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Note on the propagation of the constraints in standard 31 general relativity
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The well posedness of the evolution of the constraintstémdard3+1 general relativity is established by
means of the Bianchi identities. Other related nonstandartl@&ses which can be analyzed along similar lines
are considered as well. The well posedness of the propagation of the constraints is relevant to the problem of
unconstrained numerical evolutigf80556-282(197)01910-3

PACS numbd(s): 04.20.Ex, 04.25.Dm

I. INTRODUCTION that the smalleven round-off initial error in the vanishing
of the constraints is prevented from an incontrollable growth.
One strength of the 81 splitting of the Einstein equa- However, there is no mention of stable propagation of the
tions is that, by virtue of the Bianchi identities, four out of constraints in any of the references that | have cited so far, a
the ten Einstein equations can be seen to be satisfigr) if fact that seems to have been overlooked.
they are satisfied on a single slice a@l the remaining six Here the propagation of the constraints is studied in a
are imposed. This statemefiin essence, if not literallycan ~ class of cases of interest, and it is found that the propagation
be found in textbookgl] and in the papers that have becomeis stable in some cases and unstable in other cases. These
cornerstones of the-81 formulation[2,3], as well as in other Observations are based on the concept of well posedness,
works [4,5], yet its full extent is very much defined by the Which is equivalent to existence, uniqueness, and stability
context, in a sense that is exploited here. This property of th&imultaneously8]. For first-order systems of partial differ-
3+1 formulation has been invoked in the literature to justify ential equationgPDE’s), the well posedness can be estab-
constructions that might conceivably extend beyond its rang#ished by means of three algebraic criteria, namely symmet-
of validity, oftentimes without proper verification. Such ap- fic, strict or strong hyperbolicity9], although, if the system
pears to be, quite generally, the case of the numerical evolldias nonconstant coefficients, general existence theorems are
tion of constrained initial data into metrics that satisfy theknown only for the symmetric case. The arguments pre-
constraints at subsequent times. In principle, there are twgented here might have been known to individuals, yet they
alternatives. One alternative consists in coding all ten of thélo not seem to have appeared in the literature.
Einstein equationgconstrainedevolution. This carries the Mainly to fix the context and notation, in Sec. II, | briefly
numerical burden of solving elliptic equations at every timeintroduce the procedure for thetd splittings of the Einstein
step. The other alternative is to code only the evolution equagquations. From the point of view of the theory of PDE's,
tions and impose the elliptic constraints only on the initialthere is no unique 81 formulation; the 3-1 versions of
data, relying on the argument for the conservation of thegeneral relativity in[2,3,10-12 differ in that the six equa-
constraintgunconstrainecr free evolution. Unconstrained tions that are chosen for evolution include combinations of
evolution is more appealing from the numerical point ofthe constraints themselves in different nonequivalent ways.
view; yet, although there exists a considerable amount of the spirit of these works, I do allow for combinations of
work developing unconstrained evolutif®l, a large part of ~ the six evolution equations with the constraiftisough not
the numerical evolution schemes that can be found in thé full generality since this is an essential part of the prob-
literature are constrained. Some insights into the nature dg¢m of defining the context for the constraint propagation. |
the difficulty of implementing unconstrained codes haveemphasize the choice made by York[®], which has be-
been given by Choptuik7]. come of wide use in numerical relativigee, for instance,
Specifically, there is a distinction between the concepts of7,13,14) and canonical gravity4], and which I refer to as
conservation and stable propagation of the constraints. Théstandard.” The stability of the propagation of the con-
constraints are known to be conserved in the sense that $traints is analyzed in Sec. Ill. In the last section, | summa-
they are chosen to vanish exactly on the initial slice, therfize the main results and briefly elaborate on their signifi-
they are exactly vanishing at subsequent times. On the othéance with respect to the problem of unconstrained
hand, a quantity propagates in a stable manner if it dependgimerical evolution.
continuously on its initial values, so that small variations of ~ Throughout this work, the word stability is used in the
initial data do not give rise to significantly different values at analytical context, as opposed to numerical.
subsequent timelB]. If the constraints are to be solved nu-
merically and only on the initial slice, then their propagatior) II. 3+1 SPLITTING
must be guaranteed not to be unstable, because all numerical
initial data are subject to error, albeit small. It is essential On the manifoldM with generic coordinates?, a folia-
tion by spacelike level surfaces of a functiofx®) is as-
sumed. The unit normaln®=—g3°NV t=(t2—N?)/N
*Electronic address: simo@artemis.phyast.pitt.edu (where N and N2 are the lapse function and shift vector,
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respectively defines a projector on the spatial surfacesThis shows thap),,= F.p(«) for w=1. In terms of the in-
h?,, such thah?=g3"+n3n® is the induced metric on the trinsic metrich,,, the explicit form of Eq.(8) and of the
surfaces. The notation and conventions throughout this workonstraintsC andC, is that of Eqs(35), (39), (23), and(24)
belong to Chap. 10 and Appendix E [df]. of [3].

The Einstein equationG,,— T,,=0 can be projected by
means of the normai? and the projectoh?,, splitting into
three distinct sets of equations: the double normal projection

(ch_Tcd)”zngzo' the mixed spatial-normal projection  Thg jssue of the propagation of the constraints is stated
(ch_Tcd)nch 3:0, the double spatial projection phere a5 follows. The constraints are so called because they do
(Gea— Tea)h®h",=0. The pl'OjeCtCiOI’lS of the stredss-energy not involve second-order time derivatives of the metric. It is
tensor Ty, are denotedp=Tcyn"n", Ja=—Tegn°h%, and  gesirable, however, to achieve a formulation of the evolution
Sap=Tcdh%h% . The left-hand sides occurring in the pre- of the induced metric by means of propagation equations,
ceding equations are hereby denoted with no constraints. This could be done if the constraints
1) were propagated by virtue of the evolution of the metric,
because, in such an instance, the constraints would only af-
) fect the choice of the data on the initial surface, being oth-
erwise irrelevant to the evolution. The essential issue is to
show thatC and C, are propagated if the metric satisfies
proper evolution equation$,,(«)=0. While it holds true
Equations1) and(2) define the scalar and vector constraintsthat vanishing initial constraints evolve into vanishing con-
(also referred to as Hamiltonian and momentum constraintsstraints at all times, the extended assumption that the evolved
respectively, whereas Ed3) defines the spatial Einstein constraints depend continuously on their initial values has
equation. In this language, general relativity is obtained byless often been studied in the literature. If this were actually

Ill. THE PROPAGATION OF THE CONSTRAINTS

C=Ggn°n?—p,
Ca=—G¢gn®hd,—J,,

5abEchhcahdb_Sab- (3)

setting C=0, C,=0, and &,,=0 or by imposingC=0,
C,=0, and&,p+m,,C+15,C.=0, for arbitrarym,, and |5,

the case, then initial constraints that are almost vanishing
(but for a small errorshould keep almost vanishing at sub-

symmetric ina,b. Clearly, as long as the constraints aresequent times, and it should be possible to numerically
vanishing, the evolution admits many alternative expresevolve the Einstein equations without imposing the con-

sions. | restrict to the special cakg=0 andm,,=— uhyp

straints other than on the choice of initial data, a procedure

for some constant.. This defines a one-parameter freedomthat is currently known as unconstrained evolution.

of choice F,,(u) for the evolution equation

Fap(p)=Exp— uhyyC=0. (4)

In this section, it is shown that, within the class defined in
the previous section, the Bianchi equations and the evolution
of the metric determine a linear homogeneous evolution sys-
tem of PDE’s for the constraints, and that ttieoice of the

The “standard” and most widely adopted choice of the proper evolution equations for the metric determines whether
paramete over many years has been provided by York inthe evolution of the constraints is well posed. Clearly, homo-

[3]. Essentially, the Einstein equatiofs,,— T,,=0 are re-

geneity and well posedness ensure the vanishing of the con-

written in the formR,,=T,,—1/29,,T and then projected straints at subsequent times in the domain of determinacy
onto the spatial slice. This procedure corresponds to thgi5] of the initial surface. The stability of the propagation of

choiceu=1. To show this, we first define

1
yabE hcahdb( I:zcd_ Tcd+ E gch

1 1
= hghdb( Reg—Tea— EgcdR+ Egcd(T"' R, (5
from which it is clear that
1
Yap=CEapt Ehab(R+T)- (6)

Since — (R+T)=0*(Gap— Tap) = (h**—Nn?n°)(Gap— Tap)
=habg, —C then

1 cd 1
Vab=Eap— Ehabh Eeat Ehabc- (7)
The standard formulation consists then in setfiag=0 as

well as the constraints. By taking the trace on Eg.and
setting it equal to zero we obtahfis,4=3C and finally

YVab=Eap— hanC=0. (8)

the constraints is obtained as a byproduct, and, though it may
not have played a fundamental role in analytic developments,
it is essential to the problem of unconstrained evolution, as
argued before.

The Bianchi equationsy?(G,,— T.p) =0, which in the
3+1 picture take the formV#(&,,+ n,Cp+ NCa+ NanpC)
=0, hold as a consequence of the Bianchi identities
V2G,,=0 and the conservation of the stress-energy tensor
V2T ,,=0. These equations can be projected onto the surface
and onto the normal. Consider first the normal projection

0=n°VYGeg— Teq) =NV Egt NCyt NgCet NNyC)
= —&,4DnY—2C4n°V .n?— DYCy—CD N — NV 4C.
9

Here, the derivative operat®, is the covariant derivative
of the spatial metrid,,,, given by[1]

Dcval. . .akbl» b= haldl' . helblhfcvadl. . .dkel. e
(10
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The identitiesn®n,=—1, n°h®.=0, n°€,4=0, n9Cy=0,

nV.ny=0, andV°n,=D°n, have been used to obtain the

result(9).
Consider now the spatial projection
0=h® VU Geg— Teq) =V (Ecgt NCyt NgCet NcNgC)
=D&+ Eaan°V N+ CoD NC+ Cynan°V nd+CyD %N,

+2Cn9V 4n,+nV 4, . (12)

Equationg9) and(11) constitute the evolution of the con-
straintsC andC,, since the time derivative of the constraints
is contained in the terms?V 4C andn?V 4C, . This is empha-

sized by rearranging terms in the following way

N9V C=—DYCy— E.4Dn%+ L(C,Cy), (12

r1dvdca: - chac_gadncvcnd'l'Ea(acd)- (13)

where £ and £, collect the homogeneous terms in E¢).
and(11). (Assuming the evolution equatiody,=0 are sat-
isfied, since the right-hand side of Eq42) and (13) van-

ishes identically ifC=C,=0, then the derivative of the con-
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N'¢ | —N&  —N&  —Né&
—uNE | N'g 0 0
A= —uN&?| 0o Ng o | @D
—uNg | 0 0 N'¢

where&'=h1§;. The characteristic polynomial ¢14), (15)

is the determinant oA(&) —vl (wherel is the identity ma-
trix in four dimensiong and its roote) are interpreted as the
characteristic speedd6]. Defining &é4=(v,&1,&5,&3), the
characteristic polynomial has the forrn%,)?[(n°&.)?
—u]. Therefore the system is ill posed <0, since for
©<0 two roots of the characteristic polynomial are complex
(n°¢.==ilu[=v=Ng&=+iy[u[N). This means that the
error in satisfyingC=C,=0 grows exponentially. Conse-
quently, unconstrained evolution does not give a solution to
the Einstein equations in the cage<0.

If w>0 the system(14), (15) is not strictly hyperbolic,
since there is a double rooh%¢4=0). The system can still
be strongly hyperbolic if it can be established that there is a
complete set of eigenvectors of the principal symbol for
©>0. This matrix has exactly four independent eigenvec-
tors: two with eigenvalue =N'¢; which can be chosen as

straints out of the initial surface vanishes as well. This is thd0:1. —§1/£3,0) and (0,0,1;-£,/£3), or more generally as

argument for the conservation of the constraii&$]. This

(0,b") with b' such that¢;b'=0; one more with eigenvalue

argument applies just as well to any combination of the spa =N'&+ uN, which can be chosen &8,~ \u¢'); and the

tial equations with the constraints.

fourth one with eigenvalue =N'&—uN, which can be

In the following, | raise the index of the vector constraint chosen asl,\/ué'). This shows that the systetdd), (15) is
by C23=h2PC, , which makes the equations more transparenstrongly hyperbolic for any positive value ¢f. Strongly
without loss of generality. Consider the case where the evdiyperbolic systems are well posed under other smoothness
lution equationsF,,(1)=0 are satisfied. This is equivalent and symmetrization conditions, which must apply to the

to Eup=ph,,C. Equationg(12) and(13) take the form
NV 4C=—DyC%+ L£(C,CY), (14)
hapn?V 4C°= — uD ,C+ L,(C,CY). (15)

In the particular casgu=1 the system(14), (15) is mani-

eigenvectors. Instead of pursuing this argument, it is worth
noticing that, withu>0, a redefinition of variable§=C and
C'=C/Ju casts the system into manifest symmetric hyper-
bolic form, which ensures the well posedness without further
manipulations. The systems of PDE’s that can be symme-
trized by a simple rescaling of the variables may be referred
to as symmetrizable, although | have not made this distinc-
tion in past workg10].

festly well posed because it is symmetric hyperbolic, and the For x=0, however, two eigenvectors coincide, so that
stable propagation of the constraints holds. This is the casthere remain only three linearly independent eigenvectors,
of the standard evolution equations given by York, as showmamely (1,0,0,0, (0,1,0—&%&%,0), and (0,0,1— &%/ ¢°%).

in the previous section. This is equivalent to the statemenTherefore, the systertil4), (15 cannot be seen to be well
that the unconstrained evolution 9§,=0 is not hampered posed by any of the three standard criteriguie 0, which

from the analytical point of view.
The system is not symmetric for a genegi¢cbut the well

implies that unconstrained evolution is not guaranteed to
give a solution to the Einstein equations. In this case the

posedness can still be established by means of either strict eystem is weakly hyperbolic with nonconstant coefficients.

strong hyperbolicity. In a coordinate systerf=(t,x')
adapted to the foliation, the principal part of the systéd),
(15 has the following 3-1 form:

J(C jaC
itk

where the matrices | are readily identified frong14), (15).
The principal symbol is defined as the matd¢)=Al¢;
(where¢; is an arbitrary spatial covector of unit lengtand
has the form

(16)

Although linear weakly hyperbolic systems with constant co-
efficients are known to be ill posd®], in our case, due to
the variable coefficients, general statements are more diffi-
cult to make with full rigor.

The characteristics of the propagation of the constraints
are surfaces with normal covectafg=(v,é,,&,,&3) which
satisfy either (8) v—N'¢=0, namely n%,=0, or (b)
(v—N'g)%2— uN?=0, equivalently,9%4=1—pu. The first
set of characteristics are timelike with respectgtg, and
tangent ton®. The second set of characteristics are null with
respect tag,;, if w=1, timelike if 0<<u <1 and spacelike if
u>1.
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IV. CONCLUDING REMARKS sumption of well posedness of the corresponding continuous

An analysis of the well posedness of the propagation o guations, which here is shown to hold. Unconstrained evo-
ution also requires the evolution equatiop,=0 to be

the constraints has been presented in the case in which the . ,
. ; . ' well posed, which does not appear to have been established
six spatial evolution equatiors,,, are not set equal to zero,

but are set proportional to the scalédamiltoniar) con yet. However, unconstrained numerical evolution has been

straint. This encompasses two distinct casgs>0Q and achieved n the §pher|cally symmetiie] as well as in the
<0). The implicances for the two cases are opposite Th(fau" three-dimensional case3].
#=0). Impi W pposite. If one does not combine the scalar constraint, the imposi-

caseu>0_|s well posed, wh_ereas the Casgo IS nc_Jt, being tion of the spatial Einstein equatiotdg,=0, which corre-
thus unsuited for unconstrained numerical evolution. In mor ponds tgu=0, can not be seen to be well posed herg]

general situations where the constraints are combined wit his appears to be the case of E(3153 and (7.315b of

tsr;er et\g Og’;g‘r;?ﬁgﬁf\lxlr]ogge'gxggvsegfvtvﬁgs’r(')t I; r;%%is{, ], since they can be seen to correspond to the addition of a
y ) : P propag rm h,,C to the standard/,,. This case deserves deeper
the constraints will be preserved by the combinations. study

c orfg;, tcr)]r?d(s:a\?v?thc: _tqe i?t?]giafeé?]rn;ﬁfxgnt?aﬂt’ nl]r(:c?on- Regarding the role of the lapse function and shift vector,
esp o . . it is clear, from the treatment in the previous sections, that
straints propagate according to a symmetric hyperbolic SYShe results hold as stated for any choice of lapse and shift

tem with either timelike or null characteristics. The outer. . .
sheet of the characteristic cone is null, and defines the d |r_1dependent of the constraint functiofiand(,, so long as

i ; - . he evolution equations are well posed. In particular, any
main Of. d.et'e.rmlnaC)[15] of the. initial mamfold: In other dynamical choice of the lapse and shift as functions of the
words, if initial data forg,, satisfy the constraints, and a

solution of Eq. (8) is evolved from the initial data, then metric or first-order derivatives of the metric is allowed, with
th utl gtab. i g- It' fv dv ;] I 'th', th the understanding that the evolution must be well posed. The

€ constraints are salistie @éb.gveryw iere within the —osults would no be guaranteed if the lapse and shift are
domain of determinacy of the initial manifold. This state-

ment applies to the continuouysxac} versions of the 31 chosen as functions df and(,
app S . It is possible to implement further combinations with the
equations. This is relevant to the problem of unconstrame%o

. ) . nstraints in a nontrivial manner, excluded in the present
evolution of the standard-31 equations for the following work. In[10,12], the evolution equationgvhich in terms of

r ns. . N .
easons . . . . h., and £,h,, are first order in time and second order in
In order to evolve the metric numerically, a discretized set

of equations is used in the place of the continuous equationSpace are cast into fully first-order form by introducing

The solution of the discretized evolution equations satisfiezcOrnbinations of the first space derivatives fy, as new
q variables. Subsequently, the evolution of these new variables

the corresponding continuous versions only up to some ﬁnit?s combined with the vector constraint. The analysis based

order of accuracy, which means that the evolution of theon the Bianchi equations is not applicable to this case. The

constraints in this case is not exactly homogeneous, at th

. ! . ) ﬁropagation of the constraints in this case will be studied
very least. In implementing an unconstrained numerical, . Kore

scheme, it is important that the discretized constraints be
preserved by thédiscretized evolutionat the same order of
accuracy Apparently, this is not a trivial problefii7]. This
problem has been addressed by Choptuik7ih who refers Helmut Friedrich called my attention to this problem.
to it as the issue ofconsistencyof the finite-difference Robert Marsa and Luis Lehner pointed out to me the refer-
scheme. Choptuik concludes that it is possible to implemengénces concerning the numerical work. Robertar@a pro-

an unconstrained finite-difference scheme to solve the evosided me with plenty of discussion on the interplay between
lution equations which preserves the discretized version othe numerical and analytic sides of this problem. It is a plea-
the constraints at the same order of accufd@}. The argu- sure to thank them all. This research was supported by the
ment is strongly based, however, on the fundamental adNSF under Grant No. PHY 92-05109.
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