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Dynamics of light cone cuts of null infinity

Simonetta Frittelli*
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Carlos Kozameh
FaMAF, Universidad Nacional de Co´rdoba, Ciudad Universitaria, 5000, Co´rdoba, Argentina

Ezra T. Newman
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 31 March 1997!

In this work we explore further consequences of a recently developed alternate formulation of general
relativity, where the metric variable is replaced by families of surfaces as the primary geometric object of the
theory—the~conformal! metric is derived from the surfaces—and a conformal factor that converts the con-
formal metric into an Einstein metric. The surfaces turn out to be characteristic surfaces of this metric. The
earlier versions of the equations for these surfaces and conformal factor were local and included all vacuum
metrics ~with or without a cosmological constant!. In this work, after first reviewing the basic theory, we
specialize our study to spacetimes that are asymptotically flat. In this case our equations become considerably
simpler to work with and the meaning of the variables becomes much more transparent. Several related
insights into asymptotically flat spaces have resulted from this.~1! We have shown~both perturbatively and
nonperturbatively for spacetimes close to Minkowski space! how a ‘‘natural’’ choice of canonical coordinates
can be made that becomes the standard Cartesian coordinates of Minkowski space in the flat limit.~2! Using
these canonical coordinates we show how a simple~completely gauge-fixed! perturbation theory off flat space
can be formulated.~3! Using the rigid structure of the spacetime null cones~with their intersection with future
null infinity! we show how the asymptotic symmetries~the BMS group or rather its Poincare´ subgroup! can be
extended to act on the interior of the spacetimes. This apparently allows us to define approximate Killing
vectors and approximate symmetries. We also appear to be able to define a local energy-momentum vector
field that is closely related to the asymptotic Bondi energy-momentum four-vector.@S0556-2821~97!04420-2#
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I. INTRODUCTION

In a recent series of papers, Einstein’s theory of gen
relativity ~GR! was reformulated and presented as a theory
characteristic hypersurfaces@1–4# rather than as a theory o
the metric field. From this point of view the spacetime met
and associated connection are all derived concepts: the b
variables of the reformulation are special families of thre
surfaces in a four-manifoldM4—from which a conformal
metric can be found—and a scalar function~a conformal
factor! which converts the conformal metric into a metri
The surfaces, which are obtained from solutions to par
differential equations, are automatically the characteri
surfaces of the~derived! metric and the metric automaticall
satisfies the Einstein field equations. This reformulation
GR has been referred to as the null-surface formula
~NSF! of GR and can be applied to the Einstein equatio
with or without sources. In the present work we will confin
ourselves solely to the vacuum case.

More specifically, the NSF describes GR in terms of tw
functions onM43S2; one of the functionsZ(ya,z,z̄) de-
scribes anS2’s worth of surfaces through each spacetim
point, while the other functionV(ya,z,z̄) plays the role of a
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conformal factor for a family of associated conformal me
rics. Theya are local coordinates onM4, andz is a stereo-
graphic coordinate onS2. It is from this sphere’s worth of
surfaces themselves that the conformal metric—conforma
an Einstein metric—is constructed; the conformal factor th
converts it into an Einstein metric. All the surfaces, for ar
trary but fixedz, given byZ(ya,z,z̄)5constant, are null sur-
faces with respect to this metric.

The partial differential equations satisfied by the tw
functionsZ and V ~which are discussed in detail in@1–4#!
can be imposed, in general, in any local region of an Eins
manifold. Roughly speaking the equations split into two se
two ~complex! equations, which we refer to asmetricity con-
ditions, guarantee that a Lorentzian metric can be co
structed from the functionsZ and V; the third ~real! equa-
tion, referred to as (E), imposes the vacuum Einstei
equations on that metric. The purpose of the present wor
to study these equations in the very important special cas
asymptotically flat vacuum spacetimes. The main result
this study is that the meaning of the variables becomes m
concrete and hence clearer and, furthermore, the structu
the equations changes and becomes much more transp
and simpler to use. It formally allows a straightforward~fully
gauge fixed! perturbation theory.

In Sec. II, without giving any details or proofs, we outlin
~see@1–4# for details! the main features and equations of t
NSF of GR. The main body of this work, contained in Se
4729 © 1997 The American Physical Society
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III, is divided into five subsections. In Sec. III A we revie
certain features of null infinity and discuss an alternate g
metric meaning of the functionZ(ya,z,z̄) which has, up to
now, defined the null surfaces. In addition, the derivatives
Z with respect to (z,z̄) take on a simple geometric meanin
In Sec. III B, we discuss our main result, a single real eq
tion @the light cone cut~LCC! equation# which, in the case of
asymptotically flat spacetimes, replaces the two comp
metricity conditions. Its derivation, which is quite lengthy,
contained in Appendix A. The LCC equation, plus equat
(E), are a pair of coupled equations forZ andV, and con-
stitute the vacuum Einstein equations for asymptotically
spaces. Section III C is devoted to describing an integral v
sion of the LCC equation and (E) and to a related perturba
tion expansion. In connection with this one can see how
gauge becomes fixed. In Sec. III D, self-dual~or anti-self-
dual! vacuum metrics~via the good cut equation! are shown
to satisfy the complexified version of the LCC equatio
while in Sec. III E an alternate differential version of th
LCC equation is given which displays interesting properti
In Sec. IV several isues that arise naturally from the asym
totically flat NSF are raised and discussed. Specifically
Sec. IV A we show how from knowledge ofZ(ya,z,z̄) one
can obtain Bondi interior coordinates, (uB ,r B ,zB ,z̄B). Un-
derstanding the insertion of Bondi coordinates in the con
of the NSF is fundamental to the description of asympto
cally flat solutions in terms of the NSF. In Sec. IV B, w
give a preliminary analysis of how the asymptotic symm
tries, the Bondi-Metzner-Sachs~BMS! group~or more accu-
rately the Poincare´ subgroup!, yields several natural struc
tures in the interior of the spacetime that reflect the gro
action at infinityI1. In particular, we discuss the introduc
tion of a global pseudo Minkowskian coordinate syste
~equivalent to the previously mentioned gauge fixing! and
the related global pseudo Poincare´ transformations generate
by the Poincare´ transformations at infinityI1.

II. THE NULL-SURFACE FORMULATION OF GR

In this section we will review the new formulation~the
NSF! of classical general relativity@1–4#. In this formula-
tion, the emphasis has been shifted away from the more s
dard type of field variable~metric, connection, holonomy
curvature, etc.! to, instead, families of three-dimensional su
faces on a four-manifold,M4. On the manifoldM43S2 ~the
sphere bundle overM4 with no further structure!, there are
given differential equations for the determination of the
surfaces. From the surfaces themselves, by differentia
and algebraic manipulation, a two-index symmetric tensor
M4 can be defined. We will refer to this tensor as a ‘‘co
formal metric,’’ although it actually represents a spec
member of the conformal class. The surfaces, which are
basic geometric quantities, are then, with no further con
tions, the characteristic surfaces of this conformal me
~and of the whole conformal class!. In addition, the equations
allow for a choice of conformal factor that turns the confo
mal metric into a metric which satisfies the vacuum Einst
equations. Thus, the vacuum Einstein equations have b
reformulated as equations for families of surfaces an
single ~scalar! conformal factor. All geometric quantities
such as the metric, the connection, spin coefficients, W
o-
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and Ricci tensors, etc., can be expressed in terms of
surfaces and the conformal factor. The entire conformal
formation of the spacetime is coded into the surfaces, wh
will be described by

u5Z~ya,z,z̄ !. ~1!

For fixed value of (z,z̄), Eq.~1! describes a local foliation o
M4 by the level surfaces ofZ(ya,z,z̄). For changing values
of (z,z̄), u5Z(ya,z,z̄)5const describes a local two
parameter family of foliations.

With no proofs or derivations, as they have been given
extensive detail elsewhere, we will write out the Einste
equations for the families of surfaces,u5Z(ya,z,z̄), and the
conformal factor,V(ya,z,z̄). Though the vacuum metric ca
be written explicitly in terms ofZ andV, we will not need it
here but refer the reader to@1–4#.

We begin with some preliminary definitions: from the a
sumed knowledge ofZ(ya,z,z̄) we construct three additiona
functions by differentiatingZ: two functions as the first de
rivatives with respect toz and z̄, and the third as the secon
mixed derivative with respect to bothz and z̄. Using theZ

and Zp notation @5#, we construct the four functions o
(ya,z,z̄):

u i~ya,z,z̄ ![~u0,u1,u2,u1![~u,v,v̄,R!

[~Z,ZZ,ZpZ,ZZpZ!. ~2!

Their gradients]au i @for any fixed value of (z,z̄)# form a
covector basis. Using the set of dual vectors,u i

a(ya,z,z̄)
@satisfyingu i

au j ,a5d i
j , for the same fixed value of (z,z̄)#,

we can define the directional derivatives

] iF5u i
a]aF5F, i ~ i 50,1,2,1!. ~3!

Frequently we useD[]15]/]R. Also for shorthand we de-
fine

L~ya,z,z̄ ![Z2Z and L̄~ya,z,z̄ ![Zp 2Z. ~4!

Using these variables and notation, the vacuum Eins
equations are

D2V5QV, ~E!

ðV5
1

2
WV, ~mI!

ZL,122L,25@W1Z~ ln q!#L,1 , ~mII !

Q[
1

4q
DL,1DL̄,11

3

8q2 ~Dq!22
1

4q
D2q,

q[12L,1L̄,1 ~5!

and
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WS 12
1

4
L,1L̄,1D5L,11

1

2
ZpL,11

1

2
L,1L̄,21

1

4
L,1ZL̄,1

2
1

2
Z lnq2

1

4
L,1Zp lnq. ~6!

@Equation~E) is a direct translation into our variables of th

trace-free part of the Einstein equationsRab2 1
4 gabR50

while Eqs.~mI) and (mII) guarantee that a metric exists.#
It is often useful to include among our ‘‘Einstein equ

tions’’ (E), (mI), and (mII), a fourth equation that follows
immediately from the definitions~4!: namely,

Zp2L5Z2L̄. ~ I !

Equations (E), (mI), (mII), and (I ) are local coupled differ-
ential equations for the dependent variablesZ andV. These
four equations, though they appear not to have any obv
relationship to the Einstein equations, actually have the id
tical content as the vacuum equations with the possibility
a nonvanishing cosmological constant appearing as a
stant of integration in the solutions.

As we emphasized earlier, from knowledge ofZ(ya,z,z̄)
andV(ya,z,z̄), satisfying Eqs. (E), (mI), (mII), and (I ), a
vacuum metric can be easily constructed@1–4#. More spe-
cifically, our construction produces a sphere’s worth of co
formal metrics and a sphere’s worth of conformal factors
of which are equivalent@from Eqs. (mI) and (mII)#, to a
single unique metric obtained after a sphere’s worth of co
dinate transformations. In other words, we have a uni
metric that has been given in a sphere’s worth of coordin
systems parametrized by (z,z̄).

It is important to emphasize that our equations involve
independent variables and six derivative operators which
general do not commute among themselves. Specifically
have

~] i] j2] j] i !F50, ~7a!

~Z] i2] iZ!F52Ti
j] jF, ~7b!

~Zp] i2] iZ
p!F52T̄i

j] jF, ~7c!

~ZpZ2ZZp!F52sF, ~7d!

wheres is the spin weight ofF and

Tj
05d j

1 , T̄j
05d j

2 , ~8a!

Tj
15L, j , T̄j

15d j
1, ~8b!

Tj
25d j

1, T̄j
25L̄, j , ~8c!

qTi
15$L, iL̄,11ZL̄, i1L̄,2d i

11L̄,0d i
122d i

2%L,11ZpL, i

1L,2L̄, i1L,0d i
21L,1d i

122d i
1 , ~8d!

qT̄i
15$L̄, iL,21ZpL, i1L,1d i

11L,0d i
222d i

1%L̄,11ZL̄, i

1L̄,1L, i1L̄,0d i
11L̄,2d i

122d i
2 . ~8e!
us
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-
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Remark:If one considers Eqs. (E) and (mI) as equations
for V for given L, then the study of their integrability con
ditions should yield equations involving onlyZ so that they,
with (mII), would be equivalent to the ‘‘conformal Einstei
equations.’’1 The conformal Einstein equations~the vanish-
ing of the Bach tensor being one of them! yield metrics that
are conformal to vacuum metrics; i.e., such that a conform
factor would exist that would convert the conformal met
into a vacuum metric. This procedure has been partially s
cessful. It was shown@8# that the conformal metric con
structed fromZ must satisfy the vanishing of the Bach tens
as a necessary condition for the existence ofV. This condi-
tion is also sufficient@9# if we restrict ourselves to asymp
totically flat metrics.

It is the purpose of the remainder of this work to study o
version of the Einstein equations, namely Eqs. (E), (mI),
(mII), and (I ), for the case of asymptotically flat spacetime
The meaning and structure of the equations change con
erably, becoming simpler and much more transparent. P
turbatively, they become gauge fixed and the solution can
written ~in principle! as a series of explicit quadratures ov
the sphere—a nonlinear version of D’Adhe´mar integrals.

III. THE NSF EQUATIONS FOR ASYMPTOTICALLY
FLAT SPACETIMES

A. Light cone cuts of I1

We now make the specialization from a description of a
~local! Einstein spacetime to the study of asymptotically fl
vacuum spacetimes. In this case the geometrical descript
of various quantities becomes cleaner and more precise.
begin with the fact that null infinity,I1, exists.I1 can be
thought of as the future null boundary of the spacetime,
collection of the ‘‘end points’’ of all future directed nul
geodesics, where the asymptotically flat spacetime ‘‘
comes flat.’’ These ‘‘end points’’ form a three-surface, r
ferred to asI1, that can be visualized as a light cone and
coordinatized by a Bondi coordinate system,

~u,z,z̄ !, ~9!

whereu is the Bondi retarded time, and (z,z̄) ~in S2! label
the null generators ofI1. ~We note that sinceI1 is, in some
sense, flat, it turns out that it possesses an invariance gr
The invariance group and some of its ramifications are d
cussed later in this work.! Using I1 and its properties, we
can introduce a special class of null surfaces in the interio
the spacetime described in the following fashion; our ba
variable, the function which describes our family of null su
faces

u5Z~ya,z,z̄ !, ~10!

is chosen as the past null cones of the points (u,z,z̄) of I1.

1We refer here to the equations that are derived in@6#, which are
integrability conditions for the equations used by Friedrich in@7#,
coincidentally referred to as ‘‘conformal Einstein equations.’’
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4732 56FRITTELLI, KOZAMEH, AND NEWMAN
In this description, the values of (u,z,z̄) in Eq. ~10! are
considered fixed, whileya varies over the past light cone o
(u,z,z̄).

From this meaning toZ, there exists adual interpretation
of u5Z(ya,z,z̄); namely, if the spacetime pointya is held
fixed in Eq.~10! but the (z,z̄) is varied overS2, we obtain a
~piecewise differentiable! two-surface onI1, the so-called
light cone cut ofI1, defined as the intersection of the futu
light cone of the pointya with I1. It consists of all points of
I1 reached by null geodesics fromya. With this dual inter-
pretation, now considered as primary,Z is then referred to as
the light cone cut function.~The light cone cuts ofI1 for
Minkowski space are smooth and topologicallyS2, though in
the general case they will have self-intersections and cus!.

From this dual point of view, we now have a geomet
interpretation, not only ofZ(ya,z,z̄) but also ofv[ZZ and

R[ZZpZ. v is the ‘‘stereographic angle’’ that the light con
cuts make with the Bondiu5const cuts; i.e., it labels the
backward direction of the null geodesics from the po
(u,z,z̄), onI1, to ya. R is a measure of the curvature of th
cut and thus a measure of the ‘‘focusing distance’’ fromI1

to ya along the null geodesic. The four functions

~Z,ZZ,ZpZ,ZZpZ![u i~ya,z,z̄ !, ~11!

which are defined geometrically onI1, describe the interior
of the spacetime. They can~in principle! be inverted@see Eq.
~2!#, leading to

ya5ya~u i ,z,z̄ !, ~12!

which gives the location of spacetime points in terms
~geometrical! information onI1, namely the setu i(ya,z,z̄),
all obtained fromZ(ya,z,z̄). Since the complete conforma
information of the spacetime is coded intoZ(ya,z,z̄), it is
coded intou i(ya,z,z̄) as well. That local interior spacetim
structure can be obtained fromI1 is due to the fact that the
lightcones have a rigid structure. This plays an import
role in our later discussion.

B. The light cone cut equation

Although the null-surface equations (E), (mI), (mII), and
(I ) are completely general in the sense that they cont
locally, all possible spacetimes~including singular and regu
lar asymptotically flat spacetimes!, they appear quite intrac
table as they stand; we have not been able to implement
systematic method of constructing solutions or of appro
mating solutions from them. It is thus highly desirable
achieve a simpler or clearer formulation of these equatio
We will now show that a simple reformulation does exist f
the regular asymptotically flat solutions of Einstein equ
tions.

Our main result is that the complex equations (mI), (mII),
and (I ) imply ~via a lengthy derivation! a real equation re-
ferred to as the light cone cut~LCC! equation, displayed
s

t

f

t

n,

ny
i-

s.

-

below, which has many of the properties that we seek: it
single equation with a unique solution for given radiati
data. Conversely, though not trivially, the solutions to t
LCC equation coupled to Eqs. (E) satisfy (mI), (mII), and
(I ), which allows us to claim that the NSF of asymptotica
flat spacetimes consists of just the LCC equation and E
(E), two coupled real equations for the two real unknownsZ
andV.

The derivation of the LCC equation, being lengthy a
largely technical, is given in Appendix A. It mainly consis
of taking appropriate derivatives of Eqs. (mI), (mII), and
(I ), and combining them in a suitable manner to obtain
equation which can be integrated up in the variableR. At
this point an integration constant is introduced, in the form
a complex spin weight-2 function of three variables (u,z,z̄)
which2 is denoted

ṡ5ṡ~u,z,z̄ !, ~13!

where ˙ []/]u. Further manipulations and one more int
gration in the variableu are necessary. The asymptotic fla
ness is imposed by setting the new integration constan
zero, so that there remains only

s~u,z,z̄ ! ~14!

as the free complex datum.s turns out to be the free char
acteristic datum for asymptotically flat spacetimes and is
ferred to as the asymptotic Bondi shear@10#. The final equa-
tion is the LCC equation

Z2Zp2Z5Zp2sR1Z2s̄R1N@Z,V#, ~15!

where sR5s(Z,z,z̄) is the freely chosen Bondi shear~s̄
being the complex conjugate! with the variable ‘‘u’’ re-
placed byZ. We choose data such thatṡ(u,z,z̄) vanishes as
u→6`. Physically, this is a natural condition limiting th
gravitational radiation to finite amounts. On this data we i
pose the gauge condition thats(u,z,z̄)→0 asu→1`. The
preservation of this form of the data restricts the full BM
group to its Poincare´ subgroup.~See Sec. IV B!

The quantityN stands for

N5
1

2 E
2`

u

Ndu8, ~16!

whereN is explicitly given by

2Though the integration function is introduced with the only co
dition of being independent ofR, the NSF equations require thi
function to be also independent ofv andv̄. This assertion is easily
proved in the linearized approximation; the linearized result p
sumably holds in the exact case as well.
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N5L̄,0~L,12L,02(ZpL!,22
1

4
J1

3

2 ÈR

(K,22L,1)dR8)1L,0S L̄,12L̄,02~ZL̄!,12
1

4
J̄1

3

2 ÈR

~K̄,12L̄,2!dR8D
2

1

4
Zp2J1

3

2
Zp2 ÈR

(K,22L,1)dR82
1

4
Z2J̄1

3

2
Z2 ÈR

(K̄,12L̄,2)dR81
1

2
ZZp2

„L̄,1L,21L,1(ZL̄…,1…

2Zp3S L,1

4
[3„L̄,1L,21L,1~ZL̄!,122L,1Zp lnV…2K] D2Zp2

„L,2L̄,21L,1~ZL̄!,2…2
1

2
ZZp2K

2ZZp„L,2L̄,11L,1~ZL̄!,1…2Z@2L̄,1„L,02L,12~ZpL!,2…1~ZL̄!,1„~ZpL!,12L,1…

2L̄,1„~ZpL!,02~ZpL!,1…1K̄2~ZpL!,1~ZL̄!,1#12L̄,0~ZpL!,212~ZL̄!,0~ZpL!,112Zp„L̄,0L,21L,1~ZL̄!,0… ~17!
h
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J[3ZpL1ZK1L,1
2 12L,1~ZpL!,113L,2L̄,2

13L,1~ZL̄!,22~ZL!,2L̄,11~ZpL!,1
22~ZL!,1~ZL̄!,1 ,

~18!

K[4S 12
1

4
L,1L̄,1DZ lnV1

1

2
L,1L̄,1~ZpL!,12L,2L̄,1

1
1

2
L,1L̄,21

1

2
L,1

2L̄,11
1

2
L,1~ZL̄!,1 , ~19!

and

L[2L,1L,12
1

2
L,1ZpL,12L,1

2Zp lnV. ~20!

N is thus seen to be a rather complicated functional of botZ
andV. It involves an integration overu and overR of poly-
nomials which are second and third order in the derivati
of Z2Z and linear in the derivatives of lnV. It is disturbing
~and potentially troublesome! that N actually contains the
highest-order derivatives in the LCC equation. Neverthele
the explicit expression forN that is presented here is just on
of many equivalent forms, sinceN can be changed via th
Eqs. (I ), (mI), and (mII); at this time we are not yet certai
of which form of N would be most advantageous.3 We em-
phasize that in this form, the LCC equation is suitable
perturbations around flat space, sinceN is nonlinear and van-
ishing in the limit of smallL.

C. Integral form of the asymptotically flat NSF

Equations~15! and (E) are a pair of coupled equations fo
both Z andV that will be shown to constitute the full set o
Einstein equations for asymptotically flat spacetimes with
asymptotic free data already included ass(u,z,z̄). They can
be written as the pair of integral equations

3It can be seen that, up to second order inL andV,N can actually
be rewritten into manifestly real form@11#.
s

s,

r

e

V511E
R

`E
R8

`

QVdR9dR8 ~21!

and

Z~ya,z,z̄ !5Z0~ya,z,z̄ !

1E
S2

G~z,z8!~Zp2sR1Z2s̄R1N@Z,V#!dS82,

~22!

whereG(z,z8) is the Green’s function for the ‘‘double La

placian’’ Zp2Z2, discussed in Appendix C.
Note thatV is required to approach the value 1 asR→`.

This is a geometrical requirement arising from the fact t
the null surfacesZ5const have been chosen so that they
asymptotically null planes. This requirement fixes the oth
wise arbitrary ‘‘constants of integration’’ in Eq. (E).

Similarly, when integrating Eq.~15! the kernelZ0 of Zp2Z2

is introduced, which consists of a combination of thel 50
andl 51 spherical harmonics with the four coefficients bei
arbitrary functions ofya: i.e.,

Z05 (
l 50,1

f lm~ya!Ylm~z,z̄ !.

The kernel can be simplified by introducing new~canoni-
cal! coordinatesxa⇔xlm from these four functions via
xlm5 f lm(ya) so that

Z05 (
l 50,1

xlmYlm~z,z̄ !. ~23!

Though it is far from obvious, it has been shown@12# that,
when the spacetime is sufficiently close to flat space,
transformationxlm5 f lm(ya), which defines the canonica
coordinatesxa from a global coordinate systemya, is suffi-
ciently well behaved for the canonical coordinatesxa to be
also global. The coordinatesxa defined in this way trans-
form, in a nontrivial manner, via the asymptotic Poinca´
transformation group, and constitute actual cartesian coo
nates if the spacetime is flat. The properties of these can
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cal ~pseudo Minkowskian! coordinates driven by the
asymptotic Poincare´ transformations are discussed in Se
IV B.

We can obtain insights into the structure of the two eq
tions ~21! and ~22!, by means of a perturbation schem
around flat space. The characteristic datum for flat spac
s50. The solution isZ5Z0 andV51. Perturbed solutions
around flat space correspond to a choice of datas5es1
where e is a small real parameter, and in general can
expressed as power series of the formZ5Z01(n51

M enZn

and V511(n51
M enVn where the index n labels the

nth-order correction to the flat solutions. It is important
note that, even though the free data are taken to be only
order, the restricted data have contributions to higher ord
as well in the following sense:

s1~Z,z!5s1~Z0 ,z!1eZ1ṡ1~Z0 ,z!

1e2S Z2ṡ1~Z0 ,z!1
1

2
Z1s̈1~Z0 ,z! D1•••

[sR1
1esR2

1e2sR3
1••• . ~24!

SinceQ511O(e2), the linearization is explicitly

V511O~e2! ~25!

and

Z~xa,z,z̄ !5Z0~xa,z,z̄ !1eE
S2

G~z,z8!~Zp2sR1
1Z2s̄R1

!dS82

1O~e2!. ~26!

For n.1, thenth corrections to flat solutions are found b
direct integration from lower order corrections:

Zn5E
S2

G~z,z8!@Z2s̄Rn
1Zp2sRn

1Nn~Z,V!#dS82,

~27!

Vn5E
R

`E
R8

`

@Q~Z!V#ndR8dR9. ~28!

The process of integrating Eqs.~21! and ~22! is very
much simplified by the fact thatQ depends onZ only
throughL and has no linear term inL. From this it follows
that the right-hand side in Eq.~28! depends only on
Zn21 ,...,Z1 and is thus known at ordern21. Thus, the
right-hand side of Eq.~28! constitutes a source in terms o
known lower orders inZ and can be integrated, yieldingVn .
The Vn in Eq. ~27! can now be thought of as a source f
Zn , and sinceN is also second order inL, the entire right-
hand side of Eq.~27! involves only known lower orderZ
terms. The two equations thus decouple at every stage o
approximation allowing one to toggle back and forth b
tween them. At every stage, the solutions are unique, du
our fixed choices of the kernelZ0 and the boundary condi
tion for V. Thus the coupled equations~15! and (E) can be
uniquelysolved, given radiative datas, by means of a per-
turbative expansion. We have not studied the difficult pro
lem of the convergence of this expansion.
.
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We claimed earlier that we have~perturbatively! a fixed
gauge. This arises from our fixed choice
Z05( l 50,1xlmYlm , the fixed choice of null foliations and th
boundary condition thatV goes to 1 atI1. Thexa play the
dual role of constants of integration of the LCC equation a
as the choice of local canonical~pseudo Minkowskian! co-
ordinates. A general gauge transformation~coordinate trans-
formation! away from these canonical coordinates wou
consist in choosing thexa as four arbitrary functions ofya,
namelyxa5xa(ya). The property of uniqueness of~pertur-
bative! solutions to Eqs. (E) and ~15! in this gauge can be
invoked to show that the coupled system (E)-~15! is equiva-
lent to the full set of equations (E), (mI), (mII), and (I ).
For, if the solution is unique, it cannot be further restrict
by imposing on it Eqs. (mI), (mII), and (I ), and must there-
fore satisfy them identically. This argument is restricted
the perturbative solutions.

We point out, but do not further explore, that the integ
equations~21! and ~22! appear to be well suited for the us
of fixed-point theorems on function spaces to approach
problem of existence of solutions. Unfortunately, finding
measure and studying properties of the map appears t
virtually insurmountable due to the complexity ofN. The use
of Newton’s approximation is also suggested but carries
same difficulty.

D. A digression: Self-dual spacetimes

As a mild digression we discuss a special case of Eqs.E)
and~15!, namely the case of asymptotically flat vacuumself-
dual spacetimes. These spacetimes are complex, and aris
allowing u to become complex and treatingz and z̄ as two
independent complex coordinates. The two functio
s(u,z,z̄) ands̄(u,z,z̄) are no longer complex conjugates
each other, they become independent data. The choic
Bondi shear that corresponds to self-dual spacetimes is

s̄~u,z,z̄ !50 ~29!

with s5s(u,z,z̄) as an arbitrary spin-weight-2 function o
the three arguments. The self-dual spacetimes can be
scribed in terms of complex light cone cut functions satis
ing the so-calledgood cut equation, i.e.,

Z2Z5s~Z,z,z̄ !. ~30!

We point out that, if the LCC equation is complexified b
allowing all complex conjugate quantities to become ind
pendent, Eq.~15! is consistent with the good cut equatio
~30!. By this we mean that every solution to the good c
equation is also a solution of the complexified LCC equati
Indeed, from Eq.~30! we have thatL5s(Z,z,z̄) and hence
that L,150. This implies thatQ50 and hence thatV51.
Furthermore, this also impliesL,15L,250 as well as a
further set of relations~see Appendix B! among the different
derivatives ofL andL̄ that are relevant to Eq.~15!: namely,

052L̄,21ZL̄,1 , ~31a!

052L̄,12ZpL̄,1 , ~31b!
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05
1

2
Z3L̄,112Zpṡ22ZL̄,1ṡ2L̄,1Zṡ, ~31c!

with the result thatN in Eq. ~15! vanishes identically. In
other words, the null-surface description of self-dual spa
times is

V51 and Z2Z5s~Z,z,z̄ !. ~32!

The space of the~complex! solutions to Eq.~32!, known as
H space, has been extensively studied. Reference@13# re-
views the theory and describes the significance of Eqs.~31!.

A stronger statement can be made in the linear regim
is interesting to notice that in the linearization of the co
plexified LCC equation, withs̄(u,z,z̄)50, it is completely
equivalentto the good cut equation with regularity impose
on Z; i.e., every solution of the complexified linearized LC
equation with vanishings̄, satisfies the good cut equation
well. In order to see this we write the complexified lineariz
LCC equation with vanishings̄: i.e.,

Zp2Z2Z5Zp2s~Z0 ,z,z̄ !.

If Z is regular in the sense that it admits an expansion
terms of spin-0 spherical harmonics, this equation imp
thatZ2Z is equal tos(Z0 ,z,z̄) only up to the addition of the

kernel ofZp2 acting on spin-2 functions. Since this kernel
vanishing~there are no nonzero spin-2 functions that are

nihilated byZp2!, thenZ2Z5s(Z0 ,z,z̄).
Presumably, the exact complexified LCC equation w

s̄50 with some appropriate regularity conditions onZ
should be equivalent to the exact good cut equation.

E. Alternative version of the null-surface equations

In this section we will show that there is a version of t
asymptotically flat null-surface equations that have a lack

symmetry between theZ and Zp derivatives; i.e., they will
have a chirality or handedness; technically, they will depe
on a choice of the complex structure on the (z,z̄) sphere.

As a model, we first examine the case of self-dual spa
times, as in the previous section. The light cone cut functi
Z for self-dual spacetimes satisfy the good cut equati
which can equivalently be written in the form

Z2Z5L~Z,ZZ,ZpZ,ZZpZ,z,z̄ ! ~33!

with L representing a source term to be specified by
additional equation
-

It
-

n
s

-

f

d

e-
s
,

e

L~u i ,z,z̄ !5s~u,z,z̄ !. ~34!

In this case, Eq.~33! contains onlyZ derivatives ofZ, since
the solutionL to Eq. ~34! does not depend onu1 or u1.

As a next step in complexity, we discuss the analogo
procedure for anti-self-dual spacetimes. In this case, the
function must satisfy

Z2Z5L~Z,ZZ,ZpZ,ZZpZ,z,z̄ ! ~35a!

but where nowL is first determined by a solution of

05
1

2
Zp3L,112ZsG 22ZpL,1sG 2L,1ZpsG , ~35b!

where asymptotic flatness and appropriate regularity co
tions are imposed onL. @Note that Eq.~35b! is the complex
conjugate of Eq.~31c!.# Equations~35! are understood in the
following manner. Equation~35b! constitutes a fourth-orde
nonlinear equation for the functionL in the independent
variables (u i ,z,z̄). The solutionL is then expressed in term

of Z by L5L(Z,ZZ,ZpZ,ZZpZ,z,z̄) and placed on the right
hand side of Eq.~35a!, which, in turn, becomes a nonlinea
second-order equation forZ in the independent variable
(xa,z,z̄). This alternative version of the anti-self-dual equ
tions, however, does not completely favor theZ derivatives

over theZp derivatives because of the presence ofZpZ andZZpZ
in the right-hand side of Eq.~35a!.

Analogously, we can treat the linearized approximation
real general relativity in the following manner; the real c
function Z would be found by

Z2Z5L~Z,ZZ,ZpZ,ZZpZ,z,z̄ ! ~36a!

andL is determined by

05
1

2
Zp3L,112ZsG , ~36b!

with appropriate regularity conditions and asymptotic fl
ness imposed onL. Heres(u,z,z̄) enters in the solution to
Eq. ~36b! as a constant of integration. It is simple to sho

that, by integrating up Eq.~36b!, takingZp2 of Eq. ~36a!, and
entering the solutionL into the right-hand side of Eq.~36a!,
we recover the linearized LCC equation.

This same procedure can be applied in the exact real c
The counterparts of Eq.~36! are

Z2Z5L~Z,ZZ,ZpZ,ZZpZ,z,z̄ ! ~37a!

and an equation for the determination ofL(u1,z,z̄): namely,
2ZsG 5Zp2L,11Zp@L,1~ZL̄!,11L,2L̄,1#2L̄,1@L,02L,12~ZpL!,2#1~ZL̄!,1@~ZpL!,12L,1#

2ZS 3

2 E
R

`

~K̄,12L̄,2!dR82
1

4
J̄D 2L̄,1@~ZpL!,02~ZpL!,1#1K̄2~ZpL!,1~ZL̄!,1 . ~37b!
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@Equation~37b! is derived in Appendix A, where it appear
labeled as Eq.~A14!.# The approach to the light cone cuts v
Eq. ~37! does not seem to have immediate practical use
has a handedness built in, which, however, does not c
pletely favor theZ derivative over theZp derivatives for the
same reason as above, namely, the presence ofZpZ andZZpZ
in the right-hand side of Eq.~37b!. It does not appear that
completely chiral description~such as sought by Penrose
part of the twistor program! would be feasible even in a
perturbative fashion, since at the linearized level it is cle
from Eq. ~36b!, thatL,1 is not vanishing.

IV. FURTHER ISSUES AND DISCUSSION

We have presented here an unconventional descriptio
the vacuum Einstein equations applied to asymptotically
spacetimes in terms of either the light cone cuts ofI1 or,
equivalently, the past null cones of the points ofI1; i.e., in
terms ofZ and V. This formulation has certain advantag
~and of course certain disadvantages! over the conventiona
treatment. We are interested in studying what new insigh
can give us into Einstein manifolds or into solutio
generating techniques.

As a possible application we plan in the future to study~to
second order! the problem of the classical scattering of da
from I2 to I1, i.e., if past data are given and a solution
evolved from it, what will the future data look like? Thi
appears to us to be technically difficult but conceptua
straightforward with the use of the fixed pseudo Minkows
gauge.

Another problem is to study asymptotically flat metrics
the asymptotic region in terms ofZ and V. In order to ac-
complish this~since the metrics in the asymptotic region a
expressed in interior Bondi coordinates! we must first find
the relationship between our pseudo Minkowskian coo
nates and the interior Bondi coordinates. Finding this re
tionship is a pretty geometric excercise using the light co
cut function. This is done in Sec. IV A.

Of considerably more interest to us is the question
what, if any, effect can be seen in the interior of the asym
totically flat space that might be induced by the asympto
symmetries. That this is a distinct possibility could be co
jectured from the rigidity of the light cone structure that w
are dealing with. This, in fact, is what happens; there
several different but related objects that can be found~or
defined! in the interior, that transform under representatio
of the Poincare´ group, some of them via finite-dimension
representations, others via infinite-dimensional represe
tions. One of the more intriguing results is the following: A
we mentioned earlier, given a particular Bondi coordin
system atI1, there is a canonical choice of coordinatesx8a

throughout the spacetime~the pseudo Minkowskian coordi
nates!. If the asymptotic Bondi coordinates (u,z,z̄) are
changed via an asymptotic Poincare´ transformation, this in-
duces a transformation of the pseudo Minkowskian coo
nates to new pseudo Minkowskian coordinates,x8a. The re-
lationship of the newx’s to the old ones is a nonlinea
realization of the Poincare´ group. We have an equation of th
form

x8a5x8a~xb,Lc
b ,db!. ~38!
It
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The (Lb
a ,da) are the ten parameters of the asymptotic Po

carétransformation. If Eq.~38! is treated as a ten-paramet
set of motions, we can differentiate Eq.~38! with respect to
any of the parameters to obtain ten vector fields that can
‘‘defined’’ as four translations, three rotations, and thr
boosts. Obviously they are not symmetries of the spaceti
though they do become the spacetime symmetries in the
of vanishing radiation data—the case of flat spacetime. I
suggestive that these vector fields might be thought of
defining global approximate symmetries, thus, perhaps,
lowing the discussion of approximate conservation laws
Noether-type theorems. There are other, more dynam
objects that can also be obtained which transform nice
e.g., local energy-momentum four-vector fields can be
tained from the Bondi mass aspect mapped down to
points xa. We will not go into these issues in great deta
here, since they will be treated elsewhere. On the other h
we do want to give the gist of the ideas here. In order to
this, however, we find it appropriate to first give an outline
the theory of infinite dimensional representations of the L
entz group@14,15#. This material is presented in Sec. IV B

In Sec. IV C we will very briefly discuss how the
asymptotic form of the NSF might be of use in one attem
to ‘‘quantize’’ GR.

A. Introduction of interior Bondi coordinates

The Bondi coordinates (u,z,z̄) of I1 can be extended
into the interior of the spacetime, in a neighborhood ofI1,
in the following manner. From a given cutu5const atI1,
coordinateszB and z̄B can be assigned as labels for the n
geodesics that meet the cut orthogonally. The coordinate
tem is completed by defining a parameterr B that varies
along these null geodesics. In other words the coordin
system is defined by choosing null geodesics labeled
where they interesectI1 @i.e., (u,z,z̄)# and are othogonal to
the u5const cuts;r B is chosen as a geodesic parameter. W
refer to (uB ,r B ,zB ,z̄B) as interior Bondi coordinates.

Here we study how to transform the coordinatesya into
interior Bondi coordinates (uB ,r B ,zB ,z̄B) in a neighborhood
of I1. We show that the cut functionZ(ya,z,z̄) actually
encodes the coordinate transformation.

We have at our disposal a sphere’s worth of coordin
transformations, from theya to our family of null coordi-
nates,u i5u i(ya,z), defined by Eq.~2!. However, the inte-
rior Bondi coordinates do not correspond with one of the
coordinate systems for any given value ofz. At every value
of (z,z̄), the coordinateu0 defines the past null cone from
(u,z) at scri. The coordinates (u1,u2) label all null geode-
sics within this past light cone. The value ofu6 that corre-
sponds to the null geodesic that meets scri orthogonall
u15u250, for the reasons described in the discussion
low. Thus we can transform fromya into interior Bondi co-
ordinates (uB ,r B ,zB ,z̄B) by the set of four implicit func-
tions

uB5Z„ya,z
B
~ya!,z̄B~ya!…, 05ZZ~ya,zB ,z̄B!,

05ZpZ~ya,zB ,z̄B!, r B5ZZpZ„ya,zB~ya!,z̄B~ya!….
~39!

They encodeya5ya(uB ,r B ,zB ,z̄B) and are, as can be
clearly seen, intrinsically connected to the cut functionZ.
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To show thatu15u250 corresponds to the orthogon
null geodesic, first we point out thatZ assigns a sphere’
worth of values ofu at scri for every interior pointya via
u5Z(ya,z,z̄), by means the null geodesics fromya, i.e., via
the light cone cuts. The issue is how to pick the correct va
of z on the light cone cut, which corresponds with the n
geodesic that leaves scri orthogonally, thus assigning toya a
unique value ofu. The light cone cut is a two-surface at sc
which is tangent to a Bondi cut (u5const) at only a discrete
set of points, at which the tangent vanishes. By solv

ZZ(ya,z,z̄)50 andZpZ(ya,z,z̄)50 for z and z̄ as functions
of ya ~with one choice of these ‘‘tangent points,’’ such as t
one that minimizes the value ofu0!, we obtain (zB ,z̄B) as
functions of ya. Then by substitution we obtain
uB5Z@ya,zB(ya),z̄B(ya)#, i.e., uB as a functionya. The re-
maining coordinate, the geodesic parameterr B!, can be ob-
tained from the NSF picture, simply by the substitution in

r 5ZZpZ(ya,z,z̄), yielding r B5ZZpZ„ya,zB(ya),z̄B(ya)….
As an illustration, here we show how this procedure c

be applied in a flat spacetime to obtain the interior Bo
coordinates from standard Cartesian coordinates. Since
Cartesian coordinatesxa5(t,x,y,z) can always be obtaine
@12# from an arbitrary coordinate systemya by knowledge of
Z(ya,z,z̄), this example covers the most general flat cas

The light cone cut function for flat space in Cartesi
coordinates has the form~23!, or equivalentlyZ05xal a ,
where

l a5
1

&~11zz̄ !
„~11zz̄ !,2~z1 z̄ !,i ~z2 z̄ !,~12zz̄ !….

~40!

Applying Z to Z0 and setting it equal to zero we hav
xama50, where ma[Zl a5@1/&(11zz̄)] „0,(z̄221!,i ( z̄2

11!,~22z̄!…. This is a quadratic equation forz̄ as a function
of xa, and the solutions are

z̄B~xa!5
z6Ax21y21z2

x1 iy
, ~41!

and the complex conjugate

zB~xa!5
z6Ax21y21z2

x2 iy
. ~42!

Choosing the positive sign~which gives the smalles
value of u upon substitution!, and substituting this
value of „zB(xa),z̄B(xa)… into u5xal a„zB(xa)… and r

5xaZZpl a„zB(xa)…, we obtain

uB~xa!5
1

&
~ t2Ax21y21z2!, ~43!

r B~xa!5A2~x21y21z2!, ~44!

which completes the transformation. The inverse transfor
tion giving xa in terms of the interior Bondi coordinates is

xa5&uBta1r Bl a~zB ,z̄B!, ~45!
e
l

g

n
i
he

a-

whereta[(1,0,0,0).

B. Aspects of Lorentz covariance in asymptotically flat
spacetimes

It has been known, since shortly after the seminal work
Bondi @16,5# on gravitational radiation and the discoveries
the related asymptotic symmetries—the Bondi-Metzn
Sachs~BMS! group—that, with an appropriate choice of th
gauge applied to the characteristic data, one could obtain
Poincare´ subgroup as the invariance group of the asympto
region of the spacetime. We have recently realized that
asymptotic invariance has consequences that go well bey
the asymptotic regions, and, in fact, has local influen
throughout the spacetime. By this we do not mean that
can find spacetime symmetries resembling the Poinc´
group; however, we are finding a large number of interest
local structures that transform under either the finite-
infinite-dimensional~reducible, nonunitary! representations
of the Lorentz group. These structures arise because of
existence of the asymptotic symmetry. Though, at
present, we do not yet understand the physical significa
of most of these quantities, they nevertheless are intriguin
suggestive. Our purpose here is to give a simple prelimin
discussion of them. We will concentrate on the homogene
Lorentz group in detail and simply mention how the Poinca´
translations enter the discussion.

We begin with a brief review of some of the ideas ass
ciated with the finite- and infinite-dimensional~reducible,
nonunitary! representations of the homogeneous Lore
group @14,15#.

We first recall that the representations are labeled by
numbers~k0 andc! wherek0 is integer or half-integer andc
is any complex number@14# or alternatively bys andw with
s ~the spin weight! being either integer or half-integer andw
~the conformal weight! being complex. However for the sak
of simplicity we will confine ourselves to a special subset
these representations, the so-calleds50 and
w5...,24,23,22,0,1,2,3,... representations. The line
vector space associated with each of these representa
has a dual space which also lies in this same class.
representations can thus be organized in dual pairs, the p
being

~w,w8!5~22,0!,~23,1!,~24,2!,...,~2n,n22!, n>2.
~46!

A vector, in any one of theses50 representations, can b
expressed as a regular function on the sphere, i.e., by

h~w!~z,z̄ !5(
l 50

`

(
m52 l

l

h~w!
lm Ylm~z,z̄ ! ~47!

with the constantsh (w)
lm being the components of the vecto

in the Ylm(z,z̄) basis. The (w) labels the representation an
also describes how the vectors of the representation tr
form under the Lorentz transformation. The Lorentz transf
mation is given in the form of the fractional linear transfo
mation~Mobius transformation!, or ~almost! equivalently by
an SL(2,C) transformation. Specifically, we have
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h~w!8 ~z8,z̄8!5(
l 50

`

(
m52 l

l

h~w!8 lmYlm~z8,z̄8! ~48!

with

h~w!8 ~z8,z̄8!5Kwh~w!~z,z̄ ! ~49!

and

z85
az1b

cz1d
, ad2bc51, ~50!

(a,b,c,d) complex and

K5v21,

v5v I l I~z,z̄ !5(
l 50

1

(
m52 l

l

v lmYlm~z,z̄ !

5~11zz̄ !21
„~az1b!~ āz̄1b̄!1~cz1d!~ c̄z̄1d̄!….

~51!

The four componentsv I represent a unit Lorentz vecto
namely the velocity of the ‘‘boost.’’ For a rotation
v I5(1,0,0,0) and we have thatK51. The Lorentz vectorl I
is defined to have the components as the spacetime vectol a
in Eq. ~40!. We are using capital Latin indicesI ,J to denote
Lorentz objects.

Equations~47!–~51! contain the full description of the
s50 and integerwÞ21 representations. Though these re
resentations are all infinite dimensional, they are not tota
reducible; they do contain invariant subspaces. For the c
of w>0, these invariant subspaces are finite dimensional
yield the finite-dimensional representations; forw,0 the in-
variant subspaces are all infinite dimensional. Specific
for fixed w>0, the invariant subspace is defined by vect
of the form

h~w!5(
l 50

w

(
m52 l

l

h~w!
lm Ylm~z,z̄ !. ~52!

In particular the scalar representation is given byw50,
yielding as the invariant subspace

h~0!5h~0!
00 Y00~z,z̄ !, ~53!

which are simply constants. The ordinary vector represe
tion is given by byw51, yielding

h~1!5(
l 50

1

(
m52 l

l

h~1!
lm Ylm~z,z̄ !, ~54!

and the symmetric trace-free representation byw52, with

h~2!5(
l 50

2

(
m52 l

l

h~2!
lm Ylm~z,z̄ !. ~55!

There are ‘‘intertwining’’ operators@14,15# that map vec-
tors from one representation to another. We will have
interest in the special case where the map is from an infin
dimensional negative-w representation to the invariant su
-
y
es

nd

ly
s

a-

n
e-

space of its dual; i.e., fromw52n,21 to the finite-
dimensional representationw85n22; e.g., fromw522 to
w850 or w523 to w851. Explicitly, the mappings are
given by

h
~w8!
8 ~z,z̄ !5 R G~w8,w!~z,l!h~w!~l,l̄!

dldl̄

~11ll̄!2
,

~56!

whereG(w8,w)(z,l) is a Green’s function for everyw. For
instance, forw522, the Green’s function isG(0,22)51 and
it allows us to obtain Lorentz scalars from thew522 rep-
resentation. For w523, the Green’s function is
G(1,23)5l I(l)l I(z) and it yields Lorentz four-vectors from
the w523 representation.

Returning to the theory of asymptotically flat spacetim
we briefly review some of the ideas@5# concerning the BMS
group, the symmetry group ofI1.

Given the Bondi coordinates ofI1, (u,z,z̄), the BMS
transformation is given by

u85K„u1a~z,z̄ !…,

z85
az1b

cz1d
, ad2bc51, ~57!

where K is given by Eq.~51! and a(z,z̄) is an arbitrary
function of conformal weight 1 onS2, the so-called super
translation. By demanding that the Bondi shears(u,z,z̄)
~the free gravitational characteristic data!, vanishes at future
infinity and remains zero after a BMS transformation, o
can show thata(z,z̄) must be restricted to contain onl
l 50,1 harmonics~the four translations!, and Eq.~57! be-
comes the Poincare´ group. In this manner the Poincare´ group
becomes the symmetry group ofI1.

We are now in position to show how, from the represe
tation theory, the asymptotic symmetries~Lorentz or Poin-
carégroup! can be felt in the interior of the spacetime fro
several different but related points of view.

First we point out and emphasize that the cut functionZ
transforms as aw51 function under the BMS transforma
tion u85Ku; i.e.,

Z8~xa,z8,z̄8!5K~z,z̄ !Z~xa,z,z̄ !. ~58!

We note, but do not explore in detail here, that f
Minkowski space, the cut functionZ0(xa,z,z̄) contains only
the first four harmonics,l 50,1, and the coefficients are th
standard flat spacetime coordinates (t,x,y,z) and hence the
application of Eq.~58! is just the ordinary~coordinate! Lor-
entz transformation; i.e., we have simply the finit
dimensionalw51 representation. However, in the gene
asymptotically flat case~with all harmonics inZ!, the first
four components can again be taken as the spacetime c
dinates xa ~this constitutes a canonical choice of glob
pseudo Lorentzian coordinates that exist when the space
is sufficiently close to Minkowski space@12#!, but now the
coordinate transformation generated by Eq.~58! is much
more complicated~this follows from the fact thatZ is in the
infinite dimensionalw51 representation!; the coefficients of
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the higher harmonics map down to thel 50,1 harmonics~the
finite dimensional invariant subspace! yielding a transforma-
tion that is in general nonlinear but dependent on the
parameters of the Lorentz transformation. If theZ is thought
of as a natural decomposition into the finite dimensional
variant subspace and the infinite dimensional remainder,

Z5xal a~z,z̄ !1(
l 52

`

zlm~xa!Ylm~z,z̄ ! ~59!

and

Z85x8al a~z8,z̄8!1(
l 52

`

z8 lm~x8a!Ylm~z8,z̄8!, ~60!

then from Eq.~53! the transformation has the form

x8a5Lb
axb1L lm~Lb

a!zlm~xa!. ~61!

Note that the components ofl a @given as in Eq.~40!# are
just a linear combination of thel 50,1 spherical harmonics
The decomposition of Eq.~59! is into the four components o
invariant subspace of thew51 representation plus the re
maining infinite number of components. In this represen
tion the infinite number of components from thel>2 terms
map down to thel 50,1 terms yielding Eq.~61!. ~Note that
from the invariant subspace property of the first four com
nents, they do not map ‘‘up’’ to the higherl components,
which transform among themselves.!

Equation~61! can now be thought of as the generalizati
of the Lorentz transformation~or the generalization of Kill-
ing symmetries! to approximate~or pseudo Killing! symme-
tries for the spacetimes. A more detailed paper is being
pared on this issue.

The Bondi mass aspect@10# ~an asymptotic component o
the Weyl tensor whosel 50,1 harmonics have been inte
preted as the Bondi mass and momentum! is given as a func-
tion onI1 of the formC2

0(u,z,z̄). It is known to transform
under the~asymptotic! Lorentz group as aw523 quantity.
If we now restrict the value ofC2

0(u,z,z̄) to a light cone cut
by substitutingu5Z(xa,z,z̄) we obtain aw523 function
of the formC2

0(xa,z,z̄). By applying thew523 intertwin-
ing operator~56!, it is mapped into aw851 finite dimen-
sional vector that has the form

p5(
l 50

1

(
m52 l

l

plmYlm~z,z̄ !, plm⇔pI~xa!, ~62!

i.e., a Lorentz four-vector field on the spacetime. To obtai
spacetimecovector field one needs a soldering form, i.e.,
object of the formeI

a , so that

pa~xb!5pI~xb!eI
a . ~63!

This would then yield a spacetime energy-momentum ve
field that presumably could be interpreted as the total ene
momentum passing through the future null cone of the po
xa. One would have, via the integral curves of this vec
field, preferred curves through spacetime. Unfortunately
ix

-
.,

-

-

e-

a
n

r
y-
t

r
at

the moment we do not yet have a good means of obtain
the soldering form, though there are several suggestions
must be explored.

A fourth place that the asymptotic Lorentz symmetri
enter into the interior local geometry is when we conside
curve in the spacetime,xa5xa(t), with va5dxa/dt, and
definedZ/dt5V(xa,va,z,z̄)5Z,ava. From the properties of
Z, V is a w51 function. From this it follows thatV22 is a
w522 function. Via the intertwining operator forw522
functions ~56!, V22 maps into the finite dimensionalw50
representation. This yields a scalar functionF(xa,va) on the
tangent bundle that is homogeneous of degree22 in theva.
In the case where the cut functionZ is that of either
Minkowski space or of a self-dual space, there is the re
@17,13# that F215gabv

avb; i.e., it is the spacetime norm o
va. In the general case, we do not yet know the meaning
F(x,v) but it is difficult to believe that it is not significant
For example, it has the structure of a scalar function on
tangent bundle and hence could be used as a Lagran
with

pa5
]F~xa,va!

]va . ~64!

If F(xa,va) were used as a Lagrangian for the curv
xa5xa(t), we can only guess, at the present moment, of
meaning; in flat spaces and self-dual spaces, it yields ge
sic motion—perhaps in the general case, sinceF(x,v) de-
pends only on the conformal structure, it yields the equati
of the conformal geodesics. In any case we feel it is v
worthwhile investigating the possible meanings ofF.

In this discussion we have tried to point out that there i
very rich Lorentzian structure in the interior of any~suffi-
ciently weak! asymptotically flat spacetime, that is inherite
from the asymptotic symmetries and propagated rigi
throughout the spacetime, via the light cone structure of
spacetime itself. To our knowledge this structure has
been previously observed; what significance it may have
what use it can be put to are both, at the moment, o
questions.

C. Quantum comments

As was mentioned in earlier sections, for a asymptotica
flat spacetimes our variableZ represents the past null cone
from points atI1 or alternatively the intersection of the fu
ture directed null cones from interior spacetime points. Fr
the first point of view they are the null surfaces that mo
resemble the null planes of Minkowski spacetime and,
fact, are the null planes in the flat space case. From
second point of view, in the flat case, they are strictly t
spheres onI1 representing the intersection of the flat spa
light cones withI1; the position, onI1, being determined
by the coefficients of the fourl 50,1 harmonics—namely the
Minkowski flat coordinates. In linear theory or in full theory
we keep the same type of coordinates~our pseudo
Minkowski coordinates!—the first four harmonic
coefficients—but now the cones or planes become deform
In our basic equation, the LCC equation, it is thesB that
plays the role of a source term driving the equation and ca
ing the deformations of the surfaces.



qu
ve

vi-
b

-
n

r
n
a

-
th

a
th
I
o

o
ua

ad
e
ld

en

a

io
c
o

im
ou

o
v

a
n
ea

n
en
id
rt
th
er
E

to

tors
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We discuss now a few~rather unexpected! results that
arise when we treat the LCC equation as an operator e
tion, representing an attempt at developing a quantized
sion of our NSF of GR.

Since~complex! sB represents the free data for the gra
tational radiation field, it and its complex conjugate can
considered as the basic~canonical! fields of the classical sim
plectic manifold satisfying Poisson bracket relations amo
themselves. The idea is to promotesB to a quantum operato
ŝB obeying commutation relations~obtained via the Poisso
brackets! on I1. This procedure constitutes the Ashtek
asymptotic quantization program@18#. We then insert this
operatorŝB into our LCC equation, thus also promotingZ to
Ẑ.

We remark on two aspects of this procedure.
The quantization ofsB by no means implies we are con

sidering linear gravity. It represents an attempt to extend
asymptotic quantization procedures of Ashtekar@18# to the
interior of the spacetime. It is greatly aided by the fact th
we have restricted our diffeomorphism freedom to just
Lorentz group by our canonical choice of coordinates.
principle we should be able to extend the operator solution
the LCC equation into the interior. At present we do n
know how to handle the nonlinear terms in the field eq
tions for the quantumẐ. We have thus far@19,20# only ana-
lyzed the linear coupling betweenẐ and ŝB given by Eq.
~15!. It is certainly possible that the nonlinear terms will le
to the same complications that are produced in other fi
theories when quadratic and higher order products of fie
arise in the field equations. As the context here is differ
from other field theories—we are dealing here withspace-
time surfacesthat are to be made into operators rather th
with conventional fields—the final status is not clear.

Nevertheless, even at a linearized level the field equat
for Ẑ produce a rather surprising result, namely, the spa
time points themselves become quantum operators with n
vanishing commutation relations. The classical spacet
manifold disappears and looses its status as a backgr
stage, becoming a quantum object. We emphasize that
NSF formalism is quite unconventional and we do not ha
~at least from the fundamental starting point! a metric field
on a manifold, but instead our basic starting variables
families of surfaces; it is thus not surprising that the ‘‘qua
tization’’ should lead to a nonconventional result. This id
is being further investigated.
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APPENDIX A: DERIVATION OF THE LIGHT CONE CUT
EQUATION

Before we proceed with the calculations, it is useful
recall that the following expressions forTi

1 and T̄i
1 are
a-
r-

e

g

r

e

t
e
n
f

t
-

ld
s
t

n

ns
e-
n-
e
nd
ur
e

re
-

s
-

t.
o
e

T

equivalent to Eqs.~8d! and ~8e!:

Ti
15~ZpL!, i22d i

1 , ~A1!

T̄i
15~ZL̄!, i22d i

2 . ~A2!

The equivalence can be verified by using the commuta
~7! to pull Zp through] i in the term (ZpL), i , and using Eqs.
~8a!–~8c!.

Similarly, Eqs. (mI) and (mII), respectively, take on the
following equivalent expressions:

L,152~ZpL!,11K ~A3!

and

L,25
1

3
~ZL!,11L, ~A4!

with K defined by Eq.~19! andL by Eq. ~20!.
First, we take]1 of Eq. ~A4! and]2 of Eq. ~A3!; then we

obtain two equations by subtraction and addition:

4L,125„~ZL!,12~ZpL!,2…,113L,11K,2 ~A5!

and

05S 1

3
~ZL!,11~ZpL!,2D ,11L,12K,2 . ~A6!

In Eq. ~A6!, we commute]1 throughZ and ]2 throughZp,
and subsequently use Eqs.~A4! and ~A3! to eliminateL,1

andL,2 , obtaining

05S 4

3
~L,022L,1!1

1

3
„Zp~ZL!,12Z~ZpL!,1…1ZpL1

1

3
ZK

1
1

3
„L,1

2 1L,1~ZpL!,1…1L̄,2L,21L,1~ZL̄!,2D ,1

1L,12K,2 . ~A7!

We commute ]1 out from both terms in

„Zp(ZL),12Z(ZpL),1… and subsequently use Eq.~A5! to

eliminate the combination (ZpL),22(ZL),1 which appears
on commuting. In this way, Eq.~A7! becomes

2~L,012L,112L,12!523L,11K,22
1

2
J,1 ~A8!

with J given by Eq.~18!. SinceL,1252(ZpL),121K,2 ,
from Eq. ~A3!, then we can integrate Eq.~A8! up in the
variableR to obtain

L,02L,11~ZpL!,252ṡ2
1

4
J1

3

2 E
R

`

~K,22L,1!dR8,

~A9!

where an integration ‘‘constant’’ṡ(u,z,z̄) has been intro-
duced, which can be seen to represent theu-derivative of the
Bondi shear by studying the limit of~A9! asR→`.
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Equation~A9! is our starting point to eventually obtai
the LCC equation. Since the procedure is lengthy, we out
it here and proceed with the exact calculations afterward

The LCC equation is of the form Z2Zp2Z

5Z2s̄1Zp2s1••• , where••• represents nonlinear terms inZ
or linear terms in derivatives ofV. To obtain this equation
we take a number of manipulations on Eq.~A9! and on

Z2L̄5Zp2L, denoted Eq. (I ) in the main text. The outline o
the calculation is the following. From Eq.~A9!, one could

obtain Zp2L,05Z2sG 1Zp2ṡ1••• by taking Zp2 on both sides,
only if one could show that

Zp2
„2L,02L,11~ZpL!,2…522Z2sG 1••• ~A10!

which relatesL to the complex conjugates̄. To show that
Eq. ~A10! holds, we apply]2 of Eq. (I ):

~Zp2L!,25~Z2L̄!,2 . ~A11!

We commute]2 once throughZp in the left-hand side of Eq

~A11! to obtain (Zp2L),25Zp„(ZpL),21L,02L,1…1••• and
then use Eq.~A9! again to substitute in the 2ṡ so that the
left-hand side of Eq.~A11! becomes

~Zp2L!,252Zpṡ1••• . ~A12!

We also commute]2 throughZ2 in the right-hand side of
Eq. ~A11!, so that Eq.~A11! becomes

2Zpṡ5Z2L̄,21••• . ~A13!

The complex conjugate of Eq.~A13! is

2ZsG 5Zp2L,11••• . ~A14!

The final step is to takeZ of both sides in Eq.~A14! and
show that the right-hand side becomes

ZZp2L,1•••5Zp2~L,02L,12~ZpL!,2!1••• . ~A15!

This last step is quite involved. Once Eqs.~A14! and ~A15!
are shown to hold, then Eq.~A10! holds as well and one

obtains the LCC equation simply by substitution inZp2 of Eq.
~A9! and subsequent integration inu.

In the remainder of this appendix we perform this proc
dure explicitly, namely, we show that the explicit forms
Eqs. ~A12!, ~A14!, ~A15!, and ~A10! hold and use them to
derive the LCC equation.

Algebraic derivation 1. Equation (A12) holds by virtue
the commutation relations, the metricity condition(mI) and
Eq. (A9).
e

-

The derivation begins with commuting]2 throughZp in

(Zp2L),2 to obtain

~Zp2L!,25Zp„~ZpL!,21L,02L,1…1L,2~L̄,02L̄,1!

1L,1„~ZL̄!,02~ZL̄!,1…2K1L̄,2~ZpL!,2

1~ZL̄!,2~ZpL!,1 , ~A16!

where a further commutation of]0 throughZp was made and

the following version of the commutator@],1 ,Zp# was used:

~ZpL!,15
1

2
ZpL,11

1

2
„L,2L̄,11L,1~ZL̄!,11K….

~A17!

This version of the commutator is obtained by use of E
~A3! to eliminateL,1 from the original version of the com

mutator. Substituting (ZpL),21L,02L,1 from Eq.~A9! into
Eq. ~A16! we obtain

2Zpṡ5~Zp2L!,22ZpS 3

2 ÈR

~K,22L,1!dR82
1

4
JD

2L,2~L̄,02L̄,1!2L,1„~ZL̄!,02~ZL̄!,1…1K

2L̄,2~ZpL!,22~ZL̄!,2~ZpL!,1

which is the explicit form of Eq.~A12!. h
Algebraic derivation 2. Equation (A14) holds by virtue

the commutation relations and Eqs. (I) and (A12).
The derivation begins with commuting]2 throughZ2 in

(Z2L̄),2 to obtain

~Z2L̄!,25Z2L̄,21Z„~ZpL!,2L̄,11L,2L̄,1…1L,2~ZL̄!,1

1~ZpL!,2~ZL̄!,1 . ~A18!

On the other hand, by using Eq. (I ) to change the first term
on the right-hand side of Eq.~A12! into a term inL̄, Eq.
~A12! gives

2Zpṡ5~Z2L̄!,22ZpS 3

2 ÈR

~K,22L,1!dR82
1

4
JD

2L,2~L̄,02L̄,1!2L,1„~ZL̄!,02~ZL̄!,1…1K

2L̄,2~ZpL!,22~ZL̄!,2~ZpL!,1 . ~A19!

Using Eq.~A18! to eliminate (Z2L̄),2 from the right-hand
side of Eq.~A19! and taking the complex conjugate the fo
lowing equation is obtained:
2ZsG 5Zp2L,11Zp„L,1~ZL̄!,11L,2L̄,1…2L̄,1„L,02L,12~ZpL!,2…1~ZL̄!,1„~ZpL!,12L,1…

2ZS 3

2 ÈR

~K̄,12L̄,2!dR82
1

4
J̄D 2L̄,1„~ZpL!,02~ZpL!,1…1K̄2~ZpL!,1~ZL̄!,1 ,
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which is the explicit form of Eq.~A14!. h
Algebraic derivation 3. Equation (A15) holds by virtue

Eqs. (A4) and (A3), and the commutation relations.
The derivation requires the use of two auxiliary resu

First, there is a relationship betweenL and K. Using Eq.
~A17! one can expressL as

L52
1

2
L,1„L,11~ZpL!,12L,2L̄,12L,1~ZL̄!,1

12L,1Zp lnV…, ~A20!

which becomes

L52
1

2
L,1„K2L,2L̄,12L,1~ZL̄!,112L,1Zp lnV…,

~A21!
.

if Eq. ~A3! is used to eliminateL,1 .
The second auxiliary relation is the following version

the commutator@]1 ,Z# on L, which is obtained by use o
Eqs.~A4!, ~A3!, and~A21! into the original commutator:

1

3
~ZL!,15

1

2
ZL,11

1

4
L,1„K1L,2L̄,11L,1~ZL̄!,1

22L,1Zp lnV…. ~A22!

To derive Eq.~A15! we begin by noting that, after com

muting ]2Zp in (ZpL),2 , the combination

L,01L,12(ZpL),2 can be rewritten as
L,01L,12~ZpL!,253L,12ZpS 1

2
ZL,11

1

4
L,1„2K13(L,2L̄,11L,1(ZL̄),122L,1Zp lnV)) D2L,2L̄,22L,1(ZL̄),2

~A23!

simply by using Eqs.~A4! and ~A22!. The first two terms on the right-hand side of Eq.~A23! can be changed into

L,12 1
2 ZZpL,1 by commutingZpZ. Applying Zp2 to the resulting expression and commutingZp2 throughZZpL,1 we obtain

Zp2~L,01L,12~ZpL!,2!

52
1

2
ZZp3L,12Zp3S 1

4
L,1„2K13~L,2L̄,11L,1~ZL̄!,122L,1Zp lnV!…D2Zp2

„L,2L̄,21L,1~ZL̄!,2…. ~A24!

We use Eq.~A17! to rewrite2 1
2 ZZp3L,15ZZp2(2 1

2 ZpL,1), which is the first term on the right-hand side of Eq.~A24!, in terms

of (ZpL),1 , and consequently eliminate (ZpL),1 in terms ofL,1 by means of Eq.~A3!: namely,

2
1

2
ZZp3L,15ZZp2S L,11

1

2
L,2L̄,11

1

2
L,1~ZL̄!,12

1

2
K D . ~A25!

Inserting Eq.~A25! into ~A24! and rearranging terms we obtain

ZZp2L,15Zp2
„L,01L,12~ZpL!,2…2

1

2
ZZp2

„L,2L̄,11L,1~ZL̄!,1…1
1

2
ZZp2K1Zp2

„L,2L̄,21L,1~ZL̄!,2…

1Zp3S 1

4
L,1„2K13~L,2L̄,11L,1~ZL̄!,122L,1Zp lnV!…D ,

which is the explicit form of Eq.~A15!.h
Algebraic derivation 4. Equation (A10) holds by virtue of Eqs. (A14) and (A15).

The derivation consists of taking anZ to both sides of Eq.~A14! and substitutingZZp2L,1 ~which will appear on the
right-hand side! by using Eq.~A15!. In this way we obtain

2Z2sG 5Zp2
„L,01L,12~ZpL!,2…2

1

2
ZZp2

„L,2L̄,11L,1~ZL̄!,1…1
1

2
ZZp2K1Zp2

„L,2L̄,21L,1~ZL̄!,2…

1Zp3S 1

4
L,1„2K13~L,2L̄,11L,1~ZL̄!,122L,1Zp lnV!…D

1Z@2L̄,1„L,02L,12~ZpL!,2…1~ZL̄!,1„~ZpL!,12L,1…#1Z@2L̄,1„~ZpL!,02~ZpL!,1…1K̄2~ZpL!,1~ZL̄!,1#

2Z2S 3

2 ÈR

~K̄,12L̄,2!dR82
1

4
J̄D 1ZZp„L,1~ZL̄!,11L,2L̄,1…,

which is the explicit form of Eq.~A10!. h
Algebraic derivation 5. The LCC equation follows from Eqs. (A9) and (A10).
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To derive the LCC equation, we first add and subtractL,0 in the left-hand side of Eq.~A9!, obtaining

2L,02„L,01L,12~ZpL!,2…52ṡ1
3

2 ÈR

~K,22L,1!dR82
1

4
J. ~A26!

We can now takeZp2 to both sides of Eq.~A26! and consequently use Eq.~A10! to eliminateZp2
„L,01L,12(ZpL),2… in favor

of Z2sG . Thus we obtain au derivative of the LCC equation:

2Zp2L,052~Zp2ṡ1Z2sG !2
1

4
Zp2J1

3

2
Zp2 ÈR

~K,22L,1!dR82
1

4
Z2J̄1

3

2
Z2 ÈR

~K̄,12L̄,2!dR8

1
1

2
ZZp2

„L̄,1L,21L,1~ZL̄!,1…2Zp3S L,1

4
@3„L̄,1L,21L,1~ZL̄!,122L,1Zp ln V…2K# D

2Zp2
„L,2L̄,21L,1~ZL̄!,2…2

1

2
ZZp2K2ZZp„L,2L̄,11L,1~ZL̄!,1…2Z@~ZL̄!,1„~ZpL!,12L,1…

2L̄,1„L,02L,12~ZpL!,2…2L̄,1„~ZpL!,02~ZpL!,1…1K̄#1Z„~ZpL!,1~ZL̄!,1…. ~A27!
is
u

s

f

This equation can be integrated inu ~after commuting]0

throughZp2 in Zp2L,0 andZp2ṡ, and throughZ2 in Z2sG ), giv-
ing the LCC equation, labeled Eq.~15! in the main text. h

APPENDIX B: SELF- AND ANTI-SELF-DUAL RELATIONS

The light cone cuts of self-dual spacetimes satisfy

L5s and V51. ~B1!

The following is a list of relations obtained by using th
information to evaluate equations derived in the previo
appendix, the definitions ofK, L, andJ given in the main
text and the commutators acting onL and L̄.

From Eq.~B1! we immediately obtain

L,05ṡ, ~B2a!

L,150, ~B2b!

L,150, ~B2c!

L,250, ~B2d!

and

Z lnV50, ~B3a!

Zp lnV50, ~B3b!

which immediately lead to

L50, ~B4!

K50. ~B5!

From the commutation relations,~B1! and ~B2!, we obtain

~ZL!,250, ~B6a!

~ZpL!,150, ~B6b!
s

~ZpL!,150, ~B6c!

~ZpL!,25ṡ, ~B6d!

~ZpL!,05Zpṡ. ~B6e!

From Eqs.~B6!, ~B2!, ~B5!, and~B5! we obtain

J50. ~B7!

Now we turn to the ‘‘complex conjugates’’ of the quantitie
we have evaluated so far. From Eqs.~B1!, ~B2!, ~B3!, and
~B6! we obtain

K̄50, ~B8!

which, if inserted into the complex conjugate of Eq.~A21!,
leads to

L̄50. ~B9!

From the definition ofL̄, namely the complex conjugate o
Eq. ~20!, we obtain

2L̄,21ZL̄,150. ~B10!

From the commutation relations we see that

~ZL̄!,25ZL̄,21ṡL̄,1 , ~B11a!

~ZL̄!,15ZL̄,11L̄,2 , ~B11b!

which, if inserted into the complex conjugate of Eq.~A4!
and using Eq.~B9! yields

2L̄,12ZpL̄,150. ~B12!
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Using Eq.~B12!, as well as all the relevant expressions o
tained so far, into the complex conjugate of Eq.~18!, we see
that

J̄5
1

2
~ZL̄,1!22L̄,1Z2L̄,112L̄,1

2ṡ. ~B13!

Finally, with all the expressions that have been obtained
far, the complex conjugate of Eq.~A14! ~shown explicitly in
the algebraic derivation A! reduces to

2Zpṡ1
1

2
Z3L̄,122ṡZL̄,12ZṡL̄,150, ~B14!

which is the well-known equation for self-dual spacetim
displayed in@13# @Eqs.~2.28!#.

The anti-self-dual results are the ‘‘complex conjugate
of these.
ys

ys

ys

ys

tiv

ys
-

o

s

’

APPENDIX C: THE GREEN’s FUNCTION

Here we display the Green’s functionG(z,h) for the
equation

Z2Zp2F5A ~C1!

for the spin-weight-zero functionF on the sphere, whereA is
a regular spin-weight-zero source with onlyl>2 spherical
harmonics:

G~z,h!5
1

4p
l ~z!l ~h!ln~ l ~z!•l ~h!!. ~C2!

Green’s functions for higher orderZ have been obtained in
@21#.
s.

c.

roc.
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