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ABSTRACT

We describe a finite difference version of the eth formalism, which allows use of
spherical coordinates in 3-dimensional systems with global second order accuracy.
We briefly present the application of the formalism to the evolution of linear scalar
waves and to the calculation of the curvature scalar of a curved geometry on a
topologically spherical manifold.

1. Introduction

Spherical coordinates and spherical harmonics are standard analytic tools in the
description of radiation. The eth formalism 1,2 and the associated spin-weighted
spherical harmonics 1,3 allow a simple and unified extension of these analytic tech-
niques to vector and tensor fields. In computational work, spherical coordinates
have mainly been used in axisymmetric systems, where the polar singularities may
be regularized by standard tricks. In the absence of symmetry, these techniques do
not easily generalize and they would be especially prohibitive to develop for tensor
fields. Here we present a finite difference version of the eth formalism, which allows
use of spherical coordinates in computational relativity with global second order
accuracy.

2. The Eth Formalism

We introduce two stereographic coordinate patches (North and South) covering
the sphere, ζN = tan(θ/2) eiφ and ζS = 1/ζN . Let (qS, pS) and (qN , pN) be the
real and imaginary parts of ζS and ζN , respectively. Both patches extend between
−1 ≤ q ≤ 1 and −1 ≤ p ≤ 1. A uniform, square, numerical grid is introduced in each
patch. Functions and their derivatives are represented with the usual second order
difference method. At the boundaries, the derivatives are obtained using functional
values supplied by interpolation from the opposite patch. For second order accurate
numerical differentiations a fourth order interpolation scheme is necessary and has
been developed.



We next introduce a complex vector basis in each patch.In the S patch we make
the choice eaS = (1 + ζS ζ̄S)(δa1 + iδa2)/2, so that its real and imaginary parts line up
with the S axes. Similarly, in the N patch, eaN = (1 + ζN ζ̄N)(δa1 + iδa2)/2. Tensor
objects are now contracted with various combinations of basis vectors and reduce
to spin weighted scalars 1. A spin weighted scalar on the sphere is represented by a
set of grid values on the two patches and an integer spin value.

A covariant (unit sphere metric) derivative of a tensor field is reduced to deriva-
tives of scalar fields via the introduction of the eth and eth-bar operators. Their
action on spin weighted scalars is given by

ðv = qa∂av + nζv

ð̄v = q̄a∂av − nζ̄v, (1)

where n is the spin weight of the scalar. With the above prescription, a tensor
equation on the sphere is reduced to scalar equations involving fields of different
spin weights. All derivatives are reduced to eth and eth-bar operators which have
a simple, everywhere regular, finite difference representation.

3. Applications and Tests

A crucial first implementation of the scheme is the discretization of the Laplace
operator on the sphere. In terms of the complex coordinate ζ = (q, p) we have

D2Ψ = (1 + ζζ̄)2∂ζ∂ζ̄Ψ = (1 + q2 + p2)2[∂qq + ∂pp]Ψ. (2)

The centered finite difference approximation of Eq. (2) is now standard since the
operator is conformal to the cartesian form. At the boundary, a virtual grid point
is implied and acquires a value through interpolation from the opposite patch. The
discretization is confirmed to be globally second order accurate.

A complete implementation of the formalism, involving repeated evaluations of
the Laplace operator on numerical data, is the numerical solution of the 3-D wave
equation in spherical coordinates. An algorithm for computing the solution of the
wave equation in the characteristic initial value formulation is known. 4 In retarded
time coordinates the wave equation takes the form

2g,ur − g,rr +
D2g

r2
= 0. (3)

The main accuracy problem in Eq. (3) is now treated , since the angular momen-
tum term is regular throughout each patch. The linearity of the problem allows a
thorough accuracy check since sufficiently general exact solutions are easily identi-
fied. Using exact multipole solutions we verified second order global convergence
for large harmonic values.

As a tensorial illustration of the forgoing methods, we consider a problem which
arises in many different contexts in general relativity: Given the metric hab of a



topological sphere, calculate the scalar curvature. The metric is uniquely deter-
mined by its unit sphere dyad components K = hab e

aēb/2 and J = hab e
aeb/2. The

scalar curvature corresponding to hab is given by

R = 2K − ðð̄K +
1

2
[ð̄2J + ð2J̄ ] +

1

4K
[ð̄J̄ðJ − ð̄JðJ̄ ]. (4)

The comparison of the numerical evaluation of R with exact calculations provides
a first test of accuracy. A strong global test is suggested by the Gauss-Bonnet
theorem for spherical topologies, namely∮

RdS = 8π. (5)

Starting from an arbitrary metric we compute the numerical curvature and then
integrate over the sphere using a second order integration scheme. The integration
must take into account the overlap between the coordinate patches. A simple and
natural choice is to use the equator ζζ̄ = 1 as the smooth and symmetric boundary
of the integration within each patch. We checked the convergence of the Gauss-
Bonnet integral over a wide range of curvature radii and verified the remarkable
robustness of the method.

In summary, the finite difference implementation of the eth formalism we pre-
sented offers a robust and accurate method for developing numerical schemes in
3-D. The traditional reliance on cartesian coordinates can be relaxed and spherical
coordinate topologies can be used whenever the nature of the problem renders them
suitable.
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