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Note on the propagation of the constraints in standard 311 general relativity

Simonetta Frittelli*

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
~Received 20 November 1996!

The well posedness of the evolution of the constraints instandard311 general relativity is established by
means of the Bianchi identities. Other related nonstandard 311 cases which can be analyzed along similar lines
are considered as well. The well posedness of the propagation of the constraints is relevant to the problem of
unconstrained numerical evolution.@S0556-2821~97!01910-3#

PACS number~s!: 04.20.Ex, 04.25.Dm
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I. INTRODUCTION

One strength of the 311 splitting of the Einstein equa
tions is that, by virtue of the Bianchi identities, four out
the ten Einstein equations can be seen to be satisfied i~1!
they are satisfied on a single slice and~2! the remaining six
are imposed. This statement~in essence, if not literally! can
be found in textbooks@1# and in the papers that have becom
cornerstones of the 311 formulation@2,3#, as well as in other
works @4,5#, yet its full extent is very much defined by th
context, in a sense that is exploited here. This property of
311 formulation has been invoked in the literature to just
constructions that might conceivably extend beyond its ra
of validity, oftentimes without proper verification. Such a
pears to be, quite generally, the case of the numerical ev
tion of constrained initial data into metrics that satisfy t
constraints at subsequent times. In principle, there are
alternatives. One alternative consists in coding all ten of
Einstein equations~constrainedevolution!. This carries the
numerical burden of solving elliptic equations at every tim
step. The other alternative is to code only the evolution eq
tions and impose the elliptic constraints only on the init
data, relying on the argument for the conservation of
constraints~unconstrainedor freeevolution!. Unconstrained
evolution is more appealing from the numerical point
view; yet, although there exists a considerable amoun
work developing unconstrained evolution@6#, a large part of
the numerical evolution schemes that can be found in
literature are constrained. Some insights into the nature
the difficulty of implementing unconstrained codes ha
been given by Choptuik@7#.

Specifically, there is a distinction between the concepts
conservation and stable propagation of the constraints.
constraints are known to be conserved in the sense th
they are chosen to vanish exactly on the initial slice, th
they are exactly vanishing at subsequent times. On the o
hand, a quantity propagates in a stable manner if it depe
continuously on its initial values, so that small variations
initial data do not give rise to significantly different values
subsequent times@8#. If the constraints are to be solved n
merically and only on the initial slice, then their propagati
must be guaranteed not to be unstable, because all nume
initial data are subject to error, albeit small. It is essen
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that the small~even round-off! initial error in the vanishing
of the constraints is prevented from an incontrollable grow
However, there is no mention of stable propagation of
constraints in any of the references that I have cited so fa
fact that seems to have been overlooked.

Here the propagation of the constraints is studied in
class of cases of interest, and it is found that the propaga
is stable in some cases and unstable in other cases. T
observations are based on the concept of well posedn
which is equivalent to existence, uniqueness, and stab
simultaneously@8#. For first-order systems of partial differ
ential equations~PDE’s!, the well posedness can be esta
lished by means of three algebraic criteria, namely symm
ric, strict or strong hyperbolicity@9#, although, if the system
has nonconstant coefficients, general existence theorem
known only for the symmetric case. The arguments p
sented here might have been known to individuals, yet t
do not seem to have appeared in the literature.

Mainly to fix the context and notation, in Sec. II, I briefl
introduce the procedure for the 311 splittings of the Einstein
equations. From the point of view of the theory of PDE
there is no unique 311 formulation; the 311 versions of
general relativity in@2,3,10–12# differ in that the six equa-
tions that are chosen for evolution include combinations
the constraints themselves in different nonequivalent wa
In the spirit of these works, I do allow for combinations
the six evolution equations with the constraints~though not
in full generality! since this is an essential part of the pro
lem of defining the context for the constraint propagation
emphasize the choice made by York in@3#, which has be-
come of wide use in numerical relativity~see, for instance
@7,13,14#! and canonical gravity@4#, and which I refer to as
‘‘standard.’’ The stability of the propagation of the con
straints is analyzed in Sec. III. In the last section, I summ
rize the main results and briefly elaborate on their sign
cance with respect to the problem of unconstrain
numerical evolution.

Throughout this work, the word stability is used in th
analytical context, as opposed to numerical.

II. 311 SPLITTING

On the manifoldM with generic coordinatesxa, a folia-
tion by spacelike level surfaces of a functiont(xa) is as-
sumed. The unit normalna[2gabN¹at5(ta2Na)/N
~whereN and Na are the lapse function and shift vecto
5992 © 1997 The American Physical Society
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55 5993NOTE ON THE PROPAGATION OF THE CONSTRAINTS . . .
respectively! defines a projector on the spatial surfac
hab , such thathab[gab1nanb is the induced metric on the
surfaces. The notation and conventions throughout this w
belong to Chap. 10 and Appendix E of@1#.

The Einstein equationsGab2Tab50 can be projected by
means of the normalna and the projectorhab , splitting into
three distinct sets of equations: the double normal projec
(Gcd2Tcd)n

cnd50, the mixed spatial-normal projectio
(Gcd2Tcd)n

chda50, the double spatial projectio
(Gcd2Tcd)h

c
ah

d
b50. The projections of the stress-ener

tensorTab are denotedr[Tcdn
cnd, Ja[2Tcdn

chda, and
Sab[Tcdh

c
ah

d
b . The left-hand sides occurring in the pr

ceding equations are hereby denoted

C[Gcdn
cnd2r, ~1!

Ca[2Gcdn
chda2Ja , ~2!

Eab[Gcdh
c
ah

d
b2Sab . ~3!

Equations~1! and~2! define the scalar and vector constrain
~also referred to as Hamiltonian and momentum constrai!
respectively, whereas Eq.~3! defines the spatial Einstei
equation. In this language, general relativity is obtained
setting C50, Ca50, and Eab50 or by imposing C50,
Ca50, andEab1mabC1 l ab

c Cc50, for arbitrarymab and l ab
c

symmetric ina,b. Clearly, as long as the constraints a
vanishing, the evolution admits many alternative expr
sions. I restrict to the special casel ab

c 50 andmab52mhab
for some constantm. This defines a one-parameter freedo
of choiceFab(m) for the evolution equation

Fab~m![Eab2mhabC50 . ~4!

The ‘‘standard’’ and most widely adopted choice of t
parameterm over many years has been provided by York
@3#. Essentially, the Einstein equationsGab2Tab50 are re-
written in the formRab5Tab21/2gabT and then projected
onto the spatial slice. This procedure corresponds to
choicem51. To show this, we first define

Yab[hcah
d
bSRcd2Tcd1

1

2
gcdTD

5ha
chdbSRcd2Tcd2

1

2
gcdR1

1

2
gcd~T1R! D , ~5!

from which it is clear that

Yab5Eab1
1

2
hab~R1T!. ~6!

Since2(R1T)5gab(Gab2Tab)5(hab2nanb)(Gab2Tab)
5habEab2C then

Yab5Eab2
1

2
habh

cdEcd1
1

2
habC. ~7!

The standard formulation consists then in settingYab50 as
well as the constraints. By taking the trace on Eq.~7! and
setting it equal to zero we obtainhcdEcd53 C and finally

Yab5Eab2habC50. ~8!
s

rk

n

s

y

-

e

This shows thatYab5Fab(m) for m51. In terms of the in-
trinsic metrichab , the explicit form of Eq.~8! and of the
constraintsC andCa is that of Eqs.~35!, ~39!, ~23!, and~24!
of @3#.

III. THE PROPAGATION OF THE CONSTRAINTS

The issue of the propagation of the constraints is sta
here as follows. The constraints are so called because the
not involve second-order time derivatives of the metric. It
desirable, however, to achieve a formulation of the evolut
of the induced metric by means of propagation equatio
with no constraints. This could be done if the constrai
were propagated by virtue of the evolution of the metr
because, in such an instance, the constraints would only
fect the choice of the data on the initial surface, being o
erwise irrelevant to the evolution. The essential issue is
show thatC and Ca are propagated if the metric satisfie
proper evolution equationsFab(m)50. While it holds true
that vanishing initial constraints evolve into vanishing co
straints at all times, the extended assumption that the evo
constraints depend continuously on their initial values h
less often been studied in the literature. If this were actua
the case, then initial constraints that are almost vanish
~but for a small error! should keep almost vanishing at su
sequent times, and it should be possible to numeric
evolve the Einstein equations without imposing the co
straints other than on the choice of initial data, a proced
that is currently known as unconstrained evolution.

In this section, it is shown that, within the class defined
the previous section, the Bianchi equations and the evolu
of the metric determine a linear homogeneous evolution s
tem of PDE’s for the constraints, and that thechoiceof the
proper evolution equations for the metric determines whet
the evolution of the constraints is well posed. Clearly, hom
geneity and well posedness ensure the vanishing of the
straints at subsequent times in the domain of determin
@15# of the initial surface. The stability of the propagation
the constraints is obtained as a byproduct, and, though it
not have played a fundamental role in analytic developme
it is essential to the problem of unconstrained evolution,
argued before.

The Bianchi equations,¹a(Gab2Tab)50, which in the
311 picture take the form¹a(Eab1naCb1nbCa1nanbC)
50, hold as a consequence of the Bianchi identit
¹aGab50 and the conservation of the stress-energy ten
¹aTab50. These equations can be projected onto the sur
and onto the normal. Consider first the normal projection

05nc¹d~Gcd2Tcd!5nc¹d~Ecd1ncCd1ndCc1ncndC!

52EcdDcnd22Cdnc¹cn
d2DdCd2CDcn

c2nd¹dC.
~9!

Here, the derivative operatorDa is the covariant derivative
of the spatial metrichab , given by@1#

DcV
a1•••ak

b1•••bl
5ha1d1•••h

el
bl
hf c¹ fV

d1•••dk
e1•••el

.
~10!
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5994 55SIMONETTA FRITTELLI
The identities ncnc521, nchbc50, ncEcd50, ndCd50,
nd¹cnd50, and¹cnc5Dcnc have been used to obtain th
result ~9!.

Consider now the spatial projection

05hca¹
d~Gcd2Tcd!5hca¹

d~Ecd1ncCd1ndCc1ncndC!

5DcEac1Eadnc¹cn
d1CaDcn

c1Cdnanc¹cn
d1CdDdna

12Cnd¹dna1nd¹dCa . ~11!

Equations~9! and~11! constitute the evolution of the con
straintsC andCa , since the time derivative of the constrain
is contained in the termsnd¹dC andnd¹dCa . This is empha-
sized by rearranging terms in the following way

nd¹dC52DdCd2EcdDcnd1L~C,Cd!, ~12!

nd¹dCa52DcEac2Eadnc¹cn
d1La~C,Cd!, ~13!

whereL andLa collect the homogeneous terms in Eqs.~9!
and~11!. ~Assuming the evolution equationsEab50 are sat-
isfied, since the right-hand side of Eqs.~12! and ~13! van-
ishes identically ifC5Ca50, then the derivative of the con
straints out of the initial surface vanishes as well. This is
argument for the conservation of the constraints@2,5#. This
argument applies just as well to any combination of the s
tial equations with the constraints.!

In the following, I raise the index of the vector constrai
by Ca[habCb , which makes the equations more transpar
without loss of generality. Consider the case where the e
lution equationsFab(m)50 are satisfied. This is equivalen
to Eab5mhabC. Equations~12! and ~13! take the form

nd¹dC52DdCd1L~C,Cd!, ~14!

habn
d¹dCb52mDaC1La~C,Cd!. ~15!

In the particular casem51 the system~14!, ~15! is mani-
festly well posed because it is symmetric hyperbolic, and
stable propagation of the constraints holds. This is the c
of the standard evolution equations given by York, as sho
in the previous section. This is equivalent to the statem
that the unconstrained evolution ofYab50 is not hampered
from the analytical point of view.

The system is not symmetric for a genericm, but the well
posedness can still be established by means of either stri
strong hyperbolicity. In a coordinate systemxa5(t,xi)
adapted to the foliation, the principal part of the system~14!,
~15! has the following 311 form:

]

]tS CCi D 5A j
]

]xj S CCi D , ~16!

where the matricesA j are readily identified from~14!, ~15!.
The principal symbol is defined as the matrixA(j)[A jj j
~wherej i is an arbitrary spatial covector of unit length! and
has the form
e

-

t
o-

e
se
n
nt

or

A~j!5S Nij i 2Nj1 2Nj2 2Nj3

2mNj1 Nij i 0 0

2mNj2 0 Nij i 0

2mNj3 0 0 Nij i
D , ~17!

wherej i[hi j j j . The characteristic polynomial of~14!, ~15!
is the determinant ofA(j)2vI ~whereI is the identity ma-
trix in four dimensions!, and its rootsv are interpreted as the
characteristic speeds@16#. Defining jd5(v,j1 ,j2 ,j3), the
characteristic polynomial has the form (ndjd)

2@(ncjc)
2

2m]. Therefore the system is ill posed ifm,0, since for
m,0 two roots of the characteristic polynomial are compl
(ncjc56 iAumu⇒v5Nij i6 iAumuN). This means that the
error in satisfyingC5Ca50 grows exponentially. Conse
quently, unconstrained evolution does not give a solution
the Einstein equations in the casem,0.

If m.0 the system~14!, ~15! is not strictly hyperbolic,
since there is a double root (ndjd50). The system can stil
be strongly hyperbolic if it can be established that there i
complete set of eigenvectors of the principal symbol
m.0. This matrix has exactly four independent eigenve
tors: two with eigenvaluev5Nij i which can be chosen a
~0,1, 2j1 /j3,0! and ~0,0,1,2j2 /j3), or more generally as
~0,bi) with bi such thatj ib

i50; one more with eigenvalue
v5Nij i1AmN, which can be chosen as~1,2Amj i); and the
fourth one with eigenvaluev5Nij i2AmN, which can be
chosen as~1,Amj i). This shows that the system~14!, ~15! is
strongly hyperbolic for any positive value ofm. Strongly
hyperbolic systems are well posed under other smoothn
and symmetrization conditions, which must apply to t
eigenvectors. Instead of pursuing this argument, it is wo
noticing that, withm.0, a redefinition of variablesC̃5C and
C̃ i5Ci /Am casts the system into manifest symmetric hyp
bolic form, which ensures the well posedness without furt
manipulations. The systems of PDE’s that can be symm
trized by a simple rescaling of the variables may be refer
to as symmetrizable, although I have not made this disti
tion in past works@10#.

For m50, however, two eigenvectors coincide, so th
there remain only three linearly independent eigenvect
namely ~1,0,0,0!, ~0,1,0,2j1/j3,0!, and ~0,0,1,2j2/j3).
Therefore, the system~14!, ~15! cannot be seen to be we
posed by any of the three standard criteria ifm50, which
implies that unconstrained evolution is not guaranteed
give a solution to the Einstein equations. In this case
system is weakly hyperbolic with nonconstant coefficien
Although linear weakly hyperbolic systems with constant c
efficients are known to be ill posed@9#, in our case, due to
the variable coefficients, general statements are more d
cult to make with full rigor.

The characteristics of the propagation of the constra
are surfaces with normal covectorsjd5(v,j1 ,j2 ,j3) which
satisfy either ~a! v2Nij i50, namely ndjd50, or ~b!
(v2Nij i)

22mN250, equivalently,jdjd512m. The first
set of characteristics are timelike with respect togab , and
tangent tond. The second set of characteristics are null w
respect togab if m51, timelike if 0,m,1 and spacelike if
m.1.
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IV. CONCLUDING REMARKS

An analysis of the well posedness of the propagation
the constraints has been presented in the case in which
six spatial evolution equationsEab are not set equal to zero
but are set proportional to the scalar~Hamiltonian! con-
straint. This encompasses two distinct cases (m.0 and
m,0). The implicances for the two cases are opposite.
casem.0 is well posed, whereas the casem,0 is not, being
thus unsuited for unconstrained numerical evolution. In m
general situations where the constraints are combined
the evolution equations in more involved ways, it is nec
sary to ensure that the well posedness of the propagatio
the constraints will be preserved by the combinations.

For the case of the standard formulation of@3#, which
corresponds withm51, it has been shown that the co
straints propagate according to a symmetric hyperbolic s
tem with either timelike or null characteristics. The out
sheet of the characteristic cone is null, and defines the
main of determinacy@15# of the initial manifold. In other
words, if initial data forgab satisfy the constraints, and
solutiongab of Eq. ~8! is evolved from the initial data, then
the constraints are satisfied bygab everywhere within the
domain of determinacy of the initial manifold. This stat
ment applies to the continuous~exact! versions of the 311
equations. This is relevant to the problem of unconstrai
evolution of the standard 311 equations for the following
reasons.

In order to evolve the metric numerically, a discretized
of equations is used in the place of the continuous equati
The solution of the discretized evolution equations satis
the corresponding continuous versions only up to some fi
order of accuracy, which means that the evolution of
constraints in this case is not exactly homogeneous, at
very least. In implementing an unconstrained numeri
scheme, it is important that the discretized constraints
preserved by the~discretized! evolutionat the same order o
accuracy. Apparently, this is not a trivial problem@17#. This
problem has been addressed by Choptuik in@7#, who refers
to it as the issue ofconsistencyof the finite-difference
scheme. Choptuik concludes that it is possible to implem
an unconstrained finite-difference scheme to solve the e
lution equations which preserves the discretized version
the constraints at the same order of accuracy@18#. The argu-
ment is strongly based, however, on the fundamental
f
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sumption of well posedness of the corresponding continu
equations, which here is shown to hold. Unconstrained e
lution also requires the evolution equationsYab50 to be
well posed, which does not appear to have been establis
yet. However, unconstrained numerical evolution has b
achieved in the spherically symmetric@7# as well as in the
full three-dimensional case@13#.

If one does not combine the scalar constraint, the impo
tion of the spatial Einstein equationsEab50, which corre-
sponds tom50, can not be seen to be well posed here@19#.
This appears to be the case of Eqs.~7.315a! and~7.315b! of
@2#, since they can be seen to correspond to the addition
term habC to the standardYab . This case deserves deep
study.

Regarding the role of the lapse function and shift vect
it is clear, from the treatment in the previous sections, t
the results hold as stated for any choice of lapse and s
independent of the constraint functionsC andCa , so long as
the evolution equations are well posed. In particular, a
dynamical choice of the lapse and shift as functions of
metric or first-order derivatives of the metric is allowed, wi
the understanding that the evolution must be well posed.
results would no be guaranteed if the lapse and shift
chosen as functions ofC andCa .

It is possible to implement further combinations with th
constraints in a nontrivial manner, excluded in the pres
work. In @10,12#, the evolution equations~which in terms of
hab andLnhab are first order in time and second order
space! are cast into fully first-order form by introducin
~combinations of! the first space derivatives ofhab as new
variables. Subsequently, the evolution of these new varia
is combined with the vector constraint. The analysis ba
on the Bianchi equations is not applicable to this case. T
propagation of the constraints in this case will be stud
elsewhere.
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