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‘We present an algorithm for calculating the Bondi mass, based upon renormalized variables,
which converges at second order in grid size. The algorithm is highly effective in exploring both the
Newtonian and strong field limits of general relativity. In particular, we study a quasi-Newtonian
system with gravitational radiation. The algorithm allows calculation of the Newtonian mass and
mechanical energy and joins smoothly to a post-Newtonian expansion of the Bondi mass carried
out through terms of O(A”). At higher A, the computed mass peels away and shows markedly
non-Newtonian behavior. It remains strictly positive, in contrast to the post-Newtonian expansion.

PACS number(s): 04.30.+x, 95.30.Sf

I. INTRODUCTION

This paper explores the mass of a general relativistic
system from the point of view of its background New-
tonian value using a combination of analytical and com-
putational techniques. Newtonian gravitational physics
is essential in determining the importance of general rel-
ativistic astrophysical effects. Mainstream astrophysics
is couched in Newtonian concepts, some of which have
no well-defined meaning in general relativity. In order
to provide a sound basis for relativistic astrophysics, it
is crucial to develop general relativistic concepts which
have well-defined and useful Newtonian limits. The con-
cepts of mass and energy are most fundamental in this
regard. Here, starting with a one-parameter family of
general relativistic spacetimes which have a Newtonian
limit, we compare numerically computed values of the
Bondi mass with the corresponding Newtonian mass and
binding energy and their post-Newtonian perturbative
corrections. One of our accomplishments is the devel-
opment of an accurate computational algorithm for the
Bondi mass which allows such a study to be feasible.
Besides its importance for physical interpretation, this
algorithm will also provide an important calibration of
the numerical evolution of Einstein’s equation by using
the Bondi mass loss formula to check the accuracy.

Two notable early investigations relating general rel-
ativistic and Newtonian energy expressions were carried
out by Fock [1] and by Chandrasekhar [2]. They have led
to a practical scheme for introducing general relativistic
corrections to the Newtonian theory of stellar dynamics.
However, there are undesirable theoretical aspects to the
various early formalisms. Some examples are (i) the use
of coordinate-dependent concepts such as gravitational
energy-momentum pseudotensors; (ii} a rather loose ap-
plication of the notion of asymptotic flatness, particularly
in the case of radiative spacetimes; (iii) the appearance
of divergent integrals; and (iv) the lack of a clear formu-
lation of the various approximation formalisms such as
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the weak field or the slow motion expansions.
The geometrization of null infinity [3] with the asso-
ciated geometrization of Bondi mass [4] and the corre-
sponding results for the ADM mass at spatial infinity [5]
have eliminated any need for deficiencies of type (i) or
(if). Advances have also been made in the geometriza-
tion of approximation schemes [6,7]. It is now clear that
these are of two distinct types, post-Minkowskian and
post-Newtonian, each based upon a one-parameter family
of spacetimes. In the post-Minkowskian case, the param-
eter represents a rescaling of the gravitational constant
G with the limiting background having the flat geometry
of special relativity. In the post-Newtonian case, the pa-
rameter rescales the velocity of light ¢ — ¢/, with the
limiting spacetime as A — 0 yielding the Cartan geome-
try of Newtonian physics viewed as a spacetime theory.
The emergence of Newton-Cartan theory as a limit of
general relativity and as a basis for perturbation theory
has been developed by Dautcourt [8], by Kunzle [9, 10],
and by Ehlers [11]. Recently, Rendall [12] has formu-
lated an axiomatic description of a certain class of post-
Newtonian approximations, which includes the scheme
used by Chandrasekhar, and has discussed inconsisten-
cies that arise in the treatment of radiation.
The formal description of this limit involves two A-
dependent metric tensors g, (A) and A*¥(A), with
hH(A) = X2g*(N) (1.1
for A # 0. In the A — 0 limit, these metrics degener-
ate into g, — t,t,, where ¢, = 8,¢ defines the absolute
time slices of Newtonian theory, and h*¥” — e*¥, the
rank-three Euclidean metric of these time slices. Fur-
thermore, the connection I';;,, — —e7¢,t,0,®, where &
is the Newtonian potential. An example is the family of
Schwarzschild spacetimes

ds3 = (1 —222m/r)dt® — A3(1 — 2\%m/r) " 1dr?
—A%r?(d6® + sin® 8 dg?). (1.2)
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In the Newtonian limit, this yields the external gravita-
tional field of a point mass [11]. There are some awkward
aspects to this formalism which stem from the different
length scales used in the general relativistic system and
the Newtonian system, i.e., the relative factor of A be-
tween lengths measured by g.,(A) and h#¥(A). As a re-
sult, the [Bondi or Arnowitt-Deser-Misner (ADM)] mass
M of these spacetimes (1.2) is M()\) = A3m whereas
the mass of the Newtonian system obtained as a limit
is My = m. In this formalism, mass densities are X in-
dependent to leading order and the factor of A3 arises
from the different volume elements. In order to avoid
unnecessary confusion in post-Newtonian expansions, we
will always speak in terms of the reparametrized Bondi
mass Mp which is related to the strict general relativistic
version Mg by Mg = Mg /3.

Two post-Newtonian expansion schemes based upon
the Newton-Cartan limit have been formulated in terms
of initial value problems. In one case, the initial value
hypersurface is spacelike [13, 14] and in the other case
null [15, 16). Persides has formulated another post-
Newtonian scheme using a combination of spacelike and
null techniques [17]. There are three features by which
the null and spacelike approaches especially differ. First,
in the null approach, the initial A-dependent data can be
uniquely specified in terms of the initial Newtonian data
of the background in & manner which reduces the incom-
ing gravitational radiation contained in the gravitational
degrees of freedom. We refer to such null data as quasi-
Newtonian. Thus there is no need to average over the
gravitational degrees of freedom in examining the valid-
ity of the Einstein quadrupole radiation formula, as in
the spacelike case. Second, in the spacelike approach
standard calculational techniques exist based upon the
Green'’s function for the harmonic coordinate wave op-
erator, whereas in the null approach new calculational
techniques are necessary.

Such techniques have been developed to establish the
quadrupole formula for quasi-Newtonian null data [18].
In this approach, the Newtonian limit is imposed by re-
quiring that the evolution of the A-dependent general rel-
ativistic system osculate, to third order in time, the evo-
lution of the background Newtonian system. This avoids
any inconsistencies with radiation fields while still deter-
mining unique gravitational initial data. The quadrupole
formula then follows in the form N = Q i;; where N is the
leading A order of the news function and @ is the trans-
verse Newtonian quadrupole moment, both sides evalu-
ated at the initial time.

The third way in which the spacelike and null ap-
proaches substantially differ concerns the appearance of
odd powers of A in the expansions. In the spacelike ap-
proach, odd powers first occur at a high order associated
with radiation, at which stage the formal symmetry be-
tween future and past is broken. In the null case, this
symmetry is broken immediately by the use of outgoing
initial hypersurfaces and terms of first order in A appear.
Consequently, the description of post-Newtonian effects
takes on an unusual form.

This last remark is especially applicable to the Bondi

mass Mp. For the particular case of a radiating dust
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model [19], we find that the loss in Bondi mass due
to gravitational radiation appears at the order AMp =
O(A7). On the other hand, the Bondi mass has a A ex-
pansion

7
Mp =3 MPN*+ 00,

n=0

(1.3)

so that the leading seven terms, n = 0,1,...,6, in a A
expansion of the Bondi mass are conserved quantities.

Of course, M }(30 ) should just be the conserved total mass
of the Newtonian background. In addition, one might

expect Mg) to be the conserved Newtonian energy but
complications arise here. In a null coordinate system

there is in general a nonvanishing first-order term M g)
in the expansion. This forces us, at an early stage of
the A expansion, to devise a gauge-invariant technique in
order to extract the Newtonian energy.

In this paper, we elucidate these strange features and
explore the properties of the Bondi mass, from the New-
tonian to the ultrarelativistic regime with the aid of a
highly accurate numerical algorithm. Historically, nu-
merical calculations of the Bondi mass have been frus-
trated by technical difficulties arising from the necessity
to pick off nonleading terms in an expansion about in-
finity. There is a similarity to the experimental task of
determining the mass of an object by measurements in
its far field. In the nonradiative case this can be ac-
complished by measuring gravity gradients, but other-
wise this approach can be swamped by radiation fields.
In the computational case, further complications arise
from gauge terms which dominate asymptotically even
over the radiation terms. In Sec. IV, we describe two
key ingredients which allow us to avoid these problems.
The first is the use of Penrose compactification, which
allows null infinity to be represented as a finite boundary
to the numerical grid. The second is the introduction
of renormalized variables in which Bondi’s mass aspect
appears as the leading asymptotic term. The accuracy
of the resulting algorithm enables us to smoothly match
the numerical calculation to the perturbation expansion
(1.3). These results, presented in Sec. V, constitute the
first calculations of the post-Newtonian behavior of the
Bondi mass for a radiating system.

The scope of this paper is restricted to axisymmetric
models. In Sec. IT we present a brief summary of the A-
dependent version of the Bondi hypersurface equations.
In Sec. III, we first examine the Bondi mass for spheri-
cally symmetric systems in order to reveal what to expect
more generally. We adhere to the notation and conven-
tions of our previous papers [15, 16, 19, 20]. In particular,
we use units for which G = ¢ = 1, adopt the signature
(+-- -2, denote A expansions in the form f = Y f"\n
with f(® the leading coefficient, and we use lower case
Greek letters for spacetime indices and lower case Latin
letters for spatial indices.

1I. QUASI-NEWTONIAN BONDI EQUATIONS

Here we briefly present an axisymmetric version of that
portion of the quasi-Newtonian null cone formalism, de-
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veloped in Refs. [15, 16], which is pertinent to this paper.
Given a Newtonian fluid with initial density p, initial ve-
locity v; and an equation of state p(p), this formalism
constructs a A-dependent family of general relativistic
spacetimes which also have p and v; as initial data and
which yield a Newton-Cartan spacetime in the A = 0
limit. This family of spacetimes is overlaid on a single
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manifold to share a family of outgoing null cones labeled
by a common null coordinate z° = u, which measures
proper time along the vertex world-line. In addition, on
each cone they share a common luminosity coordinate
z! =7 and ray coordinates z2 = 8 and z° = ¢.

This leads to the A-dependent Bondi metric [15, 19]

ds} = (r1Ve™'P — Mr2U2e'T) du? 4 20PN Pdudr + 232U Vdu df — Nr2 (2 7dp? 4 e~ sin? 6dg?),

where we additionally set V = r + A2W. The various
X factors are inserted so that, for A = 0, we obtain the
Newton-Cartan line element ds? = dt?, where t = u +
Ar. The nonvanishing components of the contravariant
metric are

g()l _ /\—le—ZAgﬁ, (2.2)
gt = A"y e~ 28, (2.3)
g2 =20y, (2.4)
g = -—>\_27‘_26_2>‘27, (2.5)
g%3 ==A"2r2e2%7/5in?0. (2.6)

In the A — O limit, A29*8 — e*F where e*# is a
spherical coordinate version of the Euclidean metric in
accord with the Newton-Cartan limit.

For uniqueness, we choose the vertex world line to be
the geodesic which, at the initial time, passes through the
center of mass of the background Newton-Cartan system
with the center-of-mass velocity. Then (¢,7,0, ¢) forms a

1
Br =27 (p+ A2p) (1 + dvy)? + §>\27‘(’7,r)2’

[r%”” (v-8) U,r]

)T

(2.1)

polar version of a freely falling coordinate system. This
fixes all essential coordinate freedom in the construction.
The energy-momentum tensor has the A-dependent form

T = (p+ M) wuwy, — XD guas 2.7)
where the four-velocity w,, has the form w, =t , + \?y,.
Then, on the initial hypersurface, the data for the A-
dependent system consists of the matter data, with p
determined by the equation of state. Our practice is
to choose the initial values of p and v; to be the X-
independent initial values for the Newton-Cartan back-
ground. This has the advantage of providing unique ini-
tial data but it is not completely essential. We discuss
this point further in Sec. III.

The gravitational null data, in the axisymmetric case,
consists of the function . Before discussing the pre-
scription for determining a quasi-Newtonian +, it is con-
venient to write down the Bondi hypersurface equations
in A-dependent form:

(2.8)

= 167Ar%(p + A%p) (1 + Mvy)vg + 2r2 [1'2 (r28) ro — (sin8)~%(ysin? ) 4 + 2,\27,;7,9] . (29)

— _ 1 1
V= —47r>\27'2€2)‘2‘9[p —A%p+ M%r 2(p + A%p)e 2)‘27(1)2)2] — Z/\4r4e2’\2(7‘ﬁ)(U,,.)2 + 5)‘2(7'4U sin 6’),,~9/(r2 sin §)

-i-e”‘2 (6~ [1 -2 (Besinb)g/sind + )\2'7,99 4 3)\27,9 cot § — )\4(@9)2 — 2)\4'7,9('7,9 — ﬂ,e)] .

Given the initial data, Eqgs. (2.8)—(2.10) explicitly de-
termine the initial values of the remaining metric quan-
tities 8, U, and V = r 4+ A2W. The evolution equations
then explicitly yield the first time derivatives of p, v;, and
7 [20].

Quasi-Newtonian gravitational initial data - is deter-
mined by the requirement that the connection of the A-
dependent system yield the connection of the Newton-
Cartan background in the A = 0 limit. In the present
context this is equivalent to requiring that [15], for fu-
ture times,

&* = O 4 w© /o, (2.11)

where ®* is the background Newtonian potential in a

(2.10)

I
freely falling frame satisfying ®* = 0 and V;®* = 0
along the central geodesic r = 0. In order to implement
Eq. (2.11) it is necessary to invert the hypersurface and
evolution equations so that future valuesof W(® and g©
can be expressed in terms of the initial data. This leads
to a sequence of Poisson equations which at successive
orders determine the initial ¥(") [15,19]. In the leading
order,

(7‘2'7,(,9)),r = —sin8(d*/sin B) g. (2.12)
For the specific case of the dust model discussed in Sec. V,
the calculation has been carried out through the deter-
mination of y® [19].

It is important to note that the asymptotic dependen-



cies of the quantities vy, 8, U, and W obtained here differ
from those obtained by Bondi [4]. The reason is that our
coordinate conditions are chosen to reduce to a local in-
J

Ty=K+rlc+ 0(7‘_2),
;B =H+ 0(7'_2),
U=L+0@™h,
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ertial frame along the vertex world line whereas Bondi’s
were chosen to lead to an inertial frame at null infinity.
As a result, we have the asymptotic behavior [20]

(2.13)

(2.14)

(2.15)

W =r?(Lsinf) g/sinf + re?\*(H-K) [)\_2(1 - e"zAz(H”K)) +2(Hgsinb) g/ sinf + K gg + 3K g cot 6 + 4)\2(H,9)2

—AN?H K o — 20%(K )] -

where M (6) corresponds to Bondi’s mass aspect. In a
Bondi frame K, H, and L all vanish.
The asymptotic two-geometry obtained after rescaling
the angular part of the metric by (—A~2r—2) is given by
ds® = 2K dp?  sin? fe= 2N K d¢?. (2.17)
This two-geometry also differs from the corresponding
unit sphere two-geometry
2 +sin® 05 do%,

ds = (2.18)

which would result after introducing a Bondi frame with
coordinates @z and ¢ = ¢. This complicates the calcu-
|

22N H AL 4+ O(r7 1), (2.16)

lation of the Bondi mass in our formalism. We must first
find the conformal factor w which relates the two frames,
so that d§% = w?ds?. The simplest approach is to set

y =—cosf and yg = —cosfp. Then
d
w? = dL:, (2.19)
where
v o d
yB = tanh [A 1_—yy2 62A2K:l . (220)

With this w in hand, the Bondi mass is given by a A-
dependent version of the expression given in [20],

T
Mp = -1-/ w‘le“”zx{ 262K pf 4+ [(csin2 0),5/51119] e/sinﬁ

4 Jo

—4X2¢o(H + K) g — N2c [4)\2(H,g)2

— 8\ H K

—4X2(K 0)? + 2(H + K) go + 6(H + K) g cot e] }sinods.  (2.21)

To leading order in A, the integrand in (2.21) reduces
to the first two terms, and the second term integrates to
zero. This leaves
1 s
= f M© sin 6 dg.
2 Jo

MQ = (2.22)

According to (2.16), the mass aspect is related to W by

M = =3 H 28,120 | (W/7%) o (2.23)
The asymptotic behavior of W(® can be obtained from
Newtonian limit condition (2.11) in terms of the asymp-
totic behavior of the Newtonian potential ®* and 5.
Then (2.23) gives M© = My so that MY = My.
Thus, in the Newtonian limit, the Bondi mass reduces
to the mass of the underlying Newtonian system. It
would be expected on physical grounds that the New-
tonian energy give rise to O(\?) corrections. However,
some subtle complications arise here. The Bondi mass
contains an O{\) term which stems from retardation ef-

fects between the values of the density p on an absolute

time slice and on a null cone. In order to extract the
Newtonian energy in an invariant way it is necessary to
first introduce the mass M which measures the relativis-
tic internal energy of the fluid interior,

Mr(u) =\~ /pw“dV /(1+/\v1)dm, (2.24)

where ¥ denotes the outgoing null cone and dm =
pr?sinfdrdfdg. M; also satisfies

hm M I = M. N- (2.25)
Note that to first order M; contains a retardation term
arising from the specification of the density on the ini-
tial null cone as a A-independent quantity equal to the
initial density of the Newtonian limit system. In the tra-
ditional spacelike formulation of Newtonian limits, the
initial density is specified to be ) independent on a space-
like hypersurface.

For the same reason, Mp also has exactly the same

first-order retardation term as M;. Since M; includes the
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internal energy measured in the local rest frame of the
fluid, physical considerations suggest that the Newtonian
mechanical energy Fy, i.e., the sum of Newtonian kinetic
and potential energies, be given by
Ey = lim(Mp — MpHX—2 (2.26)
The validity of (2.26) is established for spherically sym-
metric systems in the next section and also for the ax-
isymmetric systems considered in Sec. V. The general
verification of (2.26) will not be considered here.

We can reexpress the A dependence of the Mp and
My in terms of an alternative post-Minkowskian de-
scription of the post-Newtonian sequence of spacetlmes
Let u = Aj, 2° = &, & = @+ 7, Gur = A%Gu., and
wy = b, = A, + /\v,,,) define post-Minkowskian vari-
ables. Then, in these coordinates, the metric g, yields
a post-Minkowskian sequence of spacetimes which satisfy
the Einstein equation

Gy = —872[(p + A2p) b,y — A2pGu]- (2.27)
For this post-Minkowskian sequence, it is evident that
M[P,P, Ui A] = M[z\2p, At s AUg; 1]v (2'28)

for either Mp or M;. From the coordinate invariance of
these masses and their weight under dimensional rescal-
ing of the metric, it then follows that

Mp,p,vi; Al = A™2M[X2p, A*p, Mvi; 1], (2.29)

for the post-Newtonian system. For computational pur-
poses, (2.29) allows considerable simplification by drop-
ping the explicit A dependence in the metric in favor of
rescaled matter data.

III. SPHERICALLY SYMMETRIC SYSTEMS

The A family of exterior Schwarzschild spacetimes (1.2)
satisfy Mp(\) = My = m so that the Bondi mass Mp

4 [/ 22*H
_-wE) T fe -1 1/ 2 2278 2 1
M=e { 1 (———/\27_2 ) —dnrée*r P(p — X°p) + _}\__] dr
R

e o]
= e_z,\ﬁz{/ {Zwrze”‘zﬁ(p - A%p) + rez’\gﬁﬂ,r}dr
0

o0
= / {47rr2p + 4mr?p [e”z(ﬂ_H) -1+ 21r)\r262’\2(ﬁ—m(p +A%p) 1 (2 4+ Avy) }d'r.
0

together with its Newtonian limit My yield no infor-
mation about, say, the gravitational potential energy of
the Schwarzschild interior. Furthermore, for the analyt-
ically extended Schwarzschild spacetime, the relativistic
internal energy (2.24) vanishes so that it also provides
no physical information. In Newtonian physics, gravita-
tional potential energy is well defined and is nonzero for
any smooth interior solution with nonvanishing mass. In
order to extract the Newtonian mechanical energy from
this A-dependent family of spacetimes we must provide
a A-dependent fluid interior matching the Schwarzschild
exterior. Indeed, we would then expect (2.26) to hold.
‘We now show how this emerges from the quasi-Newtonian
formalism which we have presented.

In the spherically symmetric case, y = U = v3 = 0 and
w = 1. The governing equations then reduce to

B.r=2rr(p + A2p)(1 + Avy)?, (3.1)
W, = —4rr2e?"B(p — A2p) + A~2(2X°F _ 1), (3.2)
MB = M, (3'3)

and in the exterior of the fluid (3.1) and (3.2) are replaced
by

B=H,
W =A"2r (e H —

(3.4)

1) — 22 B0 4 O(r~Y),  (3.5)
where the constants H and M are determined by conti-
nuity at the fluid boundary.

Next consider the Bondi mass. From (2.23), the mass
aspect M can be reexpressed in terms of W . by

4 ™
_ | _ Wy 1
M=e [ (4 ). 2/0 VV,rd'rjl
o0

Using (3.2) to substitute for W,. and then integrating by
parts, using (3.1) to substitute for 8., we obtain

(3.6)

o0

(3.7

For A =0, we see that My O~ M, ~- Proceeding with further integration by parts (and now setting dm = 4mwpr2dr),

we obtain

MnN
MB-—MN+/ /\2(———+—v1) dm—l-/\/ vrdm

(3.8)

+ / { —4m N2mpr (AN B=Hy; (2 4 dy) + 237 B-H) _q]

—41r)\4mpre”2(ﬁ“m( 14+ Avy)? + 27 pr? [62)‘2(3 —H)

—|—27r/\31:)7"“’e2’\2 (B~H)y,, (2 + /\'vl)} dr,

v (2 + Avp)

(3.9)
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so that

Mp = My + N2En +/\/v1 dm+ 0()\3),  (3.10)

where the Newtonian energy Ey is the sum of the kinetic
and gravitational potential energy. Comparing (2.24)
and (3.9), the desired result (2.26) is established for
spherical quasi-Newtonian systems. Note that the oc-
currence of a first-order term

My = / vy dm (3.11)

leads to no difficulty. This term is a gauge effect of the
null-cone formalism which appears in both M; and Mz
but does not appear in Ex which is gauge invariant.

In the spherically symmetric case, there is no gravita-
tional radiation so that dMg/du = 0. Thus each coeffi-

cient M g“) in the expansion of the Bondi mass must be a
conserved quantity. Two of these, My and Ey, are well-
known Newtonian constants of the motion. The remain-
ing terms cannot apparently be given gauge-invariant
meaning. To understand this, let us consider the first-
order term more closely. At the initial time, our practice
is to choose p and v; to be independent of X so that re-

tardation effects lead to (3.11). Now MJ(Bl) is clearly not
a conserved Newtonian quantity. It is conserved in the
A-dependent system because at later times, p and v; de-
velop A dependence according to the general relativistic
fluid evolution equations. Thus, from expanding (3.10),

Mg) = /47rr2[p(1) + p©v,] dr, (3.12)

at later times. The conserved quantity M 1(91) is of a
post-Newtonian nature associated with the growth of
oD, Similar considerations apply to the higher-order
conserved quantities. From the point of view of a Newto-
nian limit based upon spacelike hypersurfaces, p would
be interpreted as a correction to the fluid density due to
retardation. However, only in very simple cases could
such an interpretation be extended to higher orders be-
cause of the tenuous relationship between null and space-
like foliations.

At this point, it should be noted that the A\ indepen-
dence of the initial data p and v; has the advantage
of leading to the unique data of the quasi-Newtonian
scheme. However, it is not completely clear whether re-
laxation of this requirement might lead to any substan-
tial improvement in the formalism. One case in which
one might want to relax this requirement is in the study
of post-Newtonian effects on fluid equilibrium models. In
that case, for a static spherical fluid, £*8/8z* = 8/8u
is a Killing vector and w® and &% are parallel so that
w! =0. Thus

1 = gopw®w? = goouw'u® = goog® g® wiwy, (3.13)
so that
1=e"2X2(1 4 XW/r)(1 + M )2 (3.14)

3297

From this last equation, although v§°) = 0 it is appar-
ent that vy cannot be A independent at higher orders
for a A family of static fluids. If v; were initially set
equal to the value vy for a static Newtonian background
then the evolution would not lead to a static A family of
quasi-Newtonian spacetimes. This suggests that the co-
variant w?!, rather than w; (or, equivalently, v1), might
be more useful as velocity data for quasi-Newtonian sys-
tems. However, more generally such a modification does
not seem to have any distinct advantage.

The Oppenheimer-Snyder spacetime is an example of
particular physical interest whose evolution can be ex-
pressed in analytic form. In a null-cone coordinate sys-
tem, the case of a k = 0 collapsing Friedmann interior
has dust density

p=(1/6m)u"2(1 — a)~8, (3.15)
and four-velocity components
Wy = (1 _a)(]' —30[)_1[(1—(1)2,1,0,0], (316)

where r = —3ua(l — @)%, with the singularity at
u = 0. As the boundary separating the dust from
its Schwarzschild exterior, we take the geodesic & =
—A(3u)~1/3, This system can be embedded as the A = 1
case of a one-parameter family of Oppenheimer-Snyder
spacetimes approaching a Newtonian limit [21,22]. The
limiting Newtonian system has density py = (1/67)u~2,
vn1 = —(2r/3u) and boundary Ry = 3u?/3A4.

In this case, the masses Mg and M; can be calculated
exactly, using the general relativistic rules, and also the
Newtonian mass My and energy En, using the Newto-
nian rules. We find Mg = My = My =2A% and Ex = 0.
These results are in agreement with physical expecta-
tions, the Bondi mass is constant in time because there
is no radiation, and the internal energy is constant be-
cause there is no pressure. In the initial dispersed state,
in the limit v — —o0, there is no potential energy and
no kinetic energy in the k¥ = 0 case. Thus these general
relativistic masses are initially equal and remain equal.
Also, since the initial dispersed state satisfies the physi-
cal criteria to be a Newtonian limit, it is no surprise that
the Bondi mass exactly equals the conserved mass of the
Newtonian background.

IV. COMPUTING THE BONDI MASS

It is not possible to calculate the Bondi mass analyti-
cally even for the simplest nonspherical system of physi-
cal interest. A computational approach is necessary. An
accurate computational algorithm for the Bondi mass is
not only crucial for our present purpose of exploring post-
Newtonian behavior. It is vital for using the Bondi mass
loss equation as a check on the accuracy of numerical evo-
lution schemes to calculate gravitational radiation. For
these purposes, it is essential to have an algorithm which
gives the Bondi mass to second-order accuracy in grid
size.

Some difficult technical issues are involved here. These
stem from the role that the mass aspect M plays in the

integral (2.21). The mass aspect must be extracted as the
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O(1) term in the asymptotic expansion of W (2.16) whose
first term is of order 72 and diverges at null infinity. Thus
the accuracy of any straightforward numerical calculation
of M would be swamped by the noise in the calculation of
the coefficient of 2. The same difficulties arise from the
term of order r in W. It is thus necessary to introduce
renormalized variables to eliminate this source of noise.
For simplicity, we set set A = 1 in describing this process.

We have found a new set of renormalized variables
which are globally smooth and allow the mass aspect to
be extracted to second-order accuracy in grid size. These
new variables replace U and V' = r + W according to the
definitions

o1 = (1 —y?)~V232-Ay 1 org,
—r* (1 -7 (L - 1)) ry (4.1)

(r7),r = 872 (0 + p) (1 — 9%) " 2wrwa + 47r®[(p + p)(w1)?]y + (1 — ¥2) Le?7[(1 — y2)e~2 (rP,) ],

and

2r = ezﬁ{ 4n[r?(p — p) + €77 (p + p)(wa)?] +r2(1 -

—{(1 =y 2, — 2rBry — Brr(p + ) (1 — ¥?) "V 3wiwy]} , ¥,

where

=7+ %rz(l -7 (1 - e ] . (A7)

With these renormalizations,  vanishes at null infin-
ity, either as O(1/r) for asymptotically flat spacetimes
or as O(lnr/r), for logarithmically asymptotically flat
spacetimes. (We will deal with an example of the latter
type in the next section.) In either case, (4.5) may be in-
tegrated by standard numerical techniques to determine
T globally to second-order accuracy in grid size. In doing
so, null infinity is introduced as a finite grid boundary by
introducing the new radial coordinate

=r/(1+71), (4.8)
with the grid uniformly spaced in Az, Similarly, u is
finite at null infinity and can be determined to global
second-order accuracy by numerical integration of {(4.6).

The asymptotic value of u plays the role of a general-
ized mass aspect, with the formula (2.21) for the Bondi
mass taking the simple form

Mp = -4%; }(w"le_zHu!z=1 sin 8 d8 d¢. (4.9)
We have carried out extensive convergence tests on our
numerical implementation of the above scheme for calcu-
lating Mp. As analytic testbeds, we have used boost-
rotation symmetric vacuum solutions [23], spherically
symmetric matter solutions and the axially symmetric
post-Newtonian dust solution to be discussed in the next
section. All these tests confirm that our algorithm for
the Bondi mass is second-order accurate in grid size.

and
2= =V + 131 =AU, — PR/,
+e2[(1 - yP)e 2T,y (42)
where y = — cos @ and
K = 211~ 42)e ™4y, (43)

Note that K is the Gaussian curvature of the angular
metric

e27dh? 4+ =27 sin? 9 dg>. (4.4)
They satisfy the radial equations
(4.5)
e 9% +28,{[(1 — y?)e™ 1]y — r3(K/r) 1}
(4.6)

V. RADIATING DUST

We now apply this computational algorithm to study
the mass of a post-Newtonian radiating sphere of dust.
The model is generated by the Newtonian initial data
consisting of an initially homogeneous ball centered at
the origin,

{k for r < R,
p—._"

0 for r> R, (5.1)

moving with the quadrupolar radial velocity flow

vy = vr’(3cos® 6 — 1).
The Newtonian mass and energy are

My = ékas,

(5.2)

(5.3)
By = —mko?R® — 8242 ps

T 15 '

For this model, the relativistic internal energy (2.24) is
simply M; = Mpy. In order to fix the dimensional free-
dom in this model, all our numerical results will be based
upon the choice R = 1.

In a previous study of the Bondi news function for
this model [19], the post-Newtonian expansion for the
initial value of «y was calculated through terms of order
A3. The expansion was truncated at this order since this
is sufficient to remove incoming radiation from the data
which would otherwise negate the generalization of the -
Einstein quadrupole formula for the outgoing radiation.
This truncated data and other pertinent post-Newtonian
properties of the model are given in the Appendix.
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Using computer assisted algebra, it is fairly straight-
forward, although challenging, to calculate the post-
Newtonian expansion M, of the Bondi mass (1.3) based
upon these data. The results are given through terms of
O(MNT) in the Appendix. For this model, Ml(;l) = 0, so
that M 1(30 ) and M 1(32) are equal to My and Ep, respec-
tively.

For small A, where radiation fields are small, all the es-
sential physical effects are already present in the spheri-
cally symmetric case. So, to provide some bearing on the
effects of radiation, first consider the nonradiative case
with v = 0. Figure 1 compares the corresponding post-
Newtonian expansion of the Bondi mass for £ = 0.01
with its numerically computed values, as a function of
A. For small A these two graphs are in good agreement
as the binding energy —FExn serves to decrease the to-
tal energy. However, as A enters the strong field regime,
the post-Newtonian expansion becomes negative whereas
the computed value remains positive. This shows how
keeping even seven terms in a post-Newtonian expan-
sion can lead to contradictions with the positivity of the
Bondi mass. The graph of the post-Newtonian expan-
sion rapidly peels away from the computed graph as the
strictly defined general relativistic mass, Mg = A3Mp,
approaches R/2. This is the regime in which any post-
Newtonian expansion is destined to fail.

It is also instructive, for this example, to plot the Bondi
mass as a function of k, setting A = 1, as shown in Fig. 2.
This generates a post-Minkowski family of systems. Note
that in this case the Bondi mass saturates at the value

k=.01 v=0
1.0 T T T 3

08

06

02

]
1
1
1
00 | ' E
1
1
'Il
L[}
1
0.2 R N L I L 1. N
0.0 5.0 10.0 150 20.0
A
FIG. 1. The Bondi mass Mg and its post-Newtonian ex-

pansion M), as a function of A for k£ = 0.01. Both curves are
in units of My, the Newtonian mass.
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Mg = 1 =-R. From a post-Minkowski viewpoint, the
null data develops an antitrapped surface at high density,
with the matter inside a white hole of radius 2R. This
strong field limit as k — oo can be verified analytically
by an asymptotic method developed for a Klein-Gordon
source [24]. In the present case, the last expression for
Mp in (3.7) gives
1
Mp = 41rk/ drr2e28—H), (5.4)
0
where 8§ = nr2k and H = 7k. Application of the method
of Laplace [25] to this integral then yields M ~ 1 for
large k.

Next consider the radiative case, again setting k¥ =
0.01, but now with |v| = vp/10, where vg = (67k)!/2 is
the value of v for which the Newtonian binding energy
vanishes. For positive v the dust sphere evolves toward a
pancake shape; and for negative v, toward a cigar shape.
Figure 3 graphs the Bondi mass for this system, as well
as its post-Newtonian expansion. Since the background
Newtonian system is bound, the Bondi mass initially de-
creases below the Newtonian mass for small A. However,
as A increases, the graphs sharply reverse and the Bondi
mass rapidly increases. Note that the behavior of the
Bondi mass in this regime depends on the sign of v, as
opposed to the independence of Newtonian kinetic en-
ergy on the direction of velocity. This dependence on the
sign of v also appears in the post-Newtonian expansion.
Since the highest order coefficient M 1(37), given in (Al4),
is negative when v > 0, the post-Newtonian expansion

A=l v=0
1.0 T T T

e

08 1

0.6 | b

Mik)

04 H ' .

02 A

- 00 . : — P -
0.0 2.0 40 6.0 8.0 10.0

k

FIG.2. The Bondi mass Mg as a function of k, the central
density, for A = 1. Note that the Bondi mass saturates at the
value Mg =1 = R.
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for the pancake case always leads to negative values of
the Bondi mass at sufficiently large A.

In the high-A limit, the purely gravitational contribu-
tion to the Bondi mass dominates the contribution from
matter. This is evident in comparing Fig. 1 with Fig. 3.
In the spherically symmetric case where there is only a
matter contribution, shown in Fig. 1, the Bondi mass
remains bounded for high A. This is in contrast to the
infinite limit apparent in the radiative case of Fig. 3.
In a separate study of strong field limits [26], we have
shown that the Bondi mass increases linearly with the
amplitude of the gravitational data, as opposed to the
quadratic dependence in the weak field case. This re-
sults from an exponentially strong redshift effect which
suppresses all but the far field contribution to the mass.
However, this linearity only holds when the gravitational
data is expressed in a standard Bondi frame, in which

K =0. [See Eq. (2.13).] Because K # 0 in the present
frame, an exponential dependence on A arises in Fig. 3
from the conformal factor w.

Figure 4 graphs the Bondi mass for £k = .0l in the
transitional case |v| = vy. Because the Newtonian bind-
ing energy vanishes, the graphs are almost horizontal for
small A with just a small negative slope corresponding to

the negative value of the coefficient Ml(;), in (Al11). At
larger A, the gravitational contributions again dominate.

For the case v = 2vp, shown in Fig. 5, the kinetic energy

k=01 Ivi=v,/10
2.0 T T - T T
b
o
—— MyM,, (v=v,/10) b
-~ MM, (v=-v,/10) oo
——=~ M,/M,, (v=v,/10) ! |
L7 | —-—M/M, (v=-v,/10) ! ] :
14 |
§Z

1.1

0.8

05
10.0

0.0

FIG. 3. The Bondi mass Mg and its post-Newtonian ex-
pansion M}, as a function of A for k£ = 0.01 and |v| = vp/10,
in units of My, the Newtonian mass. Note that the behavior
of the Bondi mass in this regime depends on the sign of v,
unlike the Newtonian kinetic energy, which does not depend
on the direction of velocity.
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is the dominant factor for small A and the graphs are
everywhere increasing,.

The foregoing results incorporate the quasi-Newtonian
formalism in an essential way to determine the appropri-
ate data for the gravitational field. Newtonian matter
data inserted naively into Einstein’s theory would lead
to different behavior. For example, a change in the value
of (9 would lead to a change in the quadratic coefficient
M }(32) in the expansion of the Bondi mass. As a result the
validity of (2.26) for extraction of the Newtonian mechan-
ical energy Ex depends upon using the quasi-Newtonian
formalism to determine the proper gravitational data.
When the Newtonian matter density is spherically sym-
metric 4v(® = 0, but otherwise setting 7v(® = 0 would
in general be inconsistent with (2.26). For our quasi-
Newtonian dust model, with ¥ = 0.01, |v| = v5/10 and a
grid of 256 angular and 256 radial points, our computed
value via (2.26) is Ey = —1.0411 x 10~3 which agrees
with the exact value Ex = —1.0422 x 1073,

VI. CONCLUSION

We have developed an algorithm for calculating the
Bondi mass based upon renormalized variables which has
been tested to converge at second order in grid size. We .
have shown this algorithm to be highly effective in explor-
ing both the Newtonian and strong field limits of general

k=01 Ivi=v,

2.0

1.7

14

1.1 [T MM (v=Y,) 1
—= - MM, (v=-v,)
——- MM, (v=v,)
=== MM, (v=v,)
0.8 N
0.5 - !
0.0 2.0 4.0 6.0

FIG. 4. The Bondi mass Mp and its post-Newtonian ex-
pansion M), as a function of A for & = 0.01 and |v| = wo,
in units of My, the Newtonian mass. The graphs are almost
horizontal for small A because of the vanishing of the Newto-

nian binding energy.
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relativity. In particular, the algorithm joins smoothly
and accurately to a post-Newtonian expansion of the
Bondi mass carried out through terms of O(A7). At
higher lambda, the computed mass peels away and shows
markedly non-Newtonian behavior. It remains strictly
positive, in contrast to the post-Newtonian expansion.

The algorithm extends the role of the Bondi mass as a
basic theoretical concept in the theory of gravitational
radiation to also serving as a highly accurate tool of
computational relativity. Computational checks of the
Bondi mass loss formula can provide a global check on
the preservation of the Bianchi identities. The mass
loss rates themselves have important astrophysical sig-
nificance. Our results establish that computational ap-
proaches, based strictly upon the geometrical definition
of mass in general relativity, can be used to calculate
radiation losses in highly nonlinear processes where per-
turbation calculations fail.
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APPENDIX

For the Newtonian matter data (5.1) and (5.2), the
quasi-Newtonian gravitational data are given by

v =270 4 2353 4 2340, (A1)

with 4¢9 = 0 in this special case. The values of the
coefficients in the interior (r < 1) are [19]
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k=.01 lvi=2v,
2.0 M M T T T f
P i
| ;
— MM, (v=2v,) i {
—= - MM, (v=-2v,) ,’ !
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!
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FIG. 5,
pansion M), as & function of A for k£ = 0.01 and |v] == 2vo, in
units of My, the Newtonian mass. Since the kinetic energy
is the dominant factor for small A, the slope of the graphs of
Mp and M), is always positive.

. The Bondi mass Mg and its post-Newtonian ex-

4r2 3 7.5
M) — 1 52 A I
7 7r6Y2k( TR 180) ’ (A2)
1374 8r% 167 3499r8 4r2 8r% 247% 318
(2) — 2 . . 2 2 _ _ _ 2
T =niYak (4900 225 ' 385 360360) vtk ( 105 105 ' 245 3465) vh o (A9)
@) _ M O°Yok? [ 30687 79r%  78r% 238615 252417
TTETT 7875 ' 85 25 ' 1575 18375
1r62Y2 _64r? 8 r3 _ 576r% 1675 407!t 3
315 343 21 3087
7r‘<’52Y4 _ 816 ré 32 r® 768 r8 L2 r? 438 rll
T18865 T 175 3025 T 605 94325
LT 62Y5 ( 96 r° 7452 77 14478  367° 26711\
4235 7ot 1001 T 455 2805 ) U (A4)

and in the exterior,
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(A5)

1 232 32 9 149 1 4 11
2 _ 2 2 _ 2 2 _ _ 2
Y=ok (21 * 80853 315 r) v T oYk (1400 + 5E02575 12614 T 269573 1575 r> v, (A6)
5783 . 1. _ .7789 1028 32 (logr)
(3) — 2 %2 2 {_ = -
Y=Yk ( 52050 | 674 1575013 T 15751 31578 ) °
2 24 27 32
2 _ _ 3
trYek (1617 7 773576 T 1101175 55055 7~4> v
51 104 48 87 82Y; k v®
2y, k — g 2r 2rY
+m oY (21175 7% 2117574 | 18865 r3> AR To T (A7)
where
32%Y, =6 sin? 6, (A8)
52Y; =60 (—1+7 cos®d) sin?4, (A9)
5%Ys =210 (1 — 18 cos® 6 + 33 cos*§) sin?4. (A10)
This leads to the expansion coefficients for the Bondi mass, Mg)) = Mp, Ml(gz) = Ey, Mg) = Mg’) =0, and
@ 6473 K3 3424 w2 k2 2 i} _ L
Ms =105 3465 ' ’ _— (ALL)
) _ 5187762 k2% B L - o
My = 4244625 (A12)
2 _ 256 ntk* 375691088 73 k3 v? 16357504 72 k2 vt (A13)
B 945 118243125 938062125 '
y_ 8 kv 2746912731740 k3 vd 2084192 7% k2 0P (A14)
B — 45 28969565625 491365875
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