, which  \hile the right null vectors arel(ﬁ):(gj(ﬁ)_réleggﬁ)) (with
means thati=uo is characteristic of multiplicityu=14, as  j—2 16, and wheres? and 5% represent Kronecker
long asr>ro. , . symbols which are nonvanishing only for valuesj aforre-

To prove (i), we notice that the surfacg(x*)=r—ro  gponding to the label for the two variablégs and for values

of B corresponding to the label for the two variablRgg);
— hence,

YRRy, 2

—r(r—2m)/2
T / 1

1
4
I G _ r"Qas
—r 1 '
——— 1
o c
2
FIG. 1. The geometry of our characteristic problem. The surface 1

u=uy, is characteristic and null, whereas the surfaeea is non-
characteristic and timelike. (25)
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which has rank 14 on the surfage=ug, r=ry>2m, wher- IV. INCLUSION OF THE NULL BOUNDARY
ever the angular coordinates do not degenerate, an assump-

tion that is understood throughout this work. The arguments in the previous section guarantee the exis-

The first-order systen24) by itself has more solutions tence and uniqueness O.f solutions constructed from data
given on an initial null slicau=uy and a boundary world

than the second-order linearized characteristic equat®ns tuber =r- the solutions extending up to anv finite values of
However, the solutions to the original second-ordeEr :eg qual-J andr_ rtia,ater than the startin or?espThis igim ortant, since
tions are singled out by prescribing data that satisfy . rcan re?ach a value as large a% desiréd Howevgr ari ,ourous
and (15 onr=r,. Equations(14) and (15) constitute con- e geasc : ,arg

. study of the gravitational radiation can only be attained at
straints on the boundary data on the surfaeey, and are

trivially propagated by the systeri®4). At this point we null infinity (corresponding to —o°, namely, the boundary

should remind the reader that, in order to obtain a solution t(?f the spacetime Ideally, one would like to be able to reach

i . . . . infinity in a practical manner and in a way that would let us
the full set of linearized Einstein equations, the dataron . . . :
o . . infer the properties of the obtained solution.
=ry must be further restricted by the four constraints, men- ; X S .
Our analysis of the previous section is not well suited for

gﬁgﬁg in Sec. 1, which we ignore in our present ConSIder_this purpose, because the boundary is located-at, which

_ , . . is outside the domain of our coordinateln particular, our
The application of Duff's theorem to the Einstein equa- . d | luti hat d
tions in the form(24) is, thus, extremely simple. This is due previous argument does not rule out solutions that diverge as

to our having at hand the characteristic initial-value problemrﬁoo’ but only those that diverge at finite radiugThe null

- : ; - variables are controlled by the proof of existence, whereas
in its canonical form relative to the characteristic surface y P

(see[11], p. 130, namely, in coordinates adapted to the ini- (e normal variables are controlied by the assumption of
tial characteristic surface. Any characteristic initial—valueregvlillgrn_eaeréalt%“?rgggignatggoigmzt;n'tt:]ﬂtsyvgﬁfde'“brin "
problem reduced to canonical form splits its variables into & \finitv into a finite radius. such as 9
set ofnormal variables which evolve according to the evo- y '

lution equations, and a set olull variables for which no

evolution equation is available. The normal variables are lin- r
early independent combinations of X=p (28)
v=A%p,U, (26)  The points at the boundary of the spacetime are thus reached

when the compactified radial coordinat¢akes the value 1.
which areR— u in number since the rank of the character- The introduction of this compactified coordinate is motivated
istic matrix isSR— u. In our case, there are two normal vari- by [18], which in turn is inspired from Penrose’s compacti-
ables,P,g. fication[20].

The null variables are linearly independent combinations In asymptotically flat spacetimes, the varialediverges
of at infinity at the rate of? (see[13,16]). Therefore it is con-
venient to introduce a slight modification and define a nor-
We=y DAY, 27) malized variable that behaves regularly at infinity:

which areux in number. In our case, there are 14 null vari- w1 2 W
ables M agc,Ba, Q" Jag. 8, W,UA). The splitting is a con- W (1-x) 29

sequence of the existence of the 14 left null vectors of the r2 X2 R?

characteristic matrix, since contracting Eg) on the left

with y{®) produces 14 “hypersurface equations” due to theThe remaining variables do not diverge at infinity. The
vanishing of the coefficient of/Ju on the initial character- change of coordinate—x transforms our linearized equa-
istic surface. tions (16)—(23) into the following system:

X?R%P —EXZRZ DgQ 2 DcQ° —Ex(l—x)zP [XR—2m(1-X)]
ABUT 5 BUa 2qAB C > AB,X

1 1
+X(1_X)R‘JAB,u+X(1_X)R< DgUa—Pag— EqABDCUC) - (1_X)2( DaBg— EqABDCBC =0, (308
(1-x)*Magcx— RPag c=0, (30b)
(1-x)?Bax=0, (300
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X3(1—X)R?Qp x+ 4X°R?Qp+ X(1—X)RDBP g+ 4(1—Xx)?Bo=0, (300)

(1-%)?Japx— RPag=0, (308

(1—x)28,,=0, (30f)

4x%(1—x)2RW,, + 4AXRW— 4xRDAUA+ (1—X) (2D ABA— D ,Q*— 20"Bq°PD cM pgp) =0, (309
(1-x)2UA,—RQ*=0, (300

where the coefficients are analytic functions of the coordindfasalyticity of the coefficients is one condition required for
Duff's arguments. In matrix notation, the systerf80) reads

T [x’R> 0 0 0 x(1-x)R 0 0 O
0

—+(1-Xx)

—X(1—-Xx)(xR—2m(1—-x))R/2
(1-x)
(1-x)

X J +L8 i +B =0 31
(9X o’)XB ‘]AB e ( )
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null V. CONCLUSION

infinity
Since the concept of asymptotic flatness was introduced
[20], null infinity has become an ideal setting for the study of
S— the gravitational radiation given off by an isolated system.
From a numerical point of view, when modeling a particular
: problem, it is convenient to choose a set of field variables

ui and foliation such that the variables involved in the simula-

tion appear as smooth as possible. This configuration will

T G usually imply fewer steep gradients which is always desir-

P able for stability reasons. In particular, when dealing with
S ¢ gravitational waves that propagate along null directions, a

. description with respect to lightlike surfaces results in a
FIG. 2. The region where existence and uniqueness hold, fogmgother appearance of these disturbances than that obtained
data specified on the initial null slice=uy, and world tube ak from a spacelike foliation of the spacetim@his is analo-
=Xo- gous to describing the propagation of outgoing eletromag-
netic waves; while in a spacelike foliation they depend on
We can see that, by the same arguments as in the previotisme and space, in a foliation adapted to the null cones they
section, the prescription d®,5 on u=u, and the remaining only depend on time; thus being constant on each null ¢one.
variables onx=x, with 2m/(R+2m)<x,<1 yields a Consequently, as more extensively arguefBinthe char-
unique regular solution in the range=u, and xo<x<1.  acteristic approach constitutes a valuable tool for numerical
The arguments follow because the only modifications withModels aiming to study gravitational radiation and has been
respect to the previous section have been the appearance@ftively pursued13,21,17,22 Its effectiveness as a tool to
factors multiplying existent nonvanishing elements of theModel three-dimensional spacetimes has, in recent years,

matrices, but the vanishing elements of the coefficient matriP€en demonstrated to an impressive degree of reliability

ces remain the same. The region where the solution eXiS{r%I?;tli\z/Hii tatlc()lnt%;higei_r(rj]?%?Slact)rrt])?tlras:illﬁn}:ﬁlc{?i?n (Ien :\;Jorru?iré%al
and is unique is shown in Fig. 2. y 9 y-long

This means that we can construct a solution at null infinity[23]'

. . . o . Numerical integration, as well as other approximation
by starting at an interior worldtubénd initial null slice. (i;ethods share %he properties of physical pgystems ap-

The solytipn at.null infinity is regular and can be usgd toreaq) . 4ched by observation and measurement, in the sense that
the radiation given off by the isolated system. This sChemgy,ore is anerror inherent to the procedure which must be
has been implemented successfully in numerical co#85  conirolled. Courant's judgement on the necessary require-
and is currently being actively pursued. ments that a system of partial differential equations must
On the other hand, it is also clear now that the surface satisfy in order to represent a physical systqm 227 of
=1 is different from any other surface=x,>0. The sur-  [19)) is as follows:(1) The solution must exis{?) the solu-
facex=1 is actually a characteristic surface of the systemtion should be uniquely determine¢) the solution should
(30), since the matrix that is the coefficient @fox is degen-  depend continuously on the dai@quirement of stability
erate ak=1. Therefore, we cannot guarantee by this method The first requirement is important because it eliminates
the existence and uniqueness of solutions to the characterigie possibility that a solution might diverge at a finite time.
tic problem with data given at null infinity in addition to data Any divergent solutions would eventually spoil the integra-
given on a starting null surface. This is the inverse problemtion by unavoidable mixing at the order of error. The second
knowing the radiation at infinity, can we reconstruct therequirement is natural. But it is the third requirement that is
gravitational fields in the interior in a unigue regular fashion?crucial to any observable natural phenomenon, because of
Apparently the answer iges certainly not from Duff's the associated finite precision in measurement, or to any ap-
theorem, but from work by Sachs and Friedlander in theproximation method, such as a numerical integration one,
1960s. Sachs showed that the characteristic initial valubecause of finite errors in the prescription of initial data and
problem has a unique solutidif the solution existswhen in the discretization.
additional data is prescribed at null infinitg2]. On the other A problem that satisfies all three requirements above is
hand, Friedlander obtained an argument, based on the scal®ferred to as well posed, regardless of the possibility of
wave equation, to ensure the existence of regular solutionsdditional properties possessed by the problem, such as hy-
constructed from asymptotic data on null surfapéls Both  perbolicity or parabolicity. A suitable method for determin-
works used asymptotic expansions in terms of inverse powing whether a problem is well posed is by establishing esti-
ers of r. Friedrich[6] adapted Duff's theorem to the case mates between the norm of the solution at a later time and
when the boundary is a characteristic of the system of equahe norm of the solution at the initial time, referred to as
tions, to show existence and uniqueness in the case of trenergy estimateésee, for instancd,19], p. 661, and 24]).
conformal Einstein equations. Possibly his argument couldEnergy estimates, in turn, lead to algebraic criteria in the
be used in our case of Bondi-Sachs type coordinates. case of hyperbolic problems, namely, strict, strong, or sym-
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metric hyperbolicity, which simplify in great measure the Although unigueness and existence are not sufficient con-
task of establishing well posedness. These standard criteriitions for well posedness, they are quite necessary, raising
are applicable in cases of Cauchy initial-value problemsthe characteristic scheme to the level of a generic Cauchy
namely, when data are specified on a surface that is spacelikgoblem. It may be objected that the validity of the existent
with respect to the equations. In recent years, the Cauchyssults is limited to the linearized regime of the Einstein
approach to general relativity has yielded a variety of well-equations. However, because of the quasilinear character of
posed schemesee, for instancedg,9,25,10). the Einstein equationgiamely, the fact that the highest de-

Characteristic initial-value problgms do not fit the frame- 1y atives appear linearly the results might be extended to
work of the standard algebraic criteria for well posednessiha exact case as well. The existence and uniqueness of a

Furthermore, so far, there appear to exist no st_an_d_a_rd Criterl?u::lsilinear system may in principle be obtained from the
for the well posedness of generic characteristic |n|t|al-valueexistence and uniqueness of the corresponding linearized
problems. Some results exist for special characteristic prob-

lems. A theorem due to Bale§B6] establishes the well pos- system via iterationgsee p. 975 of19)). We do not concern

edness of the scalar wave equation in three spatial dimel,?_urselves with this issue at this time.
sions, with data specified on a null-timelike boundary. To
our knowledge, no such result is available yet for the null-

timelike boundary-value problem in general relativity, al- ACKNOWLEDGMENTS
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