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Cauchy-characteristic evolution of Einstein-Klein-Gordon systems
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A Cauchy-characteristic initial value problem for the Einstein-Klein-Gordon system with spherical symme-
try is presented. Initial data are specified on the union of a spacelike and null hypersurface. The developmen
of the data is obtained with the combination of a constrained Cauchy evolution in the interior domain and a
characteristic evolution in the exterior, asymptotically flat region. The matching interface between the space-
like and characteristic foliations is constructed by imposing continuity conditions on metric, extrinsic curva-
ture, and scalar field variables, ensuring smoothness across the matching surface. The accuracy of the meth
is established for all ranges ofM /R, most notably, with a detailed comparison of invariant observables against
reference solutions obtained with a calibrated, global, null algorithm.@S0556-2821~96!01120-4#

PACS number~s!: 04.30.Nk, 04.25.Dm, 04.40.Nr
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I. INTRODUCTION

The correct physical formulation of any asymptotical
flat, radiative Cauchy problem requires boundary conditio
at spatial infinity. These conditions ensure not only that to
energy and the energy loss by radiation are both finite,
they are also responsible for the proper 1/r asymptotic falloff
of the radiation fields. However, when treating radiative sy
tems computationally, an outer boundary must be establis
artificially at some large but finite distance in the wave zon
i.e., many wavelengths from the source. Imposing an ac
rate radiation boundary condition at a finite distance is
difficult task even in the case of simple radiative system
evolving on a fixed geometric background. The problem
exacerbated when dealing with the Einstein equations.

In recent years, the characteristic initial value proble
~cIVP! formulation of the Einstein equations in nonsphe
cally symmetric configurations@1,2# has been explored, pro
viding possible alternatives to the practical and theoreti
problems introduced by the outer boundary conditions of
Cauchy initial value problem~CIVP!. Based on the concep
of combined Cauchy-characteristic evolution, a number
systems are currently under investigation. The motivat
behind these new formulations of the initial value problem
to capture the advantages that each approach exhibits an
the same time avoid some of the corresponding drawba
The CIVP permits the construction of integration algorithm
that allow null infinity to be included in a compactified grid
hence facilitating and clarifying the extraction of radiatio
However, characteristic formulations generally break do
in regions of complicated caustic structure, which are u
avoidable in strongly asymmetric geometries such as th
describing the merger of two black holes. Cauchy evolutio
avoid this problem, yet they provide no natural way to im
pose conditions at the outer boundary. Since each met
operates successfully precisely in the region where the o
has its shortcomings, an appropriate matching of the t
initial value formulations promises an effective approach
the outer boundary condition and the caustic problem.

The general idea behind the Cauchy-characteristic ma
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ing ~CCM! is not entirely new. An early mathematical inves
tigation exhibiting unions of spacelike and characteristic s
faces was given in@3#. Regarding general relativistic
systems, a discussion of the potential of the method appe
in @4#. The concept of a null exterior attached to a Cauc
evolution appears also in connection with perturbative a
proaches to the outer boundary problem, e.g., in@5# as well
as in @6#. Yet, only recently@7–10#, has the concept been
carefully explored with respect to its practicability. A de
tailed study of the stability and accuracy of CCM for linea
and nonlinear wave equations has been presented in@10,11#,
illustrating its potential for a wide range of wave system
The numerical investigation of cylindrically symmetric solu
tions of the Einstein equations has also been carried
@4,9#.

The objective of this paper is to develop and carefu
calibrate the CCM method for asymptotically flat, sphe
cally symmetric space-times, which are evolving in the pre
ence of a minimally coupled, self-gravitating, massless sca
field. This is an initial step towards developing a gene
method applicable to the full Einstein equations. Research
this topic is stimulated and guided by the requirements of
Binary Black Hole Grand Challenge Alliance, a major co
laboration aimed at the investigation of the merger of tw
in-spiraling black holes. The CCM approach will provide, i
this context, both boundary conditions and radiation wa
form extraction. The model problem investigated herein ca
tures some essential aspects of the general system, inclu
wave propagation on dynamical backgrounds and black-h
formation. The dynamics of the model is governed by t
coupled Einstein-Klein-Gordon equations in spherical sy
metry,

Gab5k~¹aF¹bF1Lgab!, ~1!

and

¹a¹
aF50, ~2!

whereF is a scalar field whose Lagrangian is
4719 © 1996 The American Physical Society
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L52
1

2
¹aF¹aF ~3!

andk58p. ~Units are chosen so thatG5c51.! Space-time
indices are denoted with Latin letters (a,b,c, . . . ) andspace
indices with (i , j ,k, . . . ).

This system has been studied intensively in the last fi
years both analytically@12# and numerically@13–17#. The
existent understanding of the system is quite appropriate
the exploration and calibration of the combined evolution
done in a nontrivial geometric setting, yet with good bas
knowledge of the expected physical behavior.

The interior foliation and the associated integration alg
rithm are presented in Sec. II. The time integration is ana
gous to that used by Choptuik@18#, the main difference be-
ing a different choice of boundary conditions. Section
describes the characteristic evolution algorithm. The meth
closely follows @13#, with minor changes to accommodat
the matching interface. In Sec. IV the geometric conce
underlying the matching theory are discussed, and a num
of simplifying assumptions are put forward, which lead to
simple set of matching conditions for the problem at han
The implementation of the combined evolution, along wi
validation tests, and numerical experiments covering a w
range of methodologies and physical parameters are give
Sec. V.

II. INTERIOR DOMAIN: CAUCHY EVOLUTION

For the interior ~Cauchy! domain M2 of the four-
dimensional space-time, Einstein’s equations will be writt
using a standard 311 Arnowitt-Deser-Misner~ADM ! de-
composition. Generally, a foliation of spacelike slices~hy-
persurfaces! is constructed and labeled by a scalar functi
t. The unit normal to these slices isna. By construction,
na52a¹at, wherea is the lapse function. The intrinsic
metric on each slice is then given bygab5gab1nanb . The
vectorana connects the slices of the foliation; however, th
time vector is not unique. In general, the vectorta can be
chosen asta5ana1ba where ba is the shift vector and
bana50. Adopting this decomposition, the four-dimension
metric element in the case of spherically symmetric spa
times reduces to the 311 form

ds25~2a21b2e22A!dt212bdtdr1e2Adr2

1r2e2B~du21sin2udf2!, ~4!

where b[br is the only nonzero component of the shi
vector, and the metric on the spacelike hypersurfaces ta
the form g i j5diag(e2A,r2e2B,r2e2Bsin2u). All the metric
coefficients are functions only ofr and t. The dynamical
quantities in the 311 initial value formulation are the intrin-
sic metricgab , and the extrinsic curvatureKab , of the slices.
In spherical symmetry, the extrinsic curvature has only tw
independent components:Kj

i5diag(HA ,HB ,HB).
The spatial projections of Einstein’s equations lead to t

evolution equations for the spatial tensorsg i j and
Kj
i5g ikKk j :

A,t52aHA1e22A~b ,r2bA,r!, ~5!
ve
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B,t52aHB1e22AbS 1r 1B,rD , ~6!

HA,t5e22A@aRrr1bHA,r2a ,rr1A,ra ,r#1aHAK

2k@e22A~F ,r!2#, ~7!

HB,t5e22AFaS e2A22B

r2 DRuu1bHB,r2a ,rS 1r 1B,rD G
1aHBK, ~8!

whereK denotes the traceKi
i of the extrinsic curvature.

The time-time and time-space projections of the Ein
stein’s equations yield, respectively, the Hamiltonian an
momentum constraints

1

2
Rrr1

e2A22B

r2
Ruu1e2AHB~HB12HA!

5
1

2
k@~F ,r!21e2AP2# ~9!

and

HB,r1S 1r 1B,rD ~HB2HA!5
1

2
kPF ,r , ~10!

whereRrr andRuu are the three-Ricci components given b

1

2
Rrr52B,rr1

1

r
~A,r22B,r!1B,r~A,r2B,r!, ~11!

e2A22B

r2
Ruu52B,rr1

1

r
~A,r24B,r!1B,r~A,r22B,r!

1
1

r2
~e2A22B21!. ~12!

Finally, the 311, first order in time, form of the Klein-
Gordon equation~2! is

F ,t5aP1e22AbF ,r , ~13!

P ,t5e22AH aF 1r2 ~r2F ,r! ,r1~2B,r2A,r!F ,r1e2AKP G
1a ,rF ,r1bP ,rJ . ~14!

The geometry evolution equations~5!–~8! together with
the matter evolution equations~13! and ~14! constitute an
initial value problem for the quantitiesA,B,HA ,HB ,F,P.
The initial data for the IVP must satisfy the constraints~9!
and ~10!. Obtaining the development of the initial data re
quires, furthermore, the specification of the gauge functio
a and b. Ideally, the time integration of the IVP defined
above should put no restrictions on either the form of th
metric or the gauge functions. Yet the use of spherical coo
dinates, mandated by the Killing symmetries~and also com-
putationally efficient!, significantly limits the freedom to
choose the space-time slicing. For example, the simplest p
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sible gauge, the geodesic or synchronous gau
(a51,b50), leads to a coupled system of equations for t
geometric variablesA,B,HA ,HB . Formulating this problem
as a set of second order equations forA,B reveals a dynami-
cal structure that is not that of a wave system. In practi
this leads to considerable difficulties in preserving the app
priate regularity of the geometry near the origin. Such reg
larity is analytically ensured by cancellations of 1/r terms
both explicitly in the right-hand side of the evolution equ
tions and implicitly by the enforcement of the constraints.

A gauge choice that overcomes the regularity problems
the origin is the radial gauge, in whichr is chosen such that
the area of eachdt5dr50 sphere is equal to 4pr2, which
leads to the conditionB50. The integration procedure out
lined below also assumes a vanishing shift condition, but c
be generalized for arbitrary shift.

The line element~4! with B5b50 becomes

ds252a2dt21e2Adr21r2~du21sin2udf2!. ~15!

As an immediate consequence ofB5b50, Eq. ~6! im-
plies thatHB also vanishes, and Eq.~8! for HB,t gives a
condition on the lapse function:

a ,r2FA,r1
1

r
~e2A21!Ga50. ~16!

Furthermore, Eqs.~5! and ~7! reduce to

A,t52aHA , ~17!

HA,t5e22AF2r aA,r2a ,rr1A,ra ,rG1aHA
22ke22A~F ,r!2.

~18!

With the conditionsB5HB50, the Hamiltonian and mo-
mentum constraints are now decoupled equations relating
metric functionA and its associated extrinsic curvatureHA
to the scalar field energy density and current, respectivel

A,r1
1

2r
~e2A21!5

1

2
kr@~F ,r!21e2AP2#, ~19!

HA52
1

2
krPF ,r . ~20!

Finally, the scalar field equations, in this gauge, take
form

F ,t5aP, ~21!

P ,t5ae2AF 1r2 ~r2F ,r! ,r2
A,r

2
F ,r1eAHAPG1e2Aa ,rF ,r .

~22!

In summary, the lapse function is determined by the co
dition ~16!. The remaining gravitational variables (A and
HA) can be constructed from a subset of the evolution eq
tions ~17! and ~18! and constraint equations~19! and ~20!.
Different integration schemes can be designed depending
which two equations are chosen from~17!–~20! to solve for
A andHA . For instance, a free, unconstrained evolution co
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sists of using Eqs.~17! and ~18!. On the other hand, a fully
constrained evolution would require solving the Hamiltonian
constraint~19!, with the extrinsic curvatureHA computed
from the source terms using Eq.~20!. Alternatively, a mixed
scheme can be followed, withHA again given by Eq.~20!,
while the metric variable is updated using Eq.~17!, subject
again to the lapse condition. Still other alternative scheme
involving combinations of Eqs.~17!–~20! are possible. A
fully constrained evolution is adopted here since it has bee
used in earlier accurate calculations of scalar wave collap
@16# and facilitates enforcing a regular metric boundary con
dition at the origin.

In order to complete the IVP, specific boundary condi
tions for the scalar field variablesF,P at both ends of the
integration domain must be prescribed, along with integra
tion constants for the hypersurface equations~19! and ~16!.
The scalar field variables must be finite atr50, and thus the
appropriate boundary conditions at this point are
rF5rP50. The outer boundary conditions for these vari
ables are well understood only in the limitr→`, where
rigorous outgoing wave conditions exist. Imposing a bound
ary condition at any finiter involves a certainphysicalap-
proximation. Achieving a complete solution of the IVP with-
out such additional assumptions is indeed the main focus
the CCM program, and the details are given in Sec. IV.

The prescription of the integration constants for the hy
persurface equations at some pointr0 relates the labeling of
the time and radial coordinates with the proper time an
radial distance measurements of a privileged observer. Tw
obvious choices are geodesic observers, either at the cen
of symmetry, or at the outer boundary. While the choice doe
not have any consequences on physical observables, it
more natural for our integration procedure to assume a ge
detic observer at the center of symmetry, and hence to r
quire thatA5a50 there. In fact, this choice is well suited
for the study of critical collapse as well, where the self
similar critical solution@15# manifests itself in terms of the
proper time of an observer at the origin.

III. EXTERIOR DOMAIN:
CHARACTERISTIC EVOLUTION

For the exterior characteristic evolution, a family of null
hypersurfacesu5const is introduced, emanating along the
outward normals to the cross sections of the matching wor
tube and labeled byu5t. The outgoing null rays are param-
etrized by an area coordinater , with r5R at the matching
world tube. The coordinatex5r /(R1r ) is introduced for
purposes of compactification, so that null infinity is located
at x51. ~In the numerical simulations to be presented late
we set the scale so thatR51 and consequentlyx51/2 at the
matching world tube.! In the null coordinate system, the line
element in the exterior region has the form@13#

ds252e2lduSVr du12dr D1r 2~du21sin2udf2!,

~23!

where the metric functionsl andV depend only onu and
r .

The hypersurface equations forl andV are



i-

e

i-

o

4722 54GÓMEZ, LAGUNA, PAPADOPOULOS, AND WINICOUR
l ,r52pr ~F ,r !
2 ~24!

and

V,r5e2l. ~25!

The scalar wave equation in the characteristic region ta
the form

2~rF ,u! ,r51r ~rVF ,r ! ,r . ~26!

In terms of the intrinsic metric of the (u,r ) submanifold,

habdx
adxb52e2lduSVr du12dr D , ~27!

where the greek indices take the values (0,1), this reduce

h ~2!g5
e22lg

r SVr D
,r

, ~28!

whereg5rF andh (2) is the D’Alembertian associated with
hab .

The integration of the system~24!–~26! proceeds with the
specification of initial dataF(u0 ,r ) for r.R on the initial
null coneu0. The hypersurface equations are integrated
dially and furnish compatible geometric functionsl andV.
This, in turn, allows the time integration of the scalar fie
equation, which provides new data in the neighborho
u01du and completes the integration cycle. The extra info
mation needed to evolve the space-time is the character
initial data F(u,R) at the inner boundary, as well as th
boundary valuesl(u,R) andV(u,R). A characteristic inte-
gration algorithm for Eq.~28! may be based upon the nu
parallelogram made up of incoming and outgoing rad
characteristics@19,2#.

IV. CAUCHY-CHARACTERISTIC MATCHING

The match is performed across a three-dimensional, tim
like hypersurfaceS ~world tube!, which divides the four-
dimensional space-time into two disjoint sub-manifoldsM1

~characteristic exterior! andM2 ~Cauchy interior!. Each sub-
manifoldM6 is endowed with a metricgab

6 that induces a
unique intrinsic geometry atS. Independent coordinate
charts$xa%6 are introduced inM6. Let sa be the space-like,
unit normal toS directed fromM2 to M1. The metric in-
trinsic toS, is then given by

hab5gab2sasb , ~29!

wherehb
a is the projection operator into the subspaceS. The

second fundamental form, or extrinsic curvature ofS, is de-
fined by

Qab5ha
chb

d¹~csd! . ~30!

If va is the time-like, unit tangent toS, the metrichab has
the further decomposition

hab52vavb1R2qab , ~31!
kes

s to

ra-

ld
od
r-
istic
e

ll
ial

e-

where qab is the unit sphere metric. The metric tensors
hab ,qab and the vectorss

a,va satisfy the following orthogo-
nality conditions:sahab5saqab5vaqab5sava50.

The metric continuity requirement can be recast as cond
tions on the induced norm of the tangent vectorva on S,

@vavbgab#
25@vavbgab#

1 ~32!

and the surface-area radius,

@qabgab#
25@qabgab#

1. ~33!

In addition to the continuity of the metric acrossS, in order
to prevent sheet discontinuities~singular hypersurfaces!, the
following conditions on the extrinsic curvature must be im-
posed@20#:

@vavbQab#
25@vavbQab#

1 ~34!

and

@qabQab#
25@qabQab#

1. ~35!

Equations~32!–~35! should be understood as a limit process.
Namely, for any tensorAab , the continuity condition
@Aab#

25@Aab#
1 implies

lim
Q→P2

Aab
2 ~Q!5 lim

O→P1

Aab
1 ~O!, ~36!

whereP6PS6 andQ→P2, O→P1, throughM2,M1, re-
spectively. The continuity condition~36! has meaning only if
there exists a mappingM:S2→S1 which transforms tensor
components between the two coordinate systems.

In the spherically symmetric case under consideration, th
coordinate systems$t,r,u,f% in M2 and $u,r ,u,f% in M1

are introduced. Because of the symmetry, the same coord
natesu andf are used everywhere throughoutM6. This is
not the case with the radial coordinate. In general,r and r
are not the same. The line elements inM6 are given by Eqs.
~15! and~23!, respectively. The tangent vector toS in these
coordinates is

va5
dxa

dt
[ ẋa5H ~ ṫ ,ṙ,0,0! in M2,

~ u̇, ṙ ,0,0! in M1. ~37!

In this section, an overdot denotes derivative with respect t
the proper time t along the world tubeS. That is
ḟ[d f /dt5va]af . From uasa50 and sasa51, it follows
that

sa5H aeA~2 ṙ, ṫ ,0,0! in M2,

e2l~2 ṙ ,u̇,0,0! in M1, ~38!

and

sa5H a21eA~ ṙ,a2e2Aṫ ,0,0! in M2,

~2u̇, ṙ1u̇V/r ,0,0! in M1. ~39!
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The continuity conditions on the metric, Eqs.~32! and
~33!, can now be rewritten as

2a2 ṫ21e2Aṙ252e2l~ u̇2V/r12u̇ṙ ! ~40!

and

r5r[R, ~41!

respectively. Note that condition~32! applies only atr5R,
whereR is the surface-area radius of the matching surfa
R is taken to be constant onS, hence the matching surface i
invariant under the orbits of the spherical symmetry.

An additional assumption adopted here is that the mat
ing surface does not move in coordinate space (ṙ5 ṙ50)
and that the coordinate time inM1 and M2 agree inS
(u5t). The metric continuity condition~40! then reduces to

a25e2l
V

R
, ~42!

with all functions evaluated at the matching surface.
Similarly, the continuity conditions on the extrinsic cu

vature, Eqs.~34! and ~35!, yield, respectively,

@qab¹asb#
25@qab¹asb#

1 ~43!

and

@saaa#
25@saaa#

1, ~44!

where aa5ub¹bu
a is the world tube ‘‘acceleration.’’ In

spherical symmetry, condition~43! reduces to

@sa¹aR#15@sa¹aR#2, ~45!

which can be rewritten using Eq.~39! explicitly in terms of
the metric functions as

a

eA
5
V

R
, ~46!

at the matching surfaceS.
The condition~44! yields an equation forẗ from which

the coordinate times,t or u, at S can be solved in terms of
the proper timet. Alternatively, t(t) and u(t) can be ob-
tained from the normalization condition ofva of sa.

The matching of the scalar field variables across the t
coordinate domains must ensure that neither the field val
nor the field derivatives exhibit jump discontinuities on th
interface. That is,

@F#25@F#1 ~47!

and

@ l a¹aF#25@ l a¹aF#1 ~48!

for any vector l a. It is convenient to choosel a5sa1va,
which is an outgoing null vector atS. In this case, the con-
tinuity equation at the matching surface becomes

]F

]t
1ae2A

]F

]r
5
V

R

]F

]r
. ~49!
ce.
s
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In the limit R→`, for an asymptotically flat space-time with
no incoming radiation, Eq.~49! reduces to the familiar Som-
merfeld condition if the right-hand side of Eq.~49! is set to
zero. However, unlike the Sommerfeld condition which i
only valid asymptotically, Eq.~49! is anexactrelation, valid
at any distance.

For the momentum variableP, the procedure is different,
to avoid imposing continuity on higher derivatives atS.
Starting from the definitionP5va¹aF, it is rewritten as

P1sa¹aF5 l a¹aF ~50!

which leads to the condition

eAP1
]F

]r
5

]F

]r
. ~51!

The system of Eqs.~42!, ~46!, ~49!, and ~51! completes
the specification of the matching interface.

V. TESTS AND RESULTS

A. Stability and accuracy tests

The discretization algorithms in both domains, as well a
the implementation of the continuity conditions are all con
structed by replacing derivatives by second order accura
centered finite differences. The matching surface lies at
fixed coordinate location, which is a grid point of both the
r and r coordinate grids. This simple scheme leads to lon
term numerical stability, which is not an automatic feature o
a matching algorithm@10#. Here, long term stability is de-
fined as the bound evolution of initial data over time period
large compared to the light crossing time of the inner com
putational domain. This stability requirement is stronger tha
classical Von-Neumann stability, which requires bound loc
propagation of linearized modes. Such stability is becomin
more and more important in numerical relativity as the de
sired integration times become longer. The CCM code dev
oped in this work exhibited stability for evolution times a
least three orders of magnitude larger than the light crossi
time.

In Fig. 1 a typical matched evolution is shown for initia
data with a relatively smallM /R ratio (0.08). The functional
dependence of the initial data is given in this case by
Gaussian,

rF5le2~~r2r c!/s!2 ~52!

with l50.0225,r c52.0, ands50.1. The left column shows
snapshots of the evolution in the Cauchy domain, with th
radial coordinater running from the originr50 to the
matching radiusr51. The right column shows the corre-
sponding null evolution, with the compactified radial coordi
natex running from the matching radiusx50.5 to null in-
finity at x51. The field variables illustrated in all snapshot
arerF andrF, with the scale being constant for plots in the
same row.

The first row includes a few snapshots that follow an im
ploding pulse as it crosses the matching surface and pro
gates into the Cauchy domain. Note that at this instance,
inaccurate matching scheme would create back reflecti
which would immediately register at null infinity. The appar
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ent widening of the pulse as it enters the Cauchy region
due to the different radial functions used in the two coord
nate systems as well as the doubling of the local propaga
speed in the Cauchy sector. The second row demonstr
the propagation and reflection of the~marginally subcritical!
pulse off the origin. Strong nonlinear distortions occur the
while the leading part of the pulse is already crossing t
matching surface and radiating to null infinity. In the thir
row, the peak of the pulse is propagating outward across
matching surface; and the solution finally decays in t
fourth row, as the trailing parts of the pulse crossS. The
very slight curvature of the pulse in the null region, as t
peak amplitude crosses the matching surface, indicate
small amount of backscattering occurring at this time.

Second order convergence of all computed quantities t
limiting value is readily verified, e.g., by monitoring the fina
field configuration for a sequence of successively refin
grids. A more physically intuitive test, the conservation
the total energy of the system, is a powerful probe into h
well the discretization of the Einstein equations preserves
additional differential structure encoded in the Bianchi ide
tities. A test of the absolute convergence of the energy
sidual DM is performed for that purpose. The energy r
sidual between two time levelsu1 ,u2 is defined as

DM ~u1 ,u2!5M ~u1!2M ~u2!1E
u1

u2
P~u!du, ~53!

FIG. 1. CCM evolution. The left column depicts evolution in th
Cauchy domain, the right column shows the corresponding n
evolution. The field variables illustrated arerF and rF, respec-
tively. For each row, the left-hand scale gives the amplitude in
two domains.
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whereM (u) is the Bondi mass content of the space-time
slice at timeu while P(u) is the power flow at infinity.
DM is identically zero in the continuum limit and thus must
converge to zero appropriately as a function of the discret
zation length-scaleD.

The explicit forms of the Bondi massM and the radiated
powerP in terms of metric quantities are given by

M ~u!5
1

2
e22Hr 2SVr D

,r
U

`

, ~54!

P~u!524pe22HQ,u
2 , ~55!

whereH(u)5 limr→`l(u,r ) andQ(u)5 limr→`rF(u,r ).
In Fig. 2 the convergence of the energy residual is dem

onstrated. A sequence of approximate solutions with pro
gressively finer resolution are obtained. The initial data~52!
are prescribed in the null sector, while the Cauchy sector
taken to be flat initially. The Bondi mass is computed at th
initial Bondi time u150 and at a fixed final Bondi time
u254.0, while the power integral is accumulated~to second
order accuracy! at each integration step. The second orde
convergence of the energy residual, consistent with the se
ond order discretization of the component algorithms and th
matching interface, is evidence of a successful matching
the two evolution schemes. The computational error in th
mass and, most importantly, in the radiated power is direct
controlled by the grid spacingD, and, in fact, diminishes as
D2.
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FIG. 2. Convergence test for the energy residualDM . The grid
sizeDr refers to the Cauchy sector. The sequence of success
higher resolutions maintains a fixed ratio of the null sector grid siz
(Dr ) to that of the Cauchy sector grid size (Dr). The convergence
rate for the demonstrated sequence of grid resolutions is 1.89. T
logarithm is to base 10.
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B. Computing a space-time with two alternative foliations

A comparison of the numerical solution obtained by tw
considerably different foliations of our model space-time
illustrated next. First, a calibrated characteristic code@16# is
used to obtain a global evolution of initial data correspon
ing to an incoming wave with support outside a radi
x15r 1 /(11r 1) ~Fig. 3!. This one-dimensional characteristi
evolution will supply the wave form of the outgoing radia
tion coming back out to future null infinity. Since the initia
data have compact support outsidex1, the space-time portion
delimited by the initial time (u50) surface, the origin world
line x50 and the incoming null coneC ~beginning atx1)
will be flat.

Next, the CCM code, with a matching radius a
x51/2,x1, is used to evolve the same characteristic da
along with flat-space Cauchy data on the initial time (t50)
surface~Fig. 4!. The incoming pulse enters the Cauchy r
gion across the matching surface in the inward directio
then gets Cauchy evolved until it leaves the matching surf
in the outward direction and ends up at future null infinit
This test compares the wave forms at null infinity produc
by a global null code and by a CCM code. Theoretically, t
general covariance of the equations guarantees that the
put should be identical. In practice, this test checks a co
bined algorithm~CCM! against a well-calibrated scheme
i.e., the one produced by the global null algorithm.

The wave forms are compared at null infinity, as would
measured by asymptotic~Bondi! observers. However, the
time coordinates are considerably different for the two ev
lution schemes. In the CCM approach, the central time
rametrizes the spacelike foliation with the proper time of

FIG. 3. The foliation of an asymptotically flat spherically sym
metric space-time by outgoing null cones emanating from the o
gin. The initial data have compact support outsidex1 so that the
inner region of the space-time~bounded above byC) is flat. The
vertical and horizontal dotted lines give the location of the match
radius and the initial data surface of the comparison CCM run.
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observer at the center of symmetry. This parametrizatio
subsequently also labels the outgoing null cone foliation
the outer region of the space-time, with the synchronizatio
performed at the matching radius. In contrast, the time p
rameter of the null foliation follows the proper time of the
central observer, directly labeling the outgoing null cone
emanating from the center of symmetry. Before comparin
the two signals„gCCM(t),gN(u)… they must be reparam-
etrized according to the asymptotic Bondi time.

In a Bondi frame, geodesic observers would measure
asymptotically Lorentzian line element, which in the charac
teristic coordinate system is

ds252dũ 222dũdr1r 2~du21sin2udf2!. ~56!

The Bondi timeũ is related to the coordinate timeu of a
general null cone foliation by the factor

dũ

du
5e2H~u!, ~57!

defined following Eq.~55!.
In Fig. 5 the signals at null infinity and their difference are

shown as a function of Bondi time. The initial~characteris-
tic! data are

F5Lr 2e2~r2r c!2/s2sinkr ~58!

with the parameters for this plot beingL5631024,
r c53.0,s50.6, andk510. This value ofL is just below the
threshold of black-hole formation~which occurs at about
L56.12531024) and leads to the strong distortion of the
signal in the second half of the pulse. The signals obtain

-
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FIG. 4. The foliation of an asymptotically flat spherically sym
metric space-time with a combination of spacelike and null hype
surfaces. Initial data for the comparison with the globally null cod
are given outside the matching surface. Flat Cauchy data in t
interior complete the specification of a physical system.
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with the two codes overlayed as functions of Bondi tim
show little difference to graphical accuracy, a manifestati
of physical covariance and algorithmic compliance. The g
sizes used for this run were 5001500 points for the CCM
code, and 1000 for the null code. The relative differen
between the two signals for those resolutions is at the le
of 0.1%. The maximum absolute value difference betwe
the two signals over the total integration time provides
strong and physically interesting norm. This norm converg
to zero with a measured rate of 1.99, consistent with
anticipated second order convergence.

The investigation is now extended to strong field pheno
ena, with the study of initial data that end up in the formati
of a black hole. In the Cauchy region, black-hole formatio
is signaled when e2A→` and the function
2m/r512e22A→1 at some radiusRBH . The mass of the
black hole is thenMBH52RBH . Alternatively, the behavior
of the lapse function, or the scalar field values themselv
can be used for similar estimates. In comparison, the form
tion of the black hole in the null region is signaled by th
infinite redshift between Bondi time and coordinate time f
all r.RBH , and the resulting decay of further radiative lo
to infinity. The final value of the Bondi mass is then equal
MBH .

FIG. 5. Comparison of null and CCM evolutions in the case
subcritical initial data. The upper plot demonstrates the nearly id
tical signal at null infinity. The solid line shows the signal output
the CCM code, while the circles indicate the corresponding n
code output at the same Bondi time. The lower plot highlights t
difference in the signals. The signal difference for a CCM grid
5001500 points and a null grid of 1000 points, is illustrated by th
circle line. The diamond line shows the second order reduction
the difference when the resolution of all grids is doubled.
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In practice, the evolution of the system cannot procee
accurately long after the black hole has formed. The use of
surface area coordinater leads to a coordinate singularity
inside the horizon@12# and the premise of the validity of the
finite difference approximation breaks down. This is re
flected, for example, in the breakdown of the convergenc
properties of the algorithm. Nevertheless, the matching pr
cedure is sufficiently accurate to allow an investigation o
black-hole formation quite close to the matching surface
~The mass of the black hole, and consequently theMBH /R
ratio, is controlled directly by the parametrization of the ini-
tial data.!

Figure 6 shows the evolution of a strong Gaussian puls
leading to a black hole that has a mass only slightly smalle
than the mass scale set by the matching radius (R51). For
demonstration purposes, the radial coordinater is also com-
pactified here, and the field functions are shown as if the
were defined on a single grid. The highly nonlinear puls
creates strongly back-scattered radiation as it propagates
wards, but not enough to avoid a black-hole collapse. Th
discontinuity of the field derivatives at the location of the
horizon is prominent in the late time snapshot.

Figure 7 displays the effects of black-hole formation on
the time development of the wave form and of the Bond
mass. The initial data for those runs are given by Eq.~58!
with the amplitude L increased progressively from
5.5031024 to 6.2531024 in three steps. Up until Bondi
time of about 7.0, an increase in the amplitude of the initia
data leads to a near linear increase of the initial mass~lower
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FIG. 6. CCM evolution and black-hole formation. The evolution
of sufficiently strong Gaussian initial data leads to the formation o
an apparent horizon, in this case at aboutr50.8 (x50.45). This is
just marginally inside the matching radius atr51 (x50.5). The
incoming Gaussian pulse~right side of the plot! propagates inwards
~to the left!, crosses the matching surface, and collapses, forming
cusplike profile.
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plot! and to a corresponding redshifting of the wave form
Afterwards, there is a bifurcation point, at which data th
lead to a black-hole space-time produce a signal seve
distorted with respect to that of noncollapsing data. T

FIG. 7. The distortion of the signal at infinity for a space-tim
that develops a black-hole. The upper plot shows overlapping
nals with a progression of initial amplitudes. The dotted signal c
responds to black-hole formation. The lower plot shows the evo
tion of the total Bondi mass.
.
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rely
he

Bondi mass either drops to zero for an asymptotical
Minkowskian space-time, or coasts to a constant value th
represents the mass of the newly formed black hole.

VI. CONCLUSION

The model problem of the self-gravitating scalar field pro
vides a convenient framework for the study of the CCM
research program in a controlled situation. It has been de
onstrated here that the matched evolution is essentially tra
parent to the presence of the interface. The targets of~1!
clearly identified radiative quantities and~2! physically ac-
curate boundary conditions are achieved in this case w
minimal computational and developmental effort. Direct ap
plication of the continuity conditions at the matching inter
face leads to a stable and accurate mixed evolution algorith
for all relevantM /R ratios. Although idealized, this model
problem captures many essential physical aspects of m
generic asymptotically flat space-times. It is expected th
the geometrical approach and the algorithmic methodolo
initiated here are applicable and useful in more realist
problems, and work is currently under way exploring thi
possibility.
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