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For spherically symmetric, massless Einstein-Klein-Gordon fields, we show that the scalar radi-
ation power saturates at high amplitude at the universal value 7/32, independent of the interior
structure of the field. This provides a framework for understanding the energetics of self-gravitating
effects in which our high-amplitude limits complement the low-amplitude predictions of linearized
theory. The gravitational collapse of a high-amplitude initial state to a black hole is studied.

PACS number(s): 04.30.4+x, 95.30.5f

I. INTRODUCTION . .

Einstein’s equation for the gravitational field reduces
to a simple linear system in the weak-field limit, which
has led to a very complete physical understanding of that
regime. Here we investigate a simplification of a different
mathematical nature that arises in the high-amplitude
limit of asymptotically flat spacetimes. Results of this
type were first found in the context of a spherically sym-
metric, self-gravitating, massless scalar field. If at a given
retarded time the scalar field possesses a monopole mo-
ment Q, B o

& =Qr ! +00r7?, (1.1)
then the Bondi mass has the high-amplitude asymptotic
behavior

M ~ x|Q|/v2

at that time [1]. Rather than the quadratic relation-
ship between the Bondi mass and the field which holds
for small amplitudes, this surprising formula not only re-
lates the Bondi mass linearly to the field but determines
it solely in terms of the monopole moment, which repre-
sents the radiation amplitude of the field. In this limit,
the mass is completely independent of the interior struc-
ture.

The gravitational redshift is the physical mechanism
responsible for this effect. The redshift between any
worldline at fixed luminosity distance and null infinity
increases exponentially with increasing field amplitude.
In the extreme high-amplitude limit, the contribution of
the interior to the Bondi mass is redshifted away when
compared with the contribution from the far field. In the
compactified Penrose picture, the dominant contribution
to the total mass lies in a narrow boundary layer at null
infinity.

Such a basic mechanism as the redshift might be ex-
pected to have a universal effect on all high-amplitude
fields including vacuum gravitational fields. Subsequent
work [2] for axially symmetric fields confirmed this expec-
tation for the pure gravitational case. In the strong-field
limit, it was found that the Bondi mass does scales lin-

(1.2)
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early with field amplitude, although in this case no simple
asymptotic formula analogous to Eq. (1.2) emerges. Be-
sides a contribution from the radiation amplitude, an ad-
ditional contribution arises from the angular-momentum-
dipole-moment aspect of the field.

These results furnish some perspective on the physics
that arises in the presence of intense gravitational fields.
The two asymptotes, low amplitudes and high ampli-
tudes, provide a bracket which serves to gauge the non-
linearity of intermediate states. In addition, these results
would appear to have important implications for the con-
tribution of high energies to the sums over states that oc-
cur in statistical mechanics or in the Feynman approach
to quantization.

In this paper, we return to the case of a spherically
symmetric, general relativistic Klein-Gordon field to in-
vestigate the properties of radiation power in the high
amplitude limit. Our main analytic result, derived in Sec.
IIT, is that the radiation power saturates at the universal
value P = w/32, provided the field has a nonvanishing
monopole moment. In the linear regime, the rate of en-
ergy emission as scalar radiation is proportional to the
rate entering as initial conditions. In the high-amplitude
limit, the emission rate is independent of what goes in.
In Sec. IV, we use a numerical evolution algorithm [1] to
study the gravitational collapse of high-amplitude scalar
fields as they shed their monopole moment to form a
black hole in accordance with the no-hair theorem [3-5].
Numerical studies of this system have also led to the dis-
covery of interesting critical phenomena [6] in the inter-
mediate amplitude regime characterized by initial data
on the borderline of black hole formation.

II. NULL CONE DESCRIPTION OF SCALAR
WAVES

In a Bondi coordinate system [7], the Einstein-Klein-
Gordon equations for a zero rest mass scalar field are
quite simple in the spherically symmetric case [1,3]. The
line element has the form

ds? = e*Pdu (%du + 2dr) ~ r2(d@? + sin® 6d¢?), (2.1)
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where u is the proper time along the central geodesic
r = 0, with u=constant on the outgoing null cones, and
T is the luminosity distance on these null cones, so that
4mr? is the area of the spheres of symmetry. The field
equations are

Br =2nr(d,,)?, (2.2)

V,=¢€* (2.3)
and the scalar wave equation (0¥ = 0, which takes the
form - : :

2(r®) ur =r~HrV&,) .. (2.4)

At the origin, we adopt the boundary conditions

V(u,r) =r+0(*) and B(u,0) =0, (2.5)
so that the metric reduces to a Minkowski (null polar)
form along the central world line. The resulting metric
does not take an asymptotic Minkowski form in the limit
r — oo of null infinity J*. We set H(u) = 8(u, ). Then
Bondi time 4 at J* is related to proper time u along the
central geodesic by

di 2H
E'—e

The coordinates i, r, 8 and ¢ constitute a standard Bondi
frame whose line element is given by (2.1) with the re-
placements V = V = e 2HV and 8 B =p3—H. Bondi
time @ is the physically relevant time for distant observers
whereas central time u is relevant to the internal dynam-
ics governing gravitational collapse. A horizon forms in
a finite central time w = uy but an infinite Bondi time
i3y = 0o, with the central redshift determined by Eq.
(2.6).

Initial null data for evolution consists of ®(ug,r) at
a given retarded time u = up. By radial integration of
the hypersurface equations (2.2, 2.3) using the bound-
ary conditions (2.5), this data uniquely determines, in
turn, B(uo,r) and V(ug,r). Formal evolution then pro-
ceeds by determining 8,®(uo,r) from the radial integral
of the wave equation (2.4) which gives, after integration
by parts,

2r® ., =V®, + /{: gé,rdr. (2.7)
The Bondi mass is
M= %e,_ZHrz (;) ) (2.8)
and the scalar news function is
N =e¢"2H:0, =Qa, (2.9)

where @ is the scalar monopole moment and the factors

(2.6)
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of e2H garise from the relation of central time to Bondi

time. These quantities satisfy the Bondi mass-loss equa-
tion
P=-M;=4rN2 (2.10)
The news function can be expressed as a null cone inte-
gral,
oo
N = 1e—2H/ K@,,dr, (2.11)
2 o T
as follows immediately from (2.7). The mass may also be
expressed as the integral

M= 271-7/‘ e2B—H)r2(p )2dpr. (2.12)
0

IIl. HIGH AMPLITUDE LIMIT OF THE NEWS

Given initial pull data satisfying the asymptotic flat-
ness condition ®(ug,r) = O(1/r), the substitution
®(ug,7;A) = A®(ug,r) generates a one-parameter fam-
ily of asymptotically flat spacetimes ranging from the
linearized regime (A small) to the high-amplitude limit
(A — o00). It is essential here to define this family in terms
of a luminosity distance r so that amplitude scaling auto-
matically preserves asymptotic flatness. (An analogous
family based upon an affine parameter would for suffi-
ciently large A lead to an initial null cone with trapped
surfaces so that it would lie interior to a horizon.)

For this one parameter family, the hypersurface equa-
tions (2.2) and (2.3) give

Blug, 73 A) = A?B(up, ) (8.1)

and

V(uo,r;x\)=/ e2X"Pluo8) g
0

(3.2)

The key factor in the high-amplitude behavior is the ex-
ponential e2(f—H)  The divergence of the outgoing null
cone equals e=2%/r and as a result of the optical equa-
tions @ is a monotonically increasing function of  for cou-
pling to any matter field satisfying a positive energy con-
dition. As a result this exponential factor is very small
except close to null infinity, where 8 = H. Accordingly,
the contribution to the A-dependent mass integral (2.12)

M) = 27r/\2/ ez)‘z(B”H)ﬁ(@,,.)zdr,

o

(3.3)

is very small except in a region where the gravitational
field can be represented by leading terms in a 1/r ex-
pansion and the integral has the appropriate structure
for extracting its large-\ dependence by the method of

-Laplace [8].

This method gives the asymptotic large-r behavior of
the integral



b
I(ra,b) = / f(z)e™ @ dg, (3.4)
a

where h(b) > h(z) for a < z < b, by (i) introducing the
truncated integral I(7,b — ¢€,b), (ii) replacing f(z) and
h(z) in I(T,b— €,b) by the leading terms in their Taylor
expansions about = = b, and (iii) evaluating the resulting
integral in the limit € — co. Justification of this tech-
nique depends upon showing that the higher order terms
discarded in the Taylor expansion and the extension of
the integral to infinity both lead to weaker contributions
in A. In some cases, the integral must first be prepared
by a judicious integration by parts to insure this.

The application of this method to M () depends upon
the large-r behavior of ®. Suppose ® has a nonvanishing
monopole moment so that ® = Q/r + O(1/r%). Then 8
attains its maximum H asymptotically at infinity, with

— (mQ*/r?) + O(1/r°),

according to the expansion of (2.2). By introducing the
new integration variable z = r/(1 + r), the integration
limits are compactified between z = 0 and © = 1. The
method of Laplace then yields [1] the asymptotic mass
formula (1.2).

We now carry out an analogous derivation of the high-
amplitude asymptotic behavior of the news function, on
the assumption of a nonvanishing monopole moment. For
technical simplicity we will also assume that the field has
a 1/r expansion

(3.5)

@=Qr '+ Q4+ Qs 4 (3.6)

although the essential ingredient is a smooth O(r~2) re-
mainder term. First, the A-dependent version of the in-
tegral formula (2.11) must be integrated by parts, by
expressing dr = —r3d(1/r?)/2. The resulting boundary
term vanishes and, after using (2.3),

N{ug; A) = It (ug; \) + Iz (uo; A), (3.7)
where
Ii(uos A) = % fo - eé*’(ﬂ—ﬂ>@,rdr (3.8)
and
In(ug; ) = %e-‘a’*-’ff A - TKZ(M@,,),,dr. (3.9)

The strategy behind this separation is that the term
(#2@,),» = 2Q2r~ 24 O(r~3) has no contribution from Q
in its far-field behavior. As a result, we will show that I 1
dominates I in the high-amplitude limit, as suggested by
the physical picture of a boundary la.yer at null infinity.
In terms of the Hawking mass m(u,r;A) = (r —
e~2\'BV)/2, I is given by
A [ e B-H) (1 - g)

Iz(uo;)\
T

x (1 - 2-””“%"—“) (228 ) odz,
(3.10)
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where we have introduced the compactified integration
variable z, as above. This now has the necessary form to
apply the method of Laplace. Using the expansion

B—H = —-mQ*=x — 1)%(2r/3)(4QQ:2 + 3Q%)
x(z—1)%+0((z — 1)%)

which follows from (2.2), and the asymptotic value

47w\|Q|/ V2 of the Hawking mass, which follows from the
A-dependent version of (1.2), we obtain

(3.11)

Q2
I A~ —2E
a(uoi }) ~ g3 g
Thus this contribution goes asymptotically to 0 in the
high-amplitude limit.
Expressing I; in terms of the integration variable =
and applying the method of Laplace now gives

(1 +7/2). (3.12)

1
I (uo; ) = % /0 2N E-Hg dx (3.13)
~ _TA e~2NQ =12 04r 4 O(1/)) (3.14)
V2 Q
00 +O(1/A), (3.15)
so that
N(ug; A),~ — \/- 2Q +Of1 /)\) (3.16)

16 Q]

in the high-amplitude limit. Only the sign of the news
function, not the magnitude, depends upon the monopole
moment. Referring to (2.10), this implies a radiation
power P ~ m/32. The news function and power are di-
mensionless quantities so that such universal limits are
physically possible.

This result should be compared to the weak-field limit,
for which V = r and (2.11) integrates to give N(u) =
—~<P(u 0). In that case, the news function depends lin-
ea.rly upon the signal arriving at the origin. As the field
amplitude increases, the effects of backscattering and
redshfting become prominent.

Some examples illustrate how the news function makes
the transition between the extremes of low and high am-

plitude. Consider first the one-parameter set of initial
data
B(up, 3 A) = A -(3.17)
0y 7y = (1+7‘) .

Figure 1 gives a graph of the numerically computed val-
ues of the news function versus A. For small A, the graph
displays the linear A dependence of the news function in
the weak field case. For large A, the graph is asymptotic
to the high-amplitude limit (3.16). The maximum value
of |N| occurs at A =~ 0.65, at about one-half the criti-
cal value A; =~ 1.317, above which the system evolves to
form a horizon. The critical value A, lies in the transition
region in which the news goes from a linear dependence
on amplitude to its universal limit. The graph extends
up to the value A = 18, past which terms of magnitude
eZ*M 5 10?% lead to numerical underflow.
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FIG. 1. News versus amplitude for the initial data (3.17).
For small A (weak field), the news is linear. For large A,
the graph is asymptotic to the high-amplitude limit (3.16)
indicated by the dashed line.
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FIG. 2. News versus amplitude for the compact data
(3.18). For large A, the news decays to zero with the O(1/)
dependence predicted by (3.16).

R. GOMEZ AND J. WINICOUR 48

N 0;00 T R ¥ T

005 | ] .

N 10} o - 1

~0.20 g — : :
0.0 5.0 10.0 15.0 20.0
A

FIG. 3. News versus amplitude for the superposition of the
initial data (3.17) and (3.18). The behavior for intermediate A
differs from that shown in Fig. 1 but the asymptotic behavior
is still given by (3.16).

As the next example, Fig. 2 is a graph of the computed

. ....values of the news function versus )\ for the data

forr <1

forr>1, (3.18)

- B(up, 3 A) = { 0_)‘(1 _17')72

which describes a pulse of compact support.' For small

A, the graph again displays a linear A dependence, as

"in Fig. 1. However, the news function is asymptotic to

zero in the large-A limit, in accord with the vanishing
monopole moment of this data. The decay to zero has the
O(1/)) dependence predicted by (3.16). The study of an
analytically integrable model [9] with compact null data
also found that the news function is completely redshifted
away, N(A) = 0 as A = oo.

Figure 3 is a graph of the news function versus A for
data consisting of the addition of (3.17) and (3.18). In
this case, there is no longer a linear dependence on X in
the weak-field regime because the superposition princi-
ple leads to exact cancellation between the two signals
reaching r = 0. Although the behavior for intermediate
A differs from Fig. 1, it is apparent that the news func-
tion remains asymptotic to the universal value —/2/16 in
the extremely nonlinear high-amplitude limit. This illus-
trates how the high-amplitude limit of the news function
is independent of interior structure.

IV. EVOLUTION OF HIGH AMPLITUDE DATA

Amplitude scaling of the data at time ug is not pre-
served under evolution, ®(u;,7;A) # A®(u1,r) except



in the small-A limit, in which @ behaves as a linear
field in Minkowski space. Strong fields evolve to form
a black hole with vanishing monopole moment but non-
vanishing mass. For a nonvanishing initial monopole mo-
ment, the high-amplitude formulas (1.2) and (2.10) imply
|Q.2/Ql = 2|M 3/M)| so that the monopole moment de-
cays at twice the rate as the mass.

In the initial high-amplitude state, the exponential fac-.

tor e2(®—H) creates a boundary layer between r =~ @ and
oo (or between ¢ =~ 1 —1/Q and 1) which dominates the
integrals for the mass and news function. On the other
hand, as the system evolves to form a horizon with Bondi
mass My, Christodoulou’s [5] no-hair theorem implies
that this exponential factor has the asymptotic late-time
step-function behavior

Q2(B—H) _, { 0 forr<2My,

1 for r > 2My, (41)

which requires that the scalar field goes to zero outside
r= ZM'H.

We illustrate these features in terms of the numerical
evolution of the initial data (3.17), choosing A = 10. Fig-
ure 4 is a graph of the news function versus central time.
Initially, IV is close to its asymptotic limit, in accord with
Fig. 1. Tt then rapidly decays to zero as a black hole is
formed. This takes place in the exceedingly short cen-
tral time Aw =2 7 x 1079, The higher the amplitude, the
quicker black hole formation takes place. Of course, from
the reference point of an external observer this takes an
infinite amount of Bondi time. Initially the redshift fac-

0.02 ‘ : , ~ .

0.00

-0.02

-0.06

-0.08

0.0 2.0 i 4.0 - 6.0 _ 8.0
ax 10”

-0.10 :

FIG. 4. News versus central time u for the initial data
(3.17), with A = 10. The news is initially close to its
high-amplitude limit and then decays rapidly to zero as a
black hole is formed.
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tor is €22 = 10°! for this example. There is additional
structure in the final decay of the news function which
is lost in the graphical resolution of Fig. 4. Recent re-
sults indicate [10] that at very high redshifts the field de-
cays similarly to a scalar perturbation of a Schwarzschild
background. Figure 5 is a graph of the Bondi mass. It
starts close to its asymptotic limit 7|Q|/+/2 and then de-
cays at a remarkably constant rate with respect to central
time, until it levels off at the final black hole mass which
is roughly half the initial mass. The exponential factor
e2(B—H) i5 graphed in Fig. 6. The initial boundary layer
steepens in time to form the final step function (4.1).
These results are representative of the evolution of
other high-amplitude initial data with nonvanishing
monopole moment. This confirms that it is the energy
stored in the asymptotic field that governs the high-
amplitude dynamics, regardless of the details of the inte-
rior structure. Indeed, a black hole forms in such a rapid
time that there is negligible evolution in the interior re-
gion. For instance, in the above example, the velocity of
light near the central world line is du/dr ~ 1 in our co-
ordinates so that there is negligible wave propagation in
the short time Au = 7x 1079 prior to horizon formation.
It is interesting to compare these results with the high-
amplitude behavior of a system whose monopole moment
initially vanishes. For data of compact support filling a
sphere of luminosity distance R, the Bondi mass satu-
rates at the high-amplitude limit [1] M ~ R/2. In this

200

18.0

160

14.0

00 2.0 40 6.0 - 80

12.0 -
T axie”

FIG. 5. The Bondi mass versus central time « for the same
data as in Fig. 4. It starts close to its high-amplitude limit
and then decays at a remarkably constant rate with respect
to central time. The final black hole mass is roughly half the
initial mass.
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FIG. 6. Profiles of the exponential factor e*(#~#) versus z,
at u = 0 and two later times, for the same data as in Fig 4.
The initial boundary layer gets even steeper to form the final
step function (4.1).

limit, the scalar field is again at the brink of black hole
formation. (This is a peculiarity of the Einstein-Klein-
Gordon system. For dust of compact support, the mass
again saturates at the value R/2 in the high-density limit
but in this case a white hole surrounds the matter on
the initial outgoing null cone [11].) For data of compact
support, the news function initially vanishes in the high-
amplitude limit and there is little time before horizon
formation for it to build up to produce any substantial
mass loss. As an illustration, consider the numerical evo-
lution of the compact pulse (3.18), for A = 7. Figure 7
is a graph of the news function versus central time. Its
maximum absolute value, attained at the initial time, is
|N| a 1.7 x 1073, well below the high-amplitude limit
of +/2/16 for data with nonvanishing monopole moment.
The initial mass for this example is M =~ .45 and less
than 0.01% is radiated in the short central time required
for black hole formation, as opposed to the roughly 50%
mass loss in the nonvanishing monopole case.

V. CONCLUSION

Our results provide a useful framework for understand-
ing the self-gravitating effects of scalar waves. The high-

0.001 S e

-0.001 B

-0.002 —_— L - L
0.0 0.5 1.0 1.5

ux10¥

FIG. 7. News function versus central time, for the compact
data (3.18), with A = 7. It’s maximum value, at ©u =0, is
N =~ 1.7x1072, well below the high-amplitude limit of /2 /16
for data with nonvanishing monopole moment.

amplitude behavior predicted for the mass and radiation
flux complement the low-amplitude behavior predicted
by linearized theory. Our results also portray an ex-
tremely stiff behavior of systems in the high-amplitude
regime. Such systems rapidly decay to a final black hole
equilibrium state.

All the fundamental ingredients for these results re-
main intact in the nonspherically symmetric case, either
in the presence of other matter fields or for pure vac-
uum fields. The focusing equation still requires 3 to be a
monotonically increasing function along the outgoing null
rays. The redshift still has an exponential dependence
on B — H. Thus one should expect similar saturation ef-
fects on the radiation power, although the calculation of
the high-amplitude limit will undoubtedly be much more
challenging.
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