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We review the present status of the null cone approach to numerical
evolution being developed by the Pittsburgh group. We describe the
simplicity of the underlying algorithm as it applies to the global
description of general relativistic spacetimes. We also demonstrate its
effectiveness in revealing asymptotic physical properties of black hole
formation in the gravitational collapse of a scalar field.

1 INTRODUCTION
We report here on a powerful new approach for relating gravitational radiation to its
matter sources based upon the null cone initial value problem (NCIVP), which has
been developed at the University of Pittsburgh . We are grateful to the many grad-
uate students and colleagues who have made important contributions: Joel Welling
(Pittsburgh Supercomputing Center), Richard Isaacson (National Science Founda-
tion), Paul Reilly, William Fette (Pennsylvania State University at McKeesport) and
Philipos Papadopoulous.

As will be detailed, the NCIVP has several major advantages for numerical imple-
mentation. (i) There are no constraint equations. This eliminates need for the time
consuming iterative methods needed to solve the elliptic constraint equations of the
canonical formalism. (ii) No second time derivatives appear so that the number of
basic variables is half the number for the Cauchy problem. In fact, the evolution equa-
tions reduce to one complex equation for one complex variable. The remaining metric
variables (2 real and 1 complex) are obtained by a simple radial integration along the
characteristics. In null cone coordinates, Einstein’s equations form a system of radial
differential equations which can be integrated in hierarchical order for one variable at
a time. We have been able to utilize this structure to construct a marching algorithm
in which evolution to the next grid point is carried out with no extra computational
baggage such as iterative procedures or inversion of matrices. (iii) The radiation zone
can be idealized as a finite grid boundary using the Penrose compactification tech-
nique (Penrose 1963) for null infinity. No extraneous outgoing radiation conditions
are required at null infinity, which both in theory and in practice acts as a perfectly
absorbing boundary. This allows the rigorous description of radiation in terms of ge-
ometrical quantities such as the Bondi mass and news function (Bondi et. al. 1962),



the angular momentum and supermomentum associated with the asymptotic symme-
try group (Winicour 1989), and the Newman-Penrose conserved quantities (Newman
& Penrose 1968). It supplies the waveform and the polarization incident on a distant
antenna. Because of the singular time behavior of the compactified version of spatial
infinity (Ashtekar & Hansen 1978), the analogous approach to the Cauchy problem is
not practical numerically. Instead, the grid is terminated at some radius R, where an
outgoing radiation condition must be imposed. There do not exist specific estimates
of the effect of such boundary conditions on the interior physics, e.g. by reflection
of waves off the boundary. Furthermore, combined with gauge ambiguities, use of a
finite grid boundary complicates the extraction of the true wave profile seen by dis-
tant observers, who are essentially at null infinity. Although this has been effectively
accomplished for the radiation from axially symmetric perturbations of relativistic
stars (Abrahams & Evans 1990) it becomes much more problematical in the highly
nonlinear and asymmetric case. (iv) The grid domain is exactly the region in which
waves propagate, which is ideally efficient for radiation studies. Since each null cone
extends from the source to null infinity, we see the radiation immediately with no
need for numerical evolution to propagate it across the grid. Furthermore, in the
case of black hole formation, the exterior region of spacetime which is of physical
interest is itself bounded in the future by a null hypersurface which forms the horizon
associated with the final black hole state. Here the use of null hypersurfaces again
leads to an efficient choice of grid domain, although in highly asymmetric systems,
such as two coalescing black holes, the caustic structure of the horizon is expected to
be much more complicated than that of a null cone.

There are also disadvantages of the NCIVP. (i) One is the issue of caustics. A null cone
is a special type of null hypersurface in which the caustics consist of a single spacetime
point. In gravitational systems with large asymmetry, the focusing effect can lead to
more complicated caustic structure and preclude the existence of null cones. Although
there are methods to include arbitrary caustics in the characteristic initial value
problem (Friedrich & Stewart 1983), at the present developmental stage we prefer to
avoid this issue. In analogy with geometric optics, it is not the lensing effect of strong
curvature by itself which leads to caustics but also the location of the lens with respect
to the vertex. In a spacetime with negligible curvature containing, say, two peanuts,
no global null cones exist if the peanuts are sufficiently far apart (approximately
1010 light years). On the other hand, in spacetimes with strong curvature, global
null cones exist (or end on true physical singularities) in the case of near spherical
symmetry and even for a binary neutron star system with orbital separation of less
than 5 neutron star radii. It is known from the geometric optics approximation
that gravitational lensing by an intermediary object between the source and observer
can enhance the detectability of gravitational radiation in the same manner as for



electromagnetic radiation, although this is likely to be too fortuitous to be of practical
value. However, there is also another qualitatively different form of lensing which
occurs when the “focal length” is matched to the size of the dynamical radius of the
source. This occurs in the case of binary neutron stars at the minimal orbital radius
that admits global null cones and it is generic of binary black holes. It is not known to
what extent this dynamical lensing might enhance the detectability of gravitational
radiation from these binary systems. This is an effect for which standard perturbation
theory based upon harmonic light cones cannot be trusted and which has not yet
been investigated numerically. (ii) The Courant stability condition requires that the
physical domain of dependence be smaller than the domain of dependence determined
by the numerical algorithm. For an explicit finite difference algorithm, this places a
stronger restriction on the size of the time step near the vertex of the null cone than
occurs for the Cauchy problem (Gómez, Isaacson & Winicour 1992). This can be
circumvented by using either an implicit algorithm or a variable grid but again, at
the present developmental stage, we prefer to keep the algorithm as simple as possible
in finite difference form for purposes of calibration. (iii) Although the technique of
shooting along characteristics is common in computational mathematics, there is
very little history for the numerical implementation of the characteristic initial value
problem. Outside of work done in general relativity, the literature only treats systems
with one essential spatial dimension. This makes it prohibitive to try to develop an
astrophysically realistic hydrodynamic code along with the gravitational code. (iv)
There is a paucity of exact solutions that can be expressed in null coordinates for
use in code calibration and debugging. One is the Oppenheimer-Snyder solution.
In collaboration with W. Fette, we have developed a spherically symmetric code
for Einstein’s equations coupled to dust which tracks Oppenheimer-Snyder collapse,
to second order accuracy in grid size, through the horizon up to the formation of
the singularity. However, until recently, there were no nonspherically symmetric
metrics known in null cone coordinates, other than the Minkowski metric, that were
sufficiently global to serve as a test bed. This requirement is intrinsically more difficult
than in the Cauchy problem, where the domain of dependence of a small portion of
the initial spacelike hypersurface is nonempty, so that evolution can be tested locally
by avoiding the singular regions of the exact solution. In the case of a null cone, the
domain of dependence is empty for any portion not containing the vertex. Following
a suggestion of J. Bicak, we developed a null cone formulation of the boost-rotation
symmetric spacetimes (Bicak, Reilly & Winicour 1988). In further work with Reilly,
we have used this formalism to find the only known nonflat vacuum spacetime that
can be analytically expressed in null coordinates with a nonsingular vertex. This
provides an important test bed for code development.



2 THE NULL CONE FORMALISM
Figure 1 illustrates how null cone coordinates xµ = (u, r, xA) are uniquely determined
(up to a trivial angular coordinate freedom) by a point O and a timelike vector
T µ in its tangent space. These determine a timelike geodesic which serves as the
origin worldline for the vertices of a family of null cones. Let the coordinate u be
the proper time along this geodesic, with u = constant on the outgoing null cones.
Let xA (A = 2, 3) be coordinates for the outgoing null rays, consistent with parallel
propagation along the origin worldline. Let r be a surface-area distance on the null
cones. Then, in the corresponding Bondi coordinate system, the line element takes
the form

ds2 = Hµdxµdu− r2hABdxAdxB, (1)

where, for numerical purposes we choose xA = [−cos(θ), φ] in terms of the usual
polar coordinates. Then det(hAB) = 1. Also, the numerical grid is based upon the
compactified radial coordinate x = r/(1 + r), so that points at future null infinity
J+ are included in the grid at x = 1. The coordinate conditions at the origin imply
that the metric reduces to a Minkowski (null polar) form along the central worldline.
However, the resulting metric does not take an asymptotic Minkowski form at J+.

Initial null data for the gravitational field consists of the 2-metric hAB. Because of the
unimodular condition, this entails two degrees of freedom describing the conformal
2-geometry of the surfaces of constant r on the initial nullcone. It is convenient to
introduce a complex polarization dyad

hAB = 2m(Am̄B). (2)

Then these dynamical degrees of freedom can be efficiently described in terms of the
single complex function ζ = m3/m2. There is a one-to-one correspondence between
choices of ζ and symmetric unimodular matrices hAB. There are no constraints on
this data except that it be consistent with smoothness at the origin and asymptotic
flatness.

The vacuum field equations consist of four hypersurface equations for Hµ and one
complex evolution equation for ζ. They take the symbolic form

H1 =
∫ r

0
drJ1[ζ] (3)

HA =
∫ r

0
drJA[ζ, H1] (4)

H0 =
∫ r

0
drJ0[ζ, H1, HA] (5)

∂ζ/∂u =
∫ r

0
drJ [ζ, Hµ]. (6)



Here the the J-operators consist of explicit operations intrinsic to the null cone. These
equations form a hierachy which leads from the initial data ζ to its time derivative
by means of a series of radial integrations.

Our first attempt at a numerical code for axisymmetric vacuum space-times based
upon the null cone algorithm led to unexpected difficulties. The numerical grid in-
cluded null infinity as a compactified boundary and yielded the first successful numeri-
cal calculations of the Bondi mass and news function for gravitational waves (Isaacson,
Welling & Winicour 1983). However, near the vertex of the null cone, instabilities
arose which destroyed the accuracy of the code over long time scales. We felt that
this problem was too complicated to analyze in the context of general relativity, con-
sidering that the numerical analysis of the characteristic initial value problem had
not yet been carried out even for simplest linear axisymmetric systems.
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Fig. 1 Null cone coordinates. Fig. 2 Scheme for the marching algorithm.

3 THE FLAT SPACE WAVE EQUATION
This warranted an investigation of the basic mathematical properties of the numer-
ical evolution of the flat space scalar wave equation using a null cone initial value
formulation (Gómez, Isaacson & Winicour 1992). Consider the scalar wave equation

Φ = NL + S, (7)

where the terms on the right hand side represent a nonlinear potential, such as a Φ4



potential, and an external source. This can be reexpressed in the form

(2)g = −L2g

r2
+ r(NL + S), (8)

where g = rΦ and L2 is the angular momentum operator. Integration over a null
parallelogram in the (u, r)-plane as depicted in Fig. 2, leads to the integral equation

gQ = gP + gS − gR +
1

2

∫

A
dudr[−L2g

r2
+ r(NL + S)]. (9)

This identity gives rise to an explicit marching algorithm for evolution. Let the null
parallelogram span null cones at adjacent grid values u0 and u0 + ∆u, as shown in
Fig. 2, for some θ and φ. Imagine for now that the points P , Q, R and S lie on the
grid, so that xQ − xP = xS − xR = ∆x. If g has been determined on the entire u0

cone and on the u0 + ∆u cone radially outward from the origin to the point P , then
(9) determines g at the next radial grid point Q in terms of an integral over A. The
integrand can be approximated to second order, i.e. to O(∆x∆u), by evaluating it at
the center of A. To the same accuracy, the value of g at the center equals its average
between the points P and S, at which g has already been determined.

After carrying out this procedure to evaluate g at the point Q, the procedure can be
repeated to determine g at the next radially outward point, the point T in Fig. 2.
After completing this radial march to null infinity, the field g is then evaluated on
the next null cone at u0 + 2∆u, beginning at the vertex where smoothness gives the
start up condition that g = 0. The resulting evolution algorithm is a 2-level scheme
which reflects, in a natural way, the distinction between characteristic and Cauchy
evolution, i.e. that the time derivative of the field is not part of the characteristic
initial data.

In practice, the corners of the null parallelogram, P , Q, R and S, cannot be chosen
to lie exactly on the grid because the velocity of light in terms of the compactified
coordinate x is not constant even in flat space. As a consequence, the field g at these
points is approximated to second order accuracy by linear interpolation between grid
points. However, cancellations arise between these four interpolations so that (9) is
satisfied to fourth order accuracy. The net result is that the numerical version of (9)
steps g radially outward one cell with an error of fourth order in grid size. Second
order global accuracy is indeed confirmed by convergence tests of the code.

For sufficiently large r, we found from an analysis of domains of dependence that
the Courant limit on the step size is the same as for a standard Cauchy evolution in
spherical coordinates,

∆u < 2∆r (10)



and
∆u < r∆θ. (11)

However, near the origin, this analysis gives a much stricter limit

∆u < Kr(∆θ)2, (12)

where K ≈ 1. These stability limits were confirmed by numerical experimentation.

Operating within this Courant limit, the algorithm has been implemented as a sta-
ble, calibrated, globally second order accurate evolution code on a compactified
grid (Gómez, Isaacson & Winicour 1992). Numerical evolution accurately satisfies
the mass-energy flux conservation law. Furthermore, null infinity behaves as a per-
fectly absorbing boundary so that no radiation is reflected back into the system. This
algorithm offers a powerful new approach to generic wave type systems. By construct-
ing an exact nonspherical solution for a Φ4 potential, we were able to calibrate the
algorithm in the nonlinear case. It tracked the solution with the predicted second
order accuracy right up to the formation of physical singularities. By other choices
of potential, we were able to study approximate axisymmetric versions of solitary
wave phenomena. The basic algorithm is applicable to any of the hyperbolic systems
occurring in physics.

4 SELF-GRAVITATING SCALAR WAVES.
We subsequently extended this algorithm to self-gravitating, spherically symmet-
ric, zero-rest-mass scalar waves, as described by the Einstein-Klein-Gordon equa-
tion (Gómez & Winicour 1992a).

Gµν = 8π[∇µΦ∇νΦ− 1

2
gµν∇αΦ∇αΦ]. (13)

In null cone coordinates, the line element takes the Bondi form

ds2 = e2βdu(
V

r
du + 2dr)− r2(dθ2 + sin2θdφ2). (14)

Let H(u) = β(u,∞). Then Bondi time ũ, measured by inertial observers at null
infinity, is related to central time by

dũ

du
= e2H . (15)

Horizon formation occurs at a finite central time u = uH but at an infinite Bondi
time ũH = ∞.

In the case of spherical symmetry, g = rΦ obeys a two dimensional wave equation
intrinsic to the (u, r) plane. In two dimensions, the geometry is conformally flat, the



wave operator has conformal weight -2 and the surface area element has conformal
weight +2, so that the surface integral of (2)g over a null parallelogram gives exactly
the flat space result. This allows use of the same basic evolution algorithm already
described. The only new feature is that the radial integration of the hypersurface
equations must be worked into the algorithm to determine β(u, r) and V (u, r).

4.1 Asymptotic Properties
Christodoulou (Christodoulou 1986a, 1986b, 1987a, 1987b) has made a penetrat-
ing analysis of the existence and uniqueness of solutions describing gravitational
collapse of a scalar field, in the spherically symmetric scalar case, and has estab-
lished a rigorous version of a no-hair theorem. He proved that weak initial data
evolves to Minkowski space asymptotically in time but that sufficiently strong data
forms a horizon, with nonzero final Bondi mass MH . The geometry is asymptoti-
cally Schwarzschild in the approach to I+ (future timelike infinity) outside the sphere
r = 2MH . Figure 3 depicts the spacetime of such a field beginning at initial retarded
time u0 and forming a horizon at uH . The situation differs from Oppenheimer-Snyder
collapse in that the backscatter of radiation causes the r = 2MH curve to intersect
the horizon only in the asymptotic limit at I+. In that respect, it is more akin to the
spacetime of a dust distribution whose interior collapses but whose exterior escapes
to infinity, as depicted in Fig. 4.
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When a horizon forms, Christodoulou’s no hair theorem states that the geometry has
the asymptotic step function behavior

e2(β−H) →
{

0 for r < 2MH

1 for r > 2MH

(16)

in the limit u → uH . From the hypersurface equation

β,r = 2πr(Φ,r)
2 , (17)

it follows that Φ → 0 as u → uH for r > 2MH . The compactified grid allows the
accurate tracking of the scalar radiation field right up to time infinity I+. In the
curved space case, the Courant condition requires that the ratio of the time step size
to radial step size be limited by (V/r)∆u ≤ 2∆r, where ∆r = ∆[x/(1 − x)]. The
strongest restriction arises at J+, just before the formation of a horizon. In this limit,
V/r → ∞ so that the conformal singularity at I+ freezes the numerical evolution.
The code becomes unreliable when the red shift between central time and Bondi time
is of the order of 109. In order to evolve across the horizon, exterior radial points
must be dropped from the domain of the grid. Figure 5 illustrates the formation of a
step function just before horizon formation during a typical numerical evolution, in
confirmation of Christodoulou’s theorem.

One static solution for a spherically symmetric, self gravitating zero rest mass scalar
field is Φ = constant, which is pure gauge and not by itself physically interesting. An-
other is the analog of the static solution Φ = 1/r in a Minkowski background (Janis,
Newman & Winicour 1968). Pasting these together gives rise to initial data whose
evolution is not static because of the jump discontinuity in the curvature at their
interface. This gives rise to a shock front along a radially incoming characteristic.
Results of a numerical evolution of g(x, u) are shown in Fig. 6 for the case of initial
amplitude large enough to form a horizon.

To the past of the shock front, Φ remains constant. Although g(x, u) = rΦ has a
curved profile in this region, the evolution is manifestly static. The numerical code
clearly handles the inward propagation of the shock front without difficulty. Outside
the shock front, backscattering distorts the initial profile. This distinctly illustrates
the breakdown of Huyghen’s principle due to curvature. The numerical code handles
the propagation of the shock front without any substantial difficulty. It introduces
some slight high frequency numerical noise just outside the shock front, but too small
to be perceptible in the figure.



Fig. 5 Formation of a step function. Fig. 6 Evolution of static-static data.

Fig. 7 Decay of the monopole mopment. Fig. 8 The initial data for a wave train.

The early stage of the evolution appears innocuous but then the outer region of the
profile flattens. This marks the beginning of the process of “shedding hair” as a black
hole starts to develop. As this process intensifies in the late stage, a cusp begins to



form near r = 2MH , which corresponds to the conformal singularity developing at I+.
Note that the slope of g at J+ is conserved during the evolution. It is an example of
a Newman-Penrose conserved quantity. Our results demonstrate how the Newman-
Penrose constant is indeed conserved while remaining consistent with the no hair
scenario.

The time dependence of the monopole moment Q(u) = g(u,∞) is graphed in Fig.
7. After a long dive to a negative value, it bobs up abruptly to zero just before
the horizon forms. The numerical evolution is stopped just short of the horizon due
to the inability of the grid to resolve the cusp. The redshift factor at this time is
dũ/du ≈ 107. Careful inspection of the numerical results shows that its final decay
has time dependence

√
uH − u. From recent discussions with P. Rabier and W.

Rheinboldt, we have learned that this corresponds to a canonical singularity in the
general theory of Differential Algebraic Equations (DAE’s) (Rabier 1989; Rheinbolt
1984), in which a quantity has a well defined limit but its time derivative does not.
We find that central time and Bondi time are related asymptotically by

uH − u

4MH

∼ e−ũ/4MH , (18)

analogous to the relation between Kruskal and Schwarzschild times. This implies that
the monopole moment decays exponentially in Bondi time, in contrast to the power
law predicted by perturbation theory in an Oppenheimer-Snyder background (Price
1972). This is surprising since in this final phase the metric is very close to a
Schwarzschild metric in the region exterior to r = 2MH .

Another illustrative example is provided by the strong amplitude initial data given
in Fig. 8. Figure 9 graphs g just before horizon formation in a strong amplitude
case; and Fig. 10 graphs what would be the linear evolution of g at a suitable time
for comparison with the strong amplitude graph. The qualitative difference between
these graphs highlights the nonlinear effects of self gravitation. The most striking
feature of the strong amplitude case is that the horizon forms quite insensitively to
the detailed structure of the field in the inner region r < 2MH . The chief difference,
between the strong and weak case, in the evolution of g inside this inner region
arises from the way in which the outgoing wave from the origin interferes with the
incoming signal. In the weak case this interference lowers the entire profile in Fig.10
by a constant determined by the amplitude of the outgoing wave leaving the origin at
that time. In the strong case, backscattering couples the the incoming and outgoing
waves. The linear slope modulating the wave profile in Fig. 9 is a prime illustration
of backscattering depleting the outgoing wave.



Fig. 9 Strong amplitude evolution. Fig. 10 Weak amplitude evolution.

4.2 Scaling Limits
The Bondi mass of this Einstein-Klein-Gordon system has some remarkable asymp-
totic behavior with respect to the one parameter family of data obtained from the
amplitude rescaling Φ(u0, r; λ) = λΦ(u0, r), which preserves asymptotic flatness. By
an application of the method of Laplace, we have derived the following asymptotic
formula for large λ which holds when the monopole moment is nonvanishing,

M(u0; λ) ∼ π√
2
|Q(u0; λ)|. (19)

In this regime, the mass is essentially the magnitude of the monopole moment and
scales linearly with λ! Compare these results to the small amplitude regime, in which
M depends quadratically on λ. In the strong field case, a redshift type effect weakens
the dependence of M on the the inner region of the matter distribution and the
dominant contribution comes from the far field monopole moment. The details of
the transition from the low amplitude to high amplitude asymptotic regimes can be
obtained from numerical calculations of the mass using our code. The result for a
typical choice of data is illustrated in Fig. 11. The transition from quadratic to linear
λ dependence occurs around the critical value λc, at which the evolution bifurcates
between forming or not forming a horizon.

For data of compact support within a radius R, the method of Laplace leads to the



high amplitude asymptotic dependence

M(u0; λ) ∼ R/2. (20)

In this case, redshifting completely saturates the λ dependence and the null data
approaches that for a horizon at R = 2M . This is illustrated in Fig. 12. The study of
a specific analytic model (Winicour 1990) with compact null data also shows that the
news function is completely redshifted away, N(λ) → 0 as λ →∞ holding R constant.
Amplitude scaling, does not commute with evolution, Φ(u1, r; λ) 6= λΦ(u1, r), except
in the small λ linearized limit. This lies behind the somewhat magical way in which
high amplitude noncompact data, with large M and Q, rapidly sheds its monopole
moment, along with its exterior field, without significant mass loss as a black hole
forms.

Fig. 11. Scaling of the Bondi mass Fig. 12. Scaling of the Bondi mass
for nonvanishing monopole moment. for compact data

Another global quantity with interesting properties is

P = 4π
∫ ∞

0
r(g,r)

2dr. (21)

P 1/2, like the square root of the Bondi mass, provides a norm on the vector space
of asymptotically flat initial data. P scales quadratically with respect to λ under
amplitude rescaling. It is implicit from the results of Christodoulou that its derivative
with respect to Bondi time can be expressed in the form

P,ũ = M − λ∂λM. (22)



In the linear regime, the Bondi mass scales quadratically so that λ∂λM ∼ 2M and
(22) reduces to P,ũ ∼ −M . Thus P must monotonically decrease in the weak field
regime. This explains how flat spacetime arises as a basin of attraction for the weak
field case. Since during the formation of a horizon the field develops compact support
within a radius 2MH , one would expect that ∂λM → 0 and therefore that

P,ũ ∼ MH , (23)

These late time asymptotics can also be confirmed by numerical evolution, as illus-
trated in Fig. 13.

Fig. 13. Comparison of P,ũ and M . Fig. 14. Scaling of P.

Figure 14 plots P (ũ) for several representative values of λ. Many qualitative features
of these graphs can be explained in terms of asymptotic results previously discussed.
For the two graphs with λ < λc, P decays to zero as the system decays to flat
space, in keeping with the role of P as a norm. For the three graphs with λ > λc,
P exhibits interesting asymptotic behavior. First, at the initial time ũ = 0, these
three graphs of P all have approximately the same slope. This is a manifestation of
the high amplitude scaling properties which can be established for dP/dũ (Gómez &
Winicour 1992a). The numerical results show that the high amplitude limit remains
a good approximation to 10% accuracy even for values λ ≈ λc. At large Bondi time,
these three graphs again tend toward straight lines exhibiting the asymptotic relation
dP/dũ → MH . From the asymptotic slope of these graphs, it is evident that systems
which start out at higher amplitude develop horizons with greater mass.



Fig. 15. Behavior of P near critical data. Fig. 16. Comparison of profiles at
R = 25M (dashed line) and J+ (solid
line) for compact initial data.

Figure 15 plots P (ũ) for values of λ just above and just below the critical value of
the amplitude. The bumpy features in the graph may be a rough version of the
intricate structure that appears in the neighborhood of the critical value, which has
been described by Choptuik (Choptuik 1989). The graph also clearly shows the value
of P as a diagnostic tool for determining the fate of the system at large times.

4.3 Collapse Criteria
Christodoulou (to appear) has established a condition on the initial data for the scalar
field which is sufficient to guarantee collapse to a black hole. It is based upon pairs
of spheres along the initial null cone with radii (r1, r2) (measured by surface area)
and upon the Hawking masses (m1,m2) of these spheres. For a given pair, let

δ :=
r2 − r1

r1

(24)

and

η :=
2(m2 −m1)

r2

. (25)

Then a horizon forms if there is a pair which satisfies the inequalities

0 < δ <
1

2
and η ≥ δ

(1 + δ)2
[5− δ − log(2δ)]. (26)



Numerical techniques can be used to determine which initial null data satisfy these
inequalities. Numerical evolution can then be used to measure the sharpness of
Chritodoulou’s criterion. For data with a λ-dependent amplitude, the crucial in-
formation to be determined is the critical value λc of the scale parameter and the
smallest value λx for which Christodoulou’s criterion is satisfied. Unfortunately, this
breaks down for data of the generic type in our previous examples; λx turns out to
be so large that numerical overflow swamps the calculation of the Hawking mass.
The numerical results conservatively imply that λx > 10λc for these examples. (This
lower limit corresponds to a redshift factor of approximately 1030 on the initial null
cone.)

An example in which Christodoulou’s criterion is somewhat more effective is supplied
by the initial data

Φ(u0, r) =





λ for 0 ≤ r ≤ 1
λlog(2r/3)

log(2/3)
for 1 ≤ r ≤ 3/2

0 for r ≥ 3/2 .
(27)

This is a special case of data for which the hypersurface equations can be integrated
analytically (Winicour 1990). The Hawking mass is

m =





0 for 0 ≤ r ≤ 1
r(z−1)(1−r−z)

2z
for 1 ≤ r ≤ 3/2

0 for r ≥ 3/2 .
(28)

Here z = 1 + 4πλ2[log(3/2)]−2. Analysis of the inequality (26) then leads to the
value λx ≈ .33 (corresponding to r1 = 1 and r2 ≈ 1.055), compared with the value
λc ≈ .097 obtained from numerical evolution of this data.

Are there other more physically intuitive collapse conditions? The numerical results
strongly support the hypothesis that once the redshift attains a sufficiently high
value the consequences are irreversible and the system must form a horizon. Can
then a collapse criterion be formulated in terms of an inequality H > Hc, where Hc

is independent of the choice of data?

4.4 Waveforms at Finite Distances
We have also used the spherically symmetric, massless Einstein-Klein-Gordon system
to investigate the discrepancies that arise if waveforms are observed at a grid bound-
ary with finite radius R, as opposed to null infinity (Gómez & Winicour 1992b). For
a system of mass M << R, it has tacitly been assumed that the waveform at the
grid boundary approximates the waveform at infinity, after compensating for the 1/r
falloff, with error of order of magnitude M/R. We have performed some numerical



experiments which show that this is not true for radiation consisting of a long wave-
train. Discrepancies close to 100% can arise at large observation distances R >> M

for sufficiently periodic systems. They are most pronounced for radiation losses be-
tween one quarter and one half of the initial mass. This falls within the expected
regime of the spiral infall of a relativistic binary system. The predominant contribu-
tion to this discrepancy stems from a time dependent redshift arising from radiative
mass loss.

For gravitational waves, there are severe complications which can potentially affect
the accuracy of waveforms based upon a finite worldtube. Gauge ambiguities make
it unclear which components of the metric or curvature tensor to use. Some method
of selecting the components transverse to the propagation direction is necessary but
there is no unique means of defining this propagation direction locally. The choice
of time coordinate can introduce further gauge effects. There are additional physical
complications. Time dependent versions of redshifting occur. The nonlinear grav-
itational self-source is noncompact and introduces backscattering which blurs the
distinction between incoming and outgoing fields. A finite grid boundary also leads
to some backscatter. Furthermore, in a case such as a binary black hole system, there
is no practical scheme for eliminating incoming waves from the initial data. In spite
of these complications, techniques used by numerical relativists with spacelike codes
have led to consistent and sensible results in the range of problems where they have
been applied (neutron star oscillations, supernovae).

The spherically symmetric scalar model has no ambiguity in the local radial direction
and no other gauge ambiguities. Furthermore, initial incoming waves are eliminated
in the test region by choosing initial data with compact support. In the nonspherical
case, this remedy is not possible for the initial data describing gravitational degrees
of freedom because of the constraint equations. Elimination of these effects allows
isolation of the nonlinear effects of backscattering and time dependent redshifting.
Furthermore, spherical symmetry allows the luxury of a very fine grid so that these
effects can be studied without contamination by numerical noise.

The radiation amplitude at J+ is Q(ũ) = g(ũ,∞), where the Bondi time ũ plays the
role of the proper time used by an observer at infinity. As the counterpart of Q(ũ)
based upon the worldtube, we choose q(τ ; R) = g(ũ(τ, R), R), where τ = τ(ũ, R) is
the proper time on the worldtube. There is a relative redshift between observers on
the worldtube and at J+. In order to synchronize the two time coordinates we set
τ0 = ũ0 = 0 on the initial null cone. We have tested how accurately q(τ ; R) serves
as a substitute for Q(ũ). By construction, the test is automatically satisfied in the
linear weak field case throughout any region where the wave is purely outgoing. The



waveform at a finite radius can be very misleading when incoming waves are present.

In strongly nonlinear fields, there is no clean way to decompose the wave into incoming
and outgoing parts. But to make the test clear cut, we will only consider initial data
with support r < 1 and test radii R ≥ 1 at which q(τ ; R) measures only the outgoing
radiation and the backscattering. In order to quantify the discrepancy between the
waveform q and the radiative waveform Q we use the l2 norm and the figure of merit

E =
||q −Q||
||Q|| . (29)

Since the l2 norm is independent of basis, the same error applies to the fourier trans-
form of the signal.

The strategy here is to choose initial data characterized by two parameters, repre-
senting amplitude and wavelength, and to investigate the resulting waveforms over a
comprehensive range. E is small for small amplitudes, in accord with the weak field
limit. It is also small at high amplitudes for which a black hole forms very rapidly.
This stems from a rigorous version of the no-hair theorem (Christodoulou 1987b)
which establishes that the scalar field must vanish in the limit τ →∞, r > 2MH . As
a result, in the region of observational interest, the field is zero initially by construc-
tion and, in the high amplitude regime, it never builds up any appreciable amplitude
before the interior region collapses to a black hole. Systems in this regime would not
be readily detectable because of their extreme redshift. We focus our attention on
the intermediate amplitude region of greatest physical relevance.

As an example of our test, consider the initial data

g(u0, r) =
{

Λ sin(2πN(r − 1)) for r ≤ 1
0 for r ≥ 1 ,

(30)

where Λ controls the amplitude and N controls the wavelength. The results are
graphed in Fig. 16 for the choices N = 20 and Λ = 9.5 × 10−4, for which the initial
mass is M0 = 0.041 and the system forms a black hole with MH = 0.029. The
discrepancy in the waveform at R = 25M0 is E = 0.91. The amplitudes shown
in the figure are in close agreement, which indicates very little backscatter in the
intervening region. However, there is considerable phase shifting, which results from
a time dependent redshift effect, and this is the prime source of the discrepancy
between the waveforms.

In the same manner, we also find a large discrepancy, E = 0.80, at R = 100M0

by increasing N to 100. High accuracy computer simulations for N >> 100 would
require too much computer time to be practical. However the trend we have already



seen for large N can be understood and extrapolated in terms of a rough analytic
model which leads to the approximation E ≈ 2πnM/

√
3R, where n is the number

of wavetrains radiated before horizon formation. For the previous case with N = 20
(for which n = 8), this gives better than 10% agreement with the value of E from
the numerical evolution. For N = 100 (for which n = 24), there is 2.5% agreement
between the formula and the numerical value obtained for E. This provides strong
evidence that this formula gives a reliable estimate of E in the large N regime.
Thus large waveform discrepancies, E ≈ 1, can arise at any radius for a system of
sufficiently high frequency, i.e. n ≈ R/M .

5 GRAVITATIONAL WAVES
Our aim is to be able to study asymptotic properties of gravitationally radiating
spacetimes with the high level of accuracy achieved for scalar radiation. We are cur-
rently incorporating the lessons learned from the scalar algorithm into the evolution
code for axisymmetric spacetimes. For axisymmetry, the conformal geometry of the
spheres of constant u and r is

hABdxAdxB = e2γdθ2 + sin2θe−2γdφ2, (31)

so that γ represents the entire null datum for the gravitational field. The evolution
equation (6) can be reexpressed in the form

(2)γ = Ĵ [γ,Hµ], (32)

where (2) is the D’Alembertian with respect to the induced geometry of the (u, r)
submanifold and Ĵ again consists only of operations intrinsic to the null cone u =
const.

This has the identical structure as the scalar wave equation (8), thereby leading to the
analogue of the null parallelogram identity (9) and to an explicit marching algorithm
for the evolution of γ. The same cancellations in the numerical error from the four
sides of the null parallelogram that arise in the scalar case can also be arranged here so
that the algorithm should in principle yield a globally second order accurate solution.
We expect, subject to the Courant limit (12), that it will be free of instabilities at
the origin. It is reassuring to know that progress has also been made in this direction
at Southampton (Bishop, Clarke & D’Inverno 1990) and at Cambridge (Stewart, this
volume). Although the analysis leading to (12) was based on a 2-level evolution
algorithm, the results of the Southampton group seem to imply that (12) also applies
to 3-level Adams-Bashworth and Predictor-Corrector algorithms.

ACKNOWLEDGEMENTS
This work was supported by NSF Grant PHY-8803073. Computer time was provided
by the Pittsburgh Supercomputing Center under Grant PHY860023P.



REFERENCES
Abrahams,A. M. and Evans, C. R. (1990) Phys. Rev D 42, 2585.
Ashtekar, A. and Hansen, R. O. (1978) J. Math. Phys., 19, 1542.
Bicak, J., Reilly, P and Winicour, J. (1988) Gen. Rel. and Grav., 20, 171.
Bishop, N. T., Clarke, C. J. S. and d’Inverno, R. A. (1990) Class. Quantum Grav.

7, L23. See also the articles by Bishop and d’Inverno in this volume.
Bondi, H., van der Burgh, M. G. J., and Metzner, A. W. K. (1962) Proc. R. Soc.

London Ser. A 270, 103.
Choptuik, M. W. (1989) in Frontiers in Numerical Relativity, eds. Evans, C. R.,

Finn, L. S. and Hobill, D. W. Cambridge University Press, Cambridge. Also, see
article in this volume.

Christodoulou, D. (1986a) Commun. Math. Phys. 105, 337.
Christodoulou, D. (1986b) Commun. Math. Phys. 106, 587.
Christodoulou, D. (1987a) Commun. Math. Phys. 109, 591.
Christodoulou, D. (1987b) Commun. Math. Phys. 109, 613.
Christodoulou, D. Commun. Math. Phys., to appear.
Friedrich, H. and Stewart, J. M. (1983) Proc. R. Soc., A 385, 345.
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