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A Cauchy-characteristic initial value problem for the Einstein-Klein-Gordon system with spherical symme-
try is presented. Initial data are specified on the union of a spacelike and null hypersurface. The development
of the data is obtained with the combination of a constrained Cauchy evolution in the interior domain and a
characteristic evolution in the exterior, asymptotically flat region. The matching interface between the space-
like and characteristic foliations is constructed by imposing continuity conditions on metric, extrinsic curva-
ture, and scalar field variables, ensuring smoothness across the matching surface. The accuracy of the method
is established for all ranges M/R, most notably, with a detailed comparison of invariant observables against
reference solutions obtained with a calibrated, global, null algorifi§8556-282(96)01120-4

PACS numbe(s): 04.30.Nk, 04.25.Dm, 04.40.Nr

I. INTRODUCTION ing (CCM) is not entirely new. An early mathematical inves-
tigation exhibiting unions of spacelike and characteristic sur-

The correct physical formulation of any asymptotically faces was given in[3]. Regarding general relativistic
flat, radiative Cauchy problem requires boundary condition$ystems, a discussion of the potential of the method appears
at spatial infinity. These conditions ensure not only that totain [4]. The concept of a null exterior attached to a Cauchy
energy and the energy loss by radiation are both finite, bugvolution appears also in connection with perturbative ap-
they are also responsible for the propar déymptotic falloff ~ proaches to the outer boundary problem, e.g[5ihas well
of the radiation fields. However, when treating radiative sys-as in[6]. Yet, only recently[7-10], has the concept been
tems computationally, an outer boundary must be establishegrefully explored with respect to its practicability. A de-
artificially at some large but finite distance in the wave zonelailed study of the stability and accuracy of CCM for linear
i.e., many wavelengths from the source. Imposing an accuand nonlinear wave equations has been presentgtDia 1],
rate radiation boundary condition at a finite distance is dllustrating its potential for a wide range of wave systems.
difficult task even in the case of simple radiative systemslhe numerical investigation of cylindrically symmetric solu-
evolving on a fixed geometric background. The problem istions of the Einstein equations has also been carried out
exacerbated when dealing with the Einstein equations.  [4.9].

In recent years, the characteristic initial value problem The objective of this paper is to develop and carefully
(cIVP) formulation of the Einstein equations in nonspheri- calibrate the CCM method for asymptotically flat, spheri-
cally symmetric configurationfsl,2] has been explored, pro- cally symmetric space-times, which are evolving in the pres-
viding possible alternatives to the practical and theoreticagnce of a minimally coupled, self-gravitating, massless scalar
problems introduced by the outer boundary conditions of thédield. This is an initial step towards developing a general
Cauchy initial value probleniCIVP). Based on the concept method applicable to the full Einstein equations. Research on
of combined Cauchy-characteristic evolution, a number ofhis topic is stimulated and guided by the requirements of the
systems are currently under investigation. The motivatiorBinary Black Hole Grand Challenge Alliance, a major col-
behind these new formulations of the initial value problem islaboration aimed at the investigation of the merger of two
to capture the advantages that each approach exhibits andiatspiraling black holes. The CCM approach will provide, in
the same time avoid some of the corresponding drawbackéhis context, both boundary conditions and radiation wave
The CIVP permits the construction of integration algorithmsform extraction. The model problem investigated herein cap-
that allow null infinity to be included in a compactified grid, tures some essential aspects of the general system, including
hence facilitating and clarifying the extraction of radiation. wave propagation on dynamical backgrounds and black-hole
However, characteristic formulations generally break dowrformation. The dynamics of the model is governed by the
in regions of complicated caustic structure, which are uncoupled Einstein-Klein-Gordon equations in spherical sym-
avoidable in strongly asymmetric geometries such as thos@etry,
describing the merger of two black holes. Cauchy evolutions
avoid this problem, yet they provide no natural way to im- Gap=k(Va®@ V@ +Lgap), (1)
pose conditions at the outer boundary. Since each method
operates successfully precisely in the region where the othénd
has its shortcomings, an appropriate matching of the two
initial value formulations promises an effective approach to V.Véd =0, (2
the outer boundary condition and the caustic problem.

The general idea behind the Cauchy-characteristic matclwhere® is a scalar field whose Lagrangian is
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1 oA 1

LZ—EVaCI)Va(D (3) Byt=—aHB+e ﬂ ;+B'p (6)
andx=8. (Units are chosen so th@=c=1.) Space-time Har=e [aR,,+BHa,—a ,,+A a ]+ aHaK
indices are denoted with Latin lettera,p,c, . . .) andspace ra-2A 2
indices with ¢,j,k, . . .). wle (@ )", (7

This system has been studied intensively in the last five e2A-28 1
years both analytically12] and numerically{13—17. The Hg=e | a . )Ree+ﬁHBp—aP ~+B, }
existent understanding of the system is quite appropriate, as ' p ' e
the exploration and calibration of the combined evolution is + aHaK ®
. o . . . . BN,

done in a nontrivial geometric setting, yet with good basic
knowledge of the expected physical behavior. whereK denotes the trac| of the extrinsic curvature.

The interior foliation and the associated integration algo- The time-time and time-space projections of the Ein-

gous to that used by Choptujk8], the main difference be- momentum constraints

ing a different choice of boundary conditions. Section Il

describes the characteristic evolution algorithm. The method 1 e oA
closely follows[13], with minor changes to accommodate SRt TRHHJFe He(Hg+2Ha)

the matching interface. In Sec. IV the geometric concepts

underlying the matching theory are discussed, and a number

of simplifying assumptions are put forward, which lead to a = 5K[(®,p)2+62AH2] 9
simple set of matching conditions for the problem at hand.

The implementation of the combined evolution, along withgng

validation tests, and numerical experiments covering a wide

2A—2B

range of methodologies and physical parameters are given in 1 1
Sec. V. Hg ,+ ;+B,p (HB—HA)ZEKHQP, (10
Il. INTERIOR DOMAIN: CAUCHY EVOLUTION whereR,, andR,, are the three-Ricci components given by
For the interior (Cauchy domain M~ of the four- 1 B 1
dimensional space-time, Einstein’s equations will be written ER/JP— Bt ;(A,p_ 2B,)+B,(A,~B,), (1D
using a standard 81 Arnowitt-Deser-Misner(ADM) de-

composition. Generally, a foliation of spacelike sliggy- @?A—28B 1

persurfacesis constructed and labeled by a scalar function 7—Rpp=—B,,+ —(A,—4B ) +B (A ,—2B )

7. The unit normal to these slices i€. By construction, P p

n,=—aV,7, where « is the lapse function. The intrinsic SA—2B

metric on each slice is then given byp=gap+NaN,. The +—(e -1). (12
a : - Jab " : p

vector @n® connects the slices of the foliation; however, this

time vector is not unique. In general, the vectdrcan be  Finally, the 3+1, first order in time, form of the Klein-

chosen ag®=an®+ g% where g% is the shift vector and Gordon equatiori2) is

B2%n,=0. Adopting this decomposition, the four-dimensional

metric element in the case of spherically symmetric space- P =all+e D ,, (13

times reduces to the+31 form

1
1= e—ZA{ a ?(,ﬂb,p),ﬁ (2B ,—A )P ,+e*KII

ds?=(—a?+ B2e 2A)dt?>+2Bdtdp+ e* dp?
+ p2e?B(d6?+sirfad ¢?), (4
+ta,® ,+ ﬁnyp] : (14)
where g= g, is the only nonzero component of the shift
vector, and the metric on the spacelike hypersurfaces takes The geometry evolution equatiorts)—(8) together with
the form y;; =diag(e**,p°e?*®,p?e*®sir’6). All the metric  the matter evolution equationd3) and (14) constitute an
coefficients are functions only gf andt. The dynamical jnitial value problem for the quantitied,B,H,,Hg,®,II.
quantities in the 3-1 initial value formulation are the intrin-  The initial data for the IVP must satisfy the constraif@$
sic metricy,p, and the extrinsic curvatut€,,, of the slices.  and (10). Obtaining the development of the initial data re-
In spherical symmetry, the extrinsic curvature has only twoquires, furthermore, the specification of the gauge functions
independent components; =diag(Ha ,Hg ,Hg). a and B. Ideally, the time integration of the IVP defined
The spatial projections of Einstein’s equations lead to theabove should put no restrictions on either the form of the
evolution equations for the spatial tensorg; and metric or the gauge functions. Yet the use of spherical coor-
K}= y'kKkj: dinates, mandated by the Killing symmetrigsd also com-
putationally efficienk, significantly limits the freedom to
Ai=—aHpte (B ,—BA), (5)  choose the space-time slicing. For example, the simplest pos-
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sible gauge, the geodesic or synchronous gaugsists of using Eqs(17) and(18). On the other hand, a fully
(e=1,8=0), leads to a coupled system of equations for theconstrained evolution would require solving the Hamiltonian
geometric variableé\,B,H, ,Hg. Formulating this problem constraint(19), with the extrinsic curvaturéd, computed

as a set of second order equationsAgB reveals a dynami- from the source terms using E@O). Alternatively, a mixed

cal structure that is not that of a wave system. In practicescheme can be followed, witH, again given by Eq(20),

this leads to considerable difficulties in preserving the approwhile the metric variable is updated using E#7), subject
priate regularity of the geometry near the origin. Such reguagain to the lapse condition. Still other alternative schemes
larity is analytically ensured by cancellations of Xtrms involving combinations of Eqs(17)—(20) are possible. A
both explicitly in the right-hand side of the evolution equa- fully constrained evolution is adopted here since it has been
tions and implicitly by the enforcement of the constraints. used in earlier accurate calculations of scalar wave collapse

A gauge choice that overcomes the regularity problems &t16] and facilitates enforcing a regular metric boundary con-
the origin is the radial gauge, in whighis chosen such that dition at the origin.
the area of eactt=dp=0 sphere is equal to#p?, which In order to complete the IVP, specific boundary condi-
leads to the conditioB=0. The integration procedure out- tions for the scalar field variable®,II at both ends of the
lined below also assumes a vanishing shift condition, but caintegration domain must be prescribed, along with integra-
be generalized for arbitrary shift. tion constants for the hypersurface equati¢t® and (16).

The line element4) with B= 3=0 becomes The scalar field variables must be finitegat 0, and thus the

appropriate  boundary conditions at this point are
ds’= — o?dt?+e* dp®+ pA(d6*+sinfed¢?). (15  pd=pII=0. The outer boundary conditions for these vari-
ables are well understood only in the limit—«, where
rigorous outgoing wave conditions exist. Imposing a bound-
ary condition at any finitgp involves a certairphysicalap-
proximation. Achieving a complete solution of the IVP with-
out such additional assumptions is indeed the main focus of
a=0. (16) the CCM program, and the details are given in Sec. IV.

The prescription of the integration constants for the hy-
persurface equations at some pqigtrelates the labeling of
the time and radial coordinates with the proper time and
A=—aH,, (17) radi_al distan_ce measurements of a privilege_d observer. Two

‘ obvious choices are geodesic observers, either at the center
of symmetry, or at the outer boundary. While the choice does
+aHi— ke (D )2 not have any consequences on physical observables, it is
(19) more natural for our integration procedure to assume a geo-
detic observer at the center of symmetry, and hence to re-
With the conditionsB=Hg=0, the Hamiltonian and mo- quire thatA=a=0 there. In fact, this choice is well suited
mentum constraints are now decoupled equations relating tHer the study of critical collapse as well, where the self-
metric functionA and its associated extrinsic curvatig ~ Similar critical solution[15] manifests itself in terms of the
to the scalar field energy density and current, respectively: Proper time of an observer at the origin.

As an immediate consequence B& 8=0, Eq. (6) im-
plies thatHg also vanishes, and E@8) for Hg; gives a
condition on the lapse function:

X p—

1
2A
A'p+ ;(e -1)

Furthermore, Eq95) and (7) reduce to

Ha=e 24

;aA’p—a'pp—FA'pa,p

Ill. EXTERIOR DOMAIN:

A +i(92A—1)=EKp[(CD )2+ e?AT1?] (19
P 2p 2 P ’ CHARACTERISTIC EVOLUTION

For the exterior characteristic evolution, a family of null
Ha=— EKqu)’p. (20 hypersurfacesi= const is introduced, emanating along the
outward normals to the cross sections of the matching world
éube and labeled by=t. The outgoing null rays are param-
etrized by an area coordinate with r=R at the matching
world tube. The coordinat&=r/(R+r) is introduced for
® =all, (21)  purposes of compactification, so that null infinity is located
’ atx=1. (In the numerical simulations to be presented later,
1 A we set the scale so thRt=1 and consequently=1/2 at the
II,=ae A —(p*P ) ,— 7’p¢,p+ eAHAH} +e Aa,®,.  matching world tubg.In the null coordinate system, the line
p 22) element in the exterior region has the foff38|

Finally, the scalar field equations, in this gauge, take th
form

In summary, the lapse function is determined by the con- o \ 2 12 5
dition (16). The remaining gravitational variable#\ (and ds’=—e du(qu+2dr)+r (d6*+sirodg?),
H,) can be constructed from a subset of the evolution equa- (23
tions (17) and (18) and constraint equationd9) and (20).
Different integration schemes can be designed depending omhere the metric functions andV depend only oru and
which two equations are chosen frdti7)—(20) to solve for .
A andH, . For instance, a free, unconstrained evolution con- The hypersurface equations ferandV are
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)\’rzzwr(q)’ry (24)  where g, is the unit sphere metric. The metric tensors
hap,dap and the vectors?,v? satisfy the following orthogo-
and nality conditions:s?h,,= s2q,p=v2qap=5%,=0.
The metric continuity requirement can be recast as condi-
V,=e? (25  tions on the induced norm of the tangent veaifron 3.,
The scalar wave equation in the characteristic region takes [v2°a0] =[v%"gap] " (32

the form

and the surface-area radius,
2(rd )  =1r(rvo ) .. (26)

. i ) [a2°0ap] " =[0?°ap] " (33
In terms of the intrinsic metric of theu(r) submanifold,
In addition to the continuity of the metric acroXs in order
> to prevent sheet discontinuitiésingular hypersurfacgsthe
. @ . . e i
following conditions on the extrinsic curvature must be im
posed[20]:
where the greek indices take the values (0,1), this reduces to

\%
NapdX*dxP=—e?d u( —du+2dr

[v20 @ 4p] " =[v20 O] * (34)
D(z)g:

e*Z)\g \Vj
r (? ’ (28

and
T

abg - _rnab +
whereg=r® and® is the D’Alembertian associated with [0 ap]” =[a""Oap] " (35

Nap -
ﬁ'he integration of the systef24)—(26) proceeds with the

specification of initial datab(ug,r) for r>R on the initial
null coneuy. The hypersurface equations are integrated ra
dially and furnish compatible geometric functionsandV.
This, in turn, allows the time integration of the scalar field
equation, which provides new data in the neighborhood
up+du and completes the integration cycle. The extra infor- hereP* ¢3* andQ—P~, O—P™, throughM ~,M*, re-

mation needed to evolve the space-time is the CharaCteriStgbectively. The continuity conditiof86) has meaning only if

initial data d)l(u,R) at the inner bound;:}ry, as vye!l as the here exists a mappiny!:3 ~— 3" which transforms tensor
boundary valuea (u,R) andV(u,R). A characteristic inte- components between the two coordinate systems.

gration algorithm for Eq(28) may be based upon the null 46 shherically symmetric case under consideration, the
parallelog_ra_m made up of incoming and outgoing rad'alcoordinate systemi, p, 8,4} in M~ and{u,r,8,4} in M*
characteristic$19,2. are introduced. Because of the symmetry, the same coordi-
natesd and ¢ are used everywhere throughddt®. This is
IV. CAUCHY-CHARACTERISTIC MATCHING not the case with the radial coordinate. In genepagndr

The match is performed across a three-dimensional, timelre not the same. The line element3drr are given by Egs.

like hypersurfaceX, (world tube, which divides the four- (15 and(23), respectively. The tangent vectorXoin these

dimensional space-time into two disjoint sub-manifolMs coordinates is
(characteristic exteripmndM ~ (Cauchy interioy. Each sub-

Equationg32)—(35) should be understood as a limit process.
Namely, for any tensorA,,, the continuity condition
[Aan]l =[Aqp]" implies

lim Ag(Q)=lim Aj(O), (36)
Q—P~ o—pP*

manifold M* is endowed with a metrig, that induces a L O (t.p,0,0) in M7,
unique intrinsic geometry ak. Independent coordinate vegr 8T (u,r,0,0) in M+, (37)
charts{x?}* are introduced iM “. Let s* be the space-like,
unit normal toX directed fromM ™~ to M ™. The metric in-
trinsic to 3, is then given by In this section, an overdot denotes derivative with respect to
the proper timer along the world tube. That is
Nab=Jab— SaSh (29  f=df/dr=0v%3,f. From u®s,=0 ands?s,=1, it follows
that
whereh is the projection operator into the subspaceThe
second fundamental form, or extrinsic curvature&gfis de- ae(—p,t,0,00 in M~
fined by s.— o (39)
a2~ | e(—r,u,0,0) in MT,
0 ap=h5hV (cSq) - (30)
and

If v2 is the time-like, unit tangent t&, the metrich,, has

the further decomposition . )
a eNp,a’e At,0,0) in M,

. 2 a_ L
Nap= —vaUp+ Rap, 31 ST (=0, r+UuVv/ir,0,00 in M™. (39)
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The continuity conditions on the metric, Eg82) and In the limit R— o, for an asymptotically flat space-time with

(33), can now be rewritten as no incoming radiation, Eq49) reduces to the familiar Som-
. ) ) . merfeld condition if the right-hand side of E19) is set to
— a?t?+ e p2=—e(u?V/r +2ur) (40)  zero. However, unlike the Sommerfeld condition which is
only valid asymptotically, Eq(49) is anexactrelation, valid
and at any distance.
p=r=R, (41) For the momentum variabld, the procedure is different,

to avoid imposing continuity on higher derivatives At

respectively. Note that conditiof82) applies only ar =R,  Starting from the definitiodl=v°V,®, it is rewritten as
whereR is the surface-area radius of the matching surface.

R is taken to be constant &, hence the matching surface is [1+8%V,0=17V,0 (50)
invariant under the orbits of the spherical symmetry. which leads to the condition
An additional assumption adopted here is that the match-
ing surface does not move in coordinate space g=0) Ay 0P 0D
and that the coordinate time iM™ and M~ agree inX € H+%:a_r' ®D

(u=t). The metric continuity conditio40) then reduces to
The system of Eqsi42), (46), (49), and (51) completes
4 (42) the specification of the matching interface.

. . . V. TESTS AND RESULTS
with all functions evaluated at the matching surface.

Similarly, the continuity conditions on the extrinsic cur- A. Stability and accuracy tests
vature, Eqs(34) and(35), yield, respectively, The discretization algorithms in both domains, as well as
_ the implementation of the continuity conditions are all con-
[0%°Vas,] ™ =[0*"V 8] 43

structed by replacing derivatives by second order accurate,
centered finite differences. The matching surface lies at a
fixed coordinate location, which is a grid point of both the
[s®a,] =[s%a,]", (44)  p andr coordinate grids. This simple scheme leads to long
term numerical stability, which is not an automatic feature of
where a®=uPV,u? is the world tube “acceleration.” In a matching algorithnj10]. Here, long term stability is de-

and

spherical symmetry, conditiof3) reduces to fined as the bound evolution of initial data over time periods
. - large compared to the light crossing time of the inner com-
[s°VaR]"=[s"V.R]", (45  putational domain. This stability requirement is stronger than

classical Von-Neumann stability, which requires bound local
propagation of linearized modes. Such stability is becoming
more and more important in numerical relativity as the de-
sired integration times become longer. The CCM code devel-
(46) oped in this work exhibited stability for evolution times at
least three orders of magnitude larger than the light crossing
time.

In Fig. 1 a typical matched evolution is shown for initial
data with a relatively smalM/R ratio (0.08). The functional
dependence of the initial data is given in this case by a
Gaussian,

which can be rewritten using E¢39) explicitly in terms of
the metric functions as

a
oA

o<

(0]

at the matching surfack.

The condition(44) yields an equation fot from which
the coordinate timeg, or u, at2 can be solved in terms of
the proper timer. Alternatively,t(7) andu(7) can be ob-
tained from the normalization condition of of s2.

The matching of the scalar field variables across the two rd=re (1—1/o)? (52)
coordinate domains must ensure that neither the field values
nor the field derivatives exhibit jump discontinuities on thejth \ =0.0225, .= 2.0, ando=0.1. The left column shows

interface. That is, snapshots of the evolution in the Cauchy domain, with the
radial coordinatep running from the originp=0 to the

-— +
(] =[] (47 matching radiusp=1. The right column shows the corre-
and sponding null evolution, with the compactified radial coordi-
natex running from the matching radivs=0.5 to null in-
[13V, D] =[12V,®]" (48)  finity at x=1. The field variables illustrated in all snapshots

arep® andr ®, with the scale being constant for plots in the
for any vectorl?. It is convenient to choosé®=s®+v®  same row.
which is an outgoing null vector &. In this case, the con- The first row includes a few snapshots that follow an im-
tinuity equation at the matching surface becomes ploding pulse as it crosses the matching surface and propa-
gates into the Cauchy domain. Note that at this instance, an
inaccurate matching scheme would create back reflection
which would immediately register at null infinity. The appar-

b 9D Vb
+ae "—=

rF ap Rar (49
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oo | oot L -3.5 32 29 -26 2.3 2.0
€ o 2 o000 F log(4p)
001 | -0.01
002 002 |- FIG. 2. Convergence test for the energy residu. The grid
OO e o 10 %50 ot 070 080 090 100 size Ap refers to the Cauchy sector. The sequence of successive
P X higher resolutions maintains a fixed ratio of the null sector grid size

(Ar) to that of the Cauchy sector grid siz&£). The convergence
FIG. 1. CCM evolution. The left column depicts evolution in the rate for the demonstrated sequence of grid resolutions is 1.89. The
Cauchy domain, the right column shows the corresponding nullogarithm is to base 10.
evolution. The field variables illustrated apeb and r®, respec-
tively. For each row, the left-hand scale gives the amplitude in thawvhere M (u) is the Bondi mass content of the space-time
two domains. slice at timeu while P(u) is the power flow at infinity.
.AM is identically zero in the continuum limit and thus must

gnt vtvldtehnlndg_ffof th? pLéI.SeI fas |i_enters tge_ Ctzra]ucthy reg'()Tj.'tctonverge to zero appropriately as a function of the discreti-
ue to the different radial functions used in the two coordi-_, i - length-scalé.

hate ;’y.Stetr;]S acs Weril as thte do_ll_ﬁling of thde Iocaldpropag?ti?n The explicit forms of the Bondi madd and the radiated
speed in the Cauchy sector. The second row demonstral ! : . :
the propagation and reflection of tkmarginally subcritical f)%)werP In terms of metric quantities are given by
pulse off the origin. Strong nonlinear distortions occur there, 1 v
while the leading part of the pulse is already crossing the M(u)=-e 2Hr (—)
matching surface and radiating to null infinity. In the third 2 r
row, the peak of the pulse is propagating outward across the
matching surface; and the solution finally decays in the P(u)=—4me 2"Q?, (55)
fourth row, as the trailing parts of the pulse crass The ’
very slight curvature of the pulse in the null region, as thewhereH (u)=lim, ..\ (u,r) andQ(u)=lim, ..r®(u,r).
peak amplitude crosses the matching surface, indicates a |n Fig. 2 the convergence of the energy residual is dem-
small amount of backscattering occurring at this time. onstrated. A sequence of approximate solutions with pro-
Second order convergence of all computed quantities to gressively finer resolution are obtained. The initial d&i2)
limiting value is readily verified, e.g., by monitoring the final are prescribed in the null sector, while the Cauchy sector is
field configuration for a sequence of successively refinedaken to be flat initially. The Bondi mass is computed at the
grids. A more physically intuitive test, the conservation ofjnitial Bondi time u;=0 and at a fixed final Bondi time
the total energy of the system, is a powerful probe into how;,,=4.0, while the power integral is accumulatéd second
well the discretization of the Einstein equations preserveS thgrder accuracb/at each integra‘tion Step_ The Second Order
additional differential structure encoded in the Bianchi iden'convergence of the energy residua'y consistent with the sec-
tities. A test of the absolute convergence of the energy repnd order discretization of the component algorithms and the
sidual AM is performed for that purpose. The energy re-matching interface, is evidence of a successful matching of
sidual between two time levels, ,u, is defined as the two evolution schemes. The computational error in the
U mass and, most importantly, in the radiated power is directly
AM(uy,Uy)=M(uy)— M(u2)+f P(u)du, (53 iozntrolled by the grid spacing, and, in fact, diminishes as

ug

: (54)

oo
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x=1
tn

t=

ip=0 p=1
: < x=0.5

x=0

FIG. 3. The foliation of an asymptotically flat spherically sym- FIG. 4. The foliation of an asymptotically flat spherically sym-
metric space-time by outgoing null cones emanating from the orimetric space-time with a combination of spacelike and null hyper-
gin. The initial data have compact support outsideso that the  surfaces. Initial data for the comparison with the globally null code
inner region of the space-tim@ounded above b{) is flat. The  are given outside the matching surface. Flat Cauchy data in the
vertical and horizontal dotted lines give the location of the matchinginterior complete the specification of a physical system.
radius and the initial data surface of the comparison CCM run.

observer at the center of symmetry. This parametrization
B. Computing a space-time with two alternative foliations subsequently also labels the outgoing null cone foliation of

. . , , the outer region of the space-time, with the synchronization
A comparison of the numerical solution obtained by two, yerformed at the matching radius. In contrast, the time pa-

considerably different foliations of our model space-time is,;meter of the null foliation follows the proper time of the

illustrated next. First, a calibrated characteristic cot is central observer, directly labeling the outgoing null cones

used to obtain a global evolution of initial data CorreSpond'emanating from the center of symmetry. Before comparing

ing to an incoming wave with s_uppor_t outside a ra_ldi.usthe two signals(geey(t),gn(U)) they must be reparam-
X1=r1/(1+r4) (Fig. 3. This one-dimensional characteristic 4tizeq according to the asymptotic Bondi time.

evolution will supply the wave form of the outgoing radia- | 5 Bondi frame, geodesic observers would measure an

tion coming back out to future nyll infinity. Singe the in.itial asymptotically Lorentzian line element, which in the charac-
data have compact support outside the space-time portion  ;aristic coordinate system is

delimited by the initial time §=0) surface, the origin world
line x=0 and the incoming null con€ (beginning atx,) ds?=—du 2—2dudr+r?(d6?+sirfed¢?).  (56)
will be flat.

Next, the CCM code, with a matching radius at The Bondi timeu is related to the coordinate time of a
x=1/2<x,, is used to evolve the same characteristic datageneral null cone foliation by the factor
along with flat-space Cauchy data on the initial tinte= Q)
surface(Fig. 4). The incoming pulse enters the Cauchy re- d'ﬁ_ 2H(U)

. . . . . . — =g
gion across the matching surface in the inward direction, du '
then gets Cauchy evolved until it leaves the matching surface
in the outward direction and ends up at future null infinity. defined following Eq.(55).
This test compares the wave forms at null infinity produced In Fig. 5 the signals at null infinity and their difference are
by a global null code and by a CCM code. Theoretically, theshown as a function of Bondi time. The initidharacteris-
general covariance of the equations guarantees that the odic) data are
put should be identical. In practice, this test checks a com-
bined algorithm(CCM) against a well-calibrated scheme, ®=Ar2e T sinkr (58)
i.e., the one produced by the global null algorithm.

The wave forms are compared at null infinity, as would bewith the parameters for this plot beingh=6x10*,
measured by asymptotiBondi) observers. However, the r.=3.0,0=0.6, andk=10. This value of\ is just below the
time coordinates are considerably different for the two evothreshold of black-hole formatiofwhich occurs at about
lution schemes. In the CCM approach, the central time paA =6.125<10 %) and leads to the strong distortion of the
rametrizes the spacelike foliation with the proper time of ansignal in the second half of the pulse. The signals obtained

(57)
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0.0 2.0 4.0 6.0 8.0 10.0 FIG. 6. CCM evolution and black-hole formation. The evolution
Bondi Time of sufficiently strong Gaussian initial data leads to the formation of

an apparent horizon, in this case at abeat0.8 (x=0.45). This is
FIG. 5. Comparison of null and CCM evolutions in the case ofjust marginally inside the matching radius @1 (x=0.5). The
subcritical initial data. The upper plot demonstrates the nearly idenincoming Gaussian puldeight side of the plotpropagates inwards

tical signal at null infinity. The solid line shows the signal output of (to the lefy, crosses the matching surface, and collapses, forming a
the CCM code, while the circles indicate the corresponding nullcusplike profile.

code output at the same Bondi time. The lower plot highlights the

difference in the signals. The signal difference for a CCM grid of | practice, the evolution of the system cannot proceed
500+500 points and a null grid of 1000 points, is illustrated by the accurately long after the black hole has formed. The use of a
circle. line. The diamond line shows the se.con.d order reduction of,iface area coordinate leads to a coordinate singularity
the difference when the resolution of all grids is doubled. inside the horizo12] and the premise of the validity of the
finite difference approximation breaks down. This is re-
with the two codes overlayed as functions of Bondi timeflected, for example, in the breakdown of the convergence
show little difference to graphical accuracy, a manifestatiorproperties of the algorithm. Nevertheless, the matching pro-
of physical covariance and algorithmic compliance. The gridcedure is sufficiently accurate to allow an investigation of
sizes used for this run were 586®00 points for the CCM black-hole formation quite close to the matching surface.
code, and 1000 for the null code. The relative differenceThe mass of the black hole, and consequently Nhg,/R
between the two signals for those resolutions is at the levatatio, is controlled directly by the parametrization of the ini-
of 0.1%. The maximum absolute value difference betweertial data)
the two signals over the total integration time provides a Figure 6 shows the evolution of a strong Gaussian pulse,
strong and physically interesting norm. This norm converge¢eading to a black hole that has a mass only slightly smaller
to zero with a measured rate of 1.99, consistent with thehan the mass scale set by the matching radRis 1). For
anticipated second order convergence. demonstration purposes, the radial coordinate also com-
The investigation is now extended to strong field phenomypactified here, and the field functions are shown as if they
ena, with the study of initial data that end up in the formationwere defined on a single grid. The highly nonlinear pulse
of a black hole. In the Cauchy region, black-hole formationcreates strongly back-scattered radiation as it propagates in-
is signaled when e**—~x and the function wards, but not enough to avoid a black-hole collapse. The
2m/r=1—e ?A—1 at some radiuRgy. The mass of the discontinuity of the field derivatives at the location of the
black hole is therMgy=2Rg,,. Alternatively, the behavior horizon is prominent in the late time snapshot.
of the lapse function, or the scalar field values themselves, Figure 7 displays the effects of black-hole formation on
can be used for similar estimates. In comparison, the formathe time development of the wave form and of the Bondi
tion of the black hole in the null region is signaled by the mass. The initial data for those runs are given by &®)
infinite redshift between Bondi time and coordinate time forwith the amplitude A increased progressively from
all r>Rgy, and the resulting decay of further radiative loss5.50< 10" 4 to 6.25<x10 * in three steps. Up until Bondi
to infinity. The final value of the Bondi mass is then equal totime of about 7.0, an increase in the amplitude of the initial
Mgy - data leads to a near linear increase of the initial niksger
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0.02 ; . . : Bondi mass either drops to zero for an asymptotically
Minkowskian space-time, or coasts to a constant value that
represents the mass of the newly formed black hole.

0.01 -

o VI. CONCLUSION

a

§ 0.00 ] The model problem of the self-gravitating scalar field pro-
= vides a convenient framework for the study of the CCM
& research program in a controlled situation. It has been dem-

001 - 4 onstrated here that the matched evolution is essentially trans-
parent to the presence of the interface. The target&lpf
clearly identified radiative quantities ari@) physically ac-

0.02 ; ‘ : ; | curate boundary conditions are achieved in this case with
minimal computational and developmental effort. Direct ap-

0.07 | plication of the continuity conditions at the matching inter-
face leads to a stable and accurate mixed evolution algorithm

) for all relevantM/R ratios. Although idealized, this model

§ 005 il problem captures many essential physical aspects of more
- generic asymptotically flat space-times. It is expected that
g 0.03 i the geometrical approach and the algorithmic methodology
= initiated here are applicable and useful in more realistic

001 problems, and work is currently under way exploring this
possibility.
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