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In an arbitrary Lorentzian manifold we provide a description for the construction of
null surfaces and their associated singularities, via solutions of the Eikonal equa-
tion. In particular, we study the singularities of the past light-cones from points on
null infinity, the future light-cones from arbitrary interior points and the intersection
of these with null infinity and unifying relationships between the different singu-
larities. The starting point for this work is the assumption of a known family of
solutions to the Eikonal equation. The work is based on the standard theory of
singularities of smooth maps by Arnold and his colleagues. Though the work is
intended to stand on its own, it can be thought of as being closely related to the
recently developed null surface reformulation of GR. 1®99 American Institute

of Physics[S0022-24889)01302-X

[. INTRODUCTION

In a recent work we studied properties of solutions of the flat-space—time Eikonal equation,
namely,

729,S9,5=0,

whose level “surfaces”[ S=S(x?)=const], are, by definition, null(or characteristic three-
surfaces. These level surfaces, called by Arfidltbig wave fronts,” can have self-intersections

and need not be smooth everywhere. In particular we were concerned with finding the analytic
form (described parametrica)lypf the general solution to the equation, studying its level surfaces
and the “small(two-dimensionalwave fronts,”(i.e., the intersection of a three surface with a big
wave fron} and then analyzing some of the resulting structures; the caustics of the full solution
(three-dimensional the singularities of the big wave frofttvo-dimensional and the singularities

of the “small wave fronts”(one-dimensional These singularities are defined, respectively, by the
intersection of a big wave front and the small wave front with the caustic surface. A special
application of these ideas was to the study of 2-parameter families of solutions to the Eikonal
equation from which it was possible to see an alternative analytic treatment of the structure of the
singularities. This latter point of view plays an important role in a recent reformulation of GR
known as the null surface formulatién.

In the present paper, we extend the ideas from the Minkowski casdirsi, to arbitrary
Lorentzian space—times and then specialize them to asymptotically flat space—times. There are
two main reasons for doing thigl) We want to understand in detail the structure of light-cones
in the large, i.e., globally, in arbitrary space—times which are of great relevance to the general
theory of gravitational lensing an(®) a recent reformulation of GR in terms of families of
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characteristic surfaces requires a deeper understanding of the singularities of the big and small
wave fronts.

In Sec. Il, we will show how from any arbitrary, but given, two parameter family of solutions
of the curved-space Eikonal equation, any arbitrary characteristic surface can be constructed.

This construction will, in Sec. Ill, be specialized to an asymptotically flat space—time where
the two-parameter family is chosen in a special way; namely, they are the family of past light
cones from all the points on null infinityJ*. Directly in terms of this fiducial family we can
express any characteristic surface and in particular, we can express the lighttcorud, any
interior pointx®. Of particular interest is the singularity structure of the corgs,which can be
analyzed in terms of the variables of the fiducial family.

In Sec. IV, we will study the particular class of small wave frofitgo-dimensional defined
by the intersection of the three-dimensional corgs, with the null surfacgi™, i.e., the so-called
light-cone cutsc(x?) of 37. In particular we will be interested in findingia Arnold’s theory of
Lagrange and Legendre m&p$) the appropriate tools and variables to describe the singularities
of these light-cone cuts.

Finally in Sec. V, we return to an issue that we deliberately postponed. We took, in Sec. lll,
a fiducial family of solutions of the Eikonal and used them to study the singularities of other
characteristic surfaces but we avoided any discussion of the singularities of the fiducial family
itself. The reason for the postponement is that this discussion is more complicated and difficult
than the earlier ones and uses, in addition, different techniques; namely the equations of geodesic
deviation.

The present work is partially intended to fill in the details of an earlier brief work in the
Twistor Newsletter(TN43, 1997, where we anticipated some of these results.

II. SOLUTIONS OF THE EIKONAL EQUATION IN CURVED SPACE

In this section we will treat the Eikonal equation in a general curved Lorentzian space—time,
(9,7m), i.e.,

9*°(x%) 92Sd,S=0 D

and show how, if a special class of solutions is knoamy solution can be easily constructed. An
important special case of this will be the construction of any single characteristic surface, i.e., a
level surface osome $*“a big wave front.”

The difficult task(and it is very difficult, where perturbation techniques must be religdson
to produce this special class. Specifically, the special class will be a two-parameter family of

solutions,S():Z(xa,g,Z) where the parameters are the complex stereographic coordinates on the
sphereS?, and the null covectop,= d,Z(x3,{,{) ranges over the entire light-cone at each point

x? as ({,Z) ranges overS?. Later, in asymptotically flat space—times, we will make a unique
choice of this family.

Now assuming that an aIIowabE(xa,g,z) is known we can produce an arbitrary solution in
the following fashiorf first, we rescal& with a constanj8 and add taZ an arbitrary function, at

least once differentiable, ofd¢,7) and then extremize it with respect to thg, (), i.e., we
have

S=BZ(x%,{,0)—h(B,¢.0) (2)
with

For the simplicity of the immediate discussidgthough the issue is an important onave

assume that the latter three equations can be solved for,[m‘,’e?o as functions of thed, i.e.,
with
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(B,£,0)=(B(x),Y(x?),Y (x?)), (4)

then on substitution back into E@2), the resulting function of?® also satisfies the Eikonal
equation. To see this we have, frqi®) that

0aS=BZ+(Z— gh)dBI X2+ (B Z— 3 h) Ll X3+ (BT Z— ) allax3= Bd.Z,  (5)

which satisfies the Eikonal equation, by the assumptioZ.on

The important issue of how to deal with the case when(Bgcannot be solved for4, ¢, )
is discussed later in this section.

Though we will not go into the proof one can show that given arbitrary Cauchy 8ata’)
for the Eikonal equation, i.e., a function of three arguments, then it determines the function
h(B,Z,¢). The construction, thus, allows for the general solution to the Eikonal equation.

Remark 1:Since the functiorh(,¢,¢) determines a single solutid®* (x*) of the Eikonal
equation(i.e., a one parameter family of characteristic surfabgsreplacing thén(g,¢,¢) by the
functionh(B,¢,¢; n, 1) the above construction then produces a two-parameter family of solution
of the Eikonal equationS* =Z* (x2,7,7). We thus have that from any special two-parameter
family, Z we can construct any other two parameter family that could also be used as the “spe-
cial” family.

We now specialize the construction so that we can obtain any single characteristic surface to
be given byS=u=constant; Eqs(2) and(3) are replaced by the specializatighs 1,

S=2(x3,£,0)—h(,0)=u, (6)

Assuming that Eq(7) can be solved for

(£,0)=(Y(x3),Y(x), (8)

that any characteristic surface can be obtained by a judicious choh:(efcf) can be seen from

the argument that if we begin with any spacelike two-surfagegyarametrized by the samef),
i.e., given by

x2=x3(£,0), (9)

we can choose

h(£,0)=Z(x3(£,0),4,0). (10)

The resulting characteristic surfacg=0, is formed by the null normals t& and since any
characteristic surface is formed by the null normals to some two-surface we have proven our
contention.

Actually, in general, there are lower dimensional regions where Eysannot be solved for
the (¢,¢) pair. These regiongthree dimensionaldefine the caustics of the solution. The intersec-
tion of these caustic regions with any particular level surfac& @ig wave fronj, i.e., withu
=S=const defines the “big wave front” singularitiesf Arnold. The intersection ofi=S with
a generic three-surfacée.g., a constant time surfacdefines a “small wave front” while the
intersection of the “small wave front” with the caustic three-surface, defines the “small wave
front” singularities. Though for precise usage we should only refer to the full three dimensional
caustic region as the “caustics,” we, however, will take the liberty of referring to the singularities
of either the big or small wave front as the “caustics.”
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These caustic regior(er on the big or small wave front singularitjeshich are characterized

by the inability to solve for the,¢) are simply determined from the implicit function theorem,
by the condition

P2, D—h(.0) 28,0 —h(L,D))
. 9L 0Ll
D= _ _ - | =0, (12
PA(Z(x*,0,0)—h(L,0)  dHZ(X*,L,0)—N(L,0))
ALl a2

a condition that will later play a basic role.

To determine the solutio, there is an alternative to solving Eq3) for the (gf) that is
often more desirable and can be used even wherD. Equationg6) and(7) can be considered
as defining families of three different 3-surfaces parametrized bygtife) pair. Their intersection

defines a family of curve@arametrized by theg(?)) that are the null geodesics that rule the level
surfaces ofu=S. The equations can always be solved in the following manner: of thexur
there will be a subset of three of theigayx') and the fourth one, say* such that

x'=X(x*,u,,0), (12

which are the null geodesics themselves. They define, parametrically, the level surfaces of
=S.

An alternative treatment of the null geodesics, Ep), is to introduce a geodesic parameter
(not in general an affine parametéry

2
r=(1+¢0)? ;Z(Z_h)' (13)
d(d

which, with Egs.(6) and(7), can be solved for

X2=X2(r,u,¢,{) (14

yielding the parametric description of the null geodesics ruling the level surfacgslifortu-
nately this description can break down at the causticSwherer sometimes becomes infinite. It
nevertheless is a means of treating the geodesics almost everywhere.

Remark 2: The description we have given here for the construction of solutions to the Eikonal
equation involves the construction of envelopes of tangent lines to the original two-parameter
family of solutions Zx?,¢,¢) to form the $x?). This description and the treatment of the caustics
is an example of V. I. Arnold’s theory of generating famifiés.

lll. EIKONAL EQUATION IN ASYMPTOTICALLY FLAT SPACE-TIMES

Before the introduction of a special or fiducial family of null surfa&s=Z(x?,¢,{), we
begin with a brief discussion of asymptotically flat space—times. These space—times allow a
conformal rescaling of the space—time metric bringing null infitthe end points of all future-
directed null geodesigsnto a finite region thereby defining(aull boundary for the space—time.
Though we will not be using the conformal rescaling explicitly, we will however use the language
of the conformal boundary. The boundary, referred t@¥as can be attained by limiting proce-
dures in the unrescaled space—time. The boundary, which is a null three surface with topology
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RXx S? can be given coordinatesm(g,?), with u on theR part and the complex stereographic
coordinates (,?) on theS? which label the null generatofgeodesicsof J*. It is this structure
that we will use to obtain the fiducial family of null surfaces.

For eachgenerator ofJ*, i.e., for (g,Z)=(§0 ,ZO)=constant, we choose the one parameter
family of past null conedaving their apexes on that generator. This yields the special solution of

the Eikonal equationu=2Z(x?¢, ,ZO). Doing the same for each generator defines for us our

unique fiducial family of solutionsS,=u=2(x?¢,{), the past cones of each point df. We

emphasize that we are describing these null surfaces in the language of the conformal

compactification—in the language of the physical space—time they describe the family of all

asymptotic plane waves and in the case of flat spaceatesthe family ofall plane waves. As the

concepts described here are conformally invariant, the choice of language is at our discretion.
Our special family of solutions

u=2Z(x2,£,0) (15

has the two important dual meaning$) As we just mentioned for fixed pointu(gf), onJ*,

asx? varies, it defines the past cone of the point &Rdfor a fixed value of the?, as (g,z) are
varied over theS?, u=Z defines a two-surface ohi*, the end points of all the null geodesics
leavingx?®. This two-surface is referred to as thght-cone cutof the pointx® and is denoted by

¢(x?). The functionZ(x?,£,£) will be referred to as théight-cone cut function
Both meanings tqu=Z(xa,§,§)_pIay a fundamental role in the remainder of this work. The

actual determination afi=2Z(x2¢,{) is quite difficult and up to the present, depends on pertur-
bation arguments that have not yet been completed. We nevertheless will assume that the function

Z(xa,gf) is known; we then study several consequences of this knowledge.

Remark 3: Though we will not be concerned with it here, we mention that(btf’egzz) codes
all conformal information of the spaeéime metri¢>°and in fact determines a conformal metric.

Furthermore 4x2,Z,7), with a scalar functior(2(x?,Z,¢) that acts as a conformal factor, can be

used as the basic variables, replacing the metric, in a reformulation of the Einstein equfatidns
Our goal here is somewhat simplé@éhough some of the calculations themselves are not

simplg; we want to study the structure of the singular regions of different surfaces. First, we will

show how to construct from thE(xa,g,Z), using the techniques of the previous section, the entire
light cone&, of an arbitrary interior poink§ and then study its singularities. The light-cone cut

¢(x§) is the intersection o@xo with 3%, defining a small wave front; its singularities will then be
studied. Finally we return to and study the singular regions of the fiducial family of null surfaces,

defined by the light-cone cut functioZ(xa,g’,z) itself.
We first define, in the case of asymptotically flat spaces, several variables that play an impor-

tant later role. Instead of using trf notationsgfand g, _for the (52) derivatives, we make use of
the edth notation, e.9.0Z=(1+{{)d,Z. 88Z=(1+{{)%3,7,Z or 8°Z=3d{(1+()?3Z}, etc.
We then have by direct calculation from tE€x?,Z,{),

(1) w=08Z, w=08Z, the tangent directions to the light-cone cuts,
(2) A=d%Z, A=32Z, “accelerations” along the(Zg) constant curves,

(3) R=00Z extrinsic curvature of the light-cone cuts. (16

Using this notation, the determination of the caustics, i.e., the vanishing of the deterinant
from Eqg. (11) is equivalent, using Eq.7), to
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O Z(x,£,)—h(£,0)] d8[Z(x3,¢,0)—h(L,0)] s a7
38[Z(x2,¢,0)—h(£, 0] Z(x*,¢,0)—-h(L, 01|

IV. LIGHT-CONES AND THEIR SINGULARITIES

In this section we consider the future light-cone of a paght namely, the set of allfuture
directed null geodesics that pass througf). As a three-surface in the four-dimensional space—
time, the light-cones in general have singularities that are caused by the focusing effect of the
space—time curvature. These singularities are characterized by the vanishing of the geodesic
deviation vector associated with neighboring geodesics on the light-cone and are what we have
been referring to as the caustics of the null surface. It is our purpose here to first find these

light-cones and then describe their singularities in terms of the light-cone cut funZ(ixﬁ)g,Z).
As we pointed out earliefSec. 1), given a two-parameter family of solutions to the Eikonal

equation,Z(xa,g,Z), any @aracteristic surface can be constructed by adding a term that depends
only on the parameters({); i.e.,

S(Xa!gi_) = Z(Xavgaz) - h(é’!_)

and extremizing with respect to the two parameters. If we choose

h(£,0)=Z(x8,£,0)=Z4(L,0), (18

then the level surface obtained from
S=0=2Z(x%¢,0)—Z(x3,4,0) (19

with the extremal conditions

3Z(x3,¢,0)—Z(x§,¢,0)1=0,
_ _ _ (20
6[Z(Xa1§1§)_z(xg ,§,§)]=0,

describes the light-cone from the pox§. To see this, we first remember that this construction
yields characteristic surfaces, then we see that the surface does go through thé peghand
coincides orJ ", with the light-cone cut okj. Finally if we take its gradient, i.e.,

FaSlx=rxo= Il ZOP, 6,0 = 206G, £, D) lxmny = 9aZ 0L, D =PaX6.,0), (2D)

we see that it ranges over the entire light-conedat

A Caveat:We have assumed that the cut functions Z(xa,g,Z), for fixed x2 is a single
valued function ori*. In fact, in general, this is not true; most often there will be region§on

where it will be multivalued and it must be given as several different “sheets” in differ&r?) (

patches. Though this does not present obstacles in principle, it does present technical difficulties in

implementation. Then Eq§19) and(20) must be repeated on the different sheets. A way to avoid

this difficulty is to describe the light-cone cut function and the light-cone cut itself parametrically,

i.e., towrite itasu=U(x? \,\) and{=T"(x?\,\) with single-valued functions. For simplicity of

presentation we will, for the moment, continue to treat the cut function as if it were single valued.
If, to the set of Eqs(19) and (20), we add, from Eq(13), the equation

. _ — _
r:(1+§§)2 _(Z—ZO)Eéé(Z(Xa,g,g)—Z(Xg,g, ))l (22)
PIST:




J. Math. Phys., Vol. 40, No. 2, February 1999 Frittelli, Newman, and Silva-Ortigoza 1047
they implicitly define all the null geodesics of the Iight-coﬁ)(so, i.e., they determine

x2=X3(x§ 1,00). (23

If the geodesic goes from{ to J* without encountering a caustic thergoes from 0 to infinity
along that geodesic; if however it does encounter a caustic b&fore then becomes infinite
beforeJ*.

The location of the caustics GI(O (or the conjugate points ) is given by the vanishing of

D from Eq. (17), with h=2(x3,Z,2);
FLZOA L0 =206, 0] Z(x 8,0 =2(x5.4.0]]
O Z(x*,4,0)~Z2(x§.4,0)]  SZ(x*£,0)~Z(x§.4.0)]

or, with definitions(16),

0, (24)

D=(A—Ag)(A—Ag)—(R—Rg)2=0. (25)

We have thus been able to express the location of the caustics of an arbitrary light-cone in terms
of derivatives of the cut functioﬁ(xa,g,Z). Given a fixed poink$ and a particular null geodesic
(labeled by Cf)), the curvature and “acceleration” of its light-cone cut is given by
(Ro(x3,£,0),Ao(x3,£,0)) while for an arbitrary point along that geodesic it would be
(R(xa,gz),A(xa,g,Z)). D which begins as zero at=0, does not vanish any other place along a
geodesic that does not encounter a caustic but does go to zero at the caustic. There are special
geodesics {(Z)c which meet the caustic ofi". For this limiting case, it is difficult to study the
behavior of Eq.(25) since A=0 andR=, the flat-space limits, which applies here since the
pointsx® nearJ* are in the very weak field region am} and A, are infinite(see next section

Other techniques for this study are need&ke Fig. 1, the light-cone with the crossovers and
cusps)

V. THE LIGHT-CONE CUTS AND THEIR SINGULARITIES

As we saw earlier, the cut function,=2Z(x2¢,{) has the dual meaning of being the past
light-cones of the pointsu,£,¢) of 3© and representing the light-cone cut of an interior poifit,
Fixing the interior pointx®=x§, we studied, in the last section, its light-cone and saw that we
could locate its caustics but as the caustics approadtiedifficulties developed. We wish to
study the singularities of the light-cone cuts by an alternative method.

First of all, if we assume thatll the null geodesics leavingf arrive atJ™ without encoun-
tering a caustic then the cut function=2z(x2¢,), will describe a single-valued smooth
2-surface ori*. If however some did encounter caustics then the cut-surface will only be piece-
wise smooth and will have, in general, self-intersections. The appropriate way to describe the cut
is not through the cut function but instead via the mapping of the space of null directigfs at

i.e., atS*(x3), coordinatized by X,\), ontoJ*. It would be given by the relations
(U, 0)=(UOG AN, T OGN, TG, N,N)), (26)

which are just the “end-points” or boundary points of the null geodesics originating at the
(N, \) directions.(If the (\,\\)=(¢,{) were invertible, then one would have the smooth case,
=U(xg,\\)=Z(x5,¢,0).)

To obtain a clearer picture the light-cone cut can, in some sense, be thought of as an infinitely
late “small wave front.” The “early” wave fronts on the future lightcone &f are smooth
deformations of spheres, but they may become singular at sufficiently late times, from the focusing
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singularity of
the lightcone cut

self-
intersection
null line
geodesic

Xo

FIG. 1. The future light-cone and light-cone cut of a poigt

due to curvature. Therefore, light-cone cutdexdrly) points in space—time are generically singular
two-surfaces in three-dimensions, and they must exhibit the standard stable singularities, the cusp
ridges, and swallowtails. In this view, for a fixed poix@, a singularity in the light-cone cut
would be a conjugate point & . Generically, because singularities of two-surfaces lie on curves,

the singularities of a light-cone cut would single out a one-parameter{és},{(s)) of null
geodesics in the future light-cone for which the apex is a focal point.

Because EQq(26) arises from the Hamiltonian evolutioriaull geodesic flow the map is a
Legendre map and we can use the general theory of Legendre submanifolds and Legendre maps of
Arnold and his colleagues in order to have a description of the location of the singularities of the
light-cone cuts*® A two-dimensional surface in a three-manifold which is obtained by a Legendre
map can always be represented as the projection of a smooth 2-s{@faegendre submanifold
in a five-dimensional space, with the singularities located by the singularities of the projection. In
other words, there exists a way to “unfold” a singular surface by adding two dimensions to the
space where the surface lives. In this view, one of the three original dimen#henscoordinate

of %) is singled out from the remaining two-dimensional space; the two-dimensioi3, @re to

be considered as a configuration space. The two added dimensions consist of the two-dimensional
cotangent space over the configuration space. Thus the enlarged five-dimensional space on which
our surfaces “unfold” consists of points{({,p,,p;,u), a contact bundle over the sphere. It is
preferable to useeal coordinates, and later translate the results in terms of our complex coordi-
nates. Thus, in the following we assume that we have real coordinates®) on the sphere,
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which can be taken to be the real and imaginary part§ ahd their corresponding momenta as

(pl!pz)'
A smooth “unfolding” is generically represented in terms of a smooth generating function

G(gt,p,). The points §,92,p;1,p,,u) that lie on such unfolding are given by

9G(q',py)
20 % 27
0, (279
IG(q*,py)
gt 27D
u=G(q,py) + p20?, (279

and arbitrary values fog! andp,. This is the expression of a two-dimensional surface within a
five-dimensional space, parametrized ly,p,).

Remark 4: Note that from the general theory, there must be an invertible relationship between
the parametrizatior(q®,p,) of the Legendre submanifold and the directigis\).

A projection of this surface down to the spaag,g?,u) is parametrically represented by a
map @, p,)—(a%a2(q% p,),u(gt,p,) which breaks down at points where the Jacobian matrix

1 1
i 99 1 0
L Fe G
9% 99? - -—
il AN | g aq*op; Ip3 (29)
P G 9°G 3°G
U du _
ou o 1 P71 Po——=
oot op, a9 aq-dp, ap;

drops rank, from 2 to 1 or 0. The drop in rank takes place where the thxgz @terminants
vanish, namely, where

’G 29
ap;
s =0 30
p2 &pg — Y ( )
IG &G _ 0 a1
oa” op; oy
Clearly all three equations can be satisfied if and only if

#G(q",pz)

K(gh,p)=——>7—=0. (32)
Ip3

Thus Eq.(32) locates the curv&(q*,p,)=0 in the @}, p,) parameter space and hence, via
Eqgs.(2739 and(270¢), it locates the singular points on the surface. EquaiB# also expresses the
location of points where Eq279 fails to be invertible; namely, if we think of Eq2738 as
implicitly defining p?=h(qg*,g?), thenh fails to be differentiable theréFrom the drop in rank, it
is straightforward to see thah/dg? blows up. See Eq:393 below)

In order to translate this treatment into our complex notation, we pass fgdm?) to the
complex coordinateg=3(q'+ig?) and reinterpret
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u=G(x3,q%h(at,q%)+q?h(q*,q9?)

as our cut functiomu= Z(xa,gf), wherex? are fixed parameters and play no role in the discussion
of this section. We can then express E2p) in terms of derivatives oZ in the following manner.
Beginning with the functiom\ =3Z, we express it parametrically in terms af(p,),

2

B Y4 _2(9 Z
A=21+DE5- + (14D, (33
where
J 9 9
T BT I 39

Carrying through the calculation, which involves several implicit differentiations, we first arrive at

_ (G _ (G
0=(1+{0) O')qu_lpZ)a w:(l+§§)(a—ql+lpz), (39
where
1( | 4G 1, 4G
gziq_la—pz, §:§q+'(9_p2- (36)
Then
N 9T (14 272 9°G (aZG ,)2 G\t 3

Similarly, we obtain a parametric expression Re33Z = (1+ {0)2(6%Z/5¢9¢) in the form

R=(1+¢0)2 A —(1+( S )2 &ZG>1 (38
a(qh)? aq'aps) |\ ops) |
In deriving (37) and (38), the following were needed:
sh G (#°G\™t oh [5G\t 39
oot aqlop,\ apd g\ apd 39

which are obtained by taking derivativesig*|,z and d/dg?| 41 of Eq. (27a.
From (37) and(38) we can see that both andR diverge at points where EqR32) is satisfied,
and only at those points, sin€zis assumed to be smooth. Therefore, we can locate the singular

points(a curve, (£(s) ,Z(s)) of light-cone cuts by either of the conditions,

=0, (40)

P(XS,&Z)E P
662()(0 1§!§)

=0 (41)

L(XSKZ)E#—
0°Z(x5.,¢,{)

for given values okg.
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FIG. 2. A regular light-cone cut.

We interpret this result as follows. The light-cone cut represents a wave front that has pro-
gressed out to infinity, tracing the future light-cone of the poght For a class of pointg§ (at
least sufficiently early the wave front starts out spherical, but there is a time at which it becomes
self-intersecting. Late wave fronts have singularities which represent the location of points con-
jugate tox§. When the wave front reaches infinity, the points conjugate to the apex lie at infinity
and form the singularities of the light-cone ¢®ee Fig. 2, for a smooth light-cone cut and Fig. 3,
for a generic light-cone cut with cusp ridges and swallowtails.

Finally note that the vanishing &(x3,¢,¢) andL(x§,{,{) are not inconsistent with E¢25)
of the previous section where 8§ is approachedA —0. R—« and theA ;— andRy— .

VI. SINGULARITIES OF THE PAST LIGHT-CONES FROM J*

Up to this point we have simply assumed that we had the three parameter family of null
surfaces(or equivalently the two parameter family of solutions to the Eikonal equathmat we
called the fiducial family or the light-cone cut function, namelys Z(x2,Z,¢), with (u,Z,?)
constant. We never raised the issue of the location of their singularities until now. The reason was
that, to locate them, requires a different technique, namely the use of pairs of geodesic deviation
vectors (Jacobi fields and their associated area element. It will be the vanishing of the area
element(obtained from the Jacobi fieldalong a geodesic that locates the singularities. We begin
by returning to certain structures obtainable from the light-cone cut funztfg, ¢,¢) that were
defined earlier; namely,

u=2Z(x2,2,0), (42)
which represents the past light-cones from all point<Jon

w=0Z(x3,{,{), @w=30Z(x%,,0), (43)

FIG. 3. A singular light-cone cut, showing cusp ridges and swallowtails.
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which label the null geodesics leaving the pointg(,f) of J*. From the compactified point of
view they are théstereographicangles labeling the directions from the past light-cone while from
the physical space point of view they are the “distance” between the asymptotic parallel geode-
sics,

R=383Z(x2,¢,0), (44)

which defines an “optical distance” or geodesic paramdtest affine along the geodesics
(u,w,w)=const. As we mentioned earlier, geometricdys a curvature of the cut.
Using the notation

0'=06(x2¢,0)=(u,w,0,R), with (i=0+,—,1), (45)

Eq. (45) can be interpreted either as a coordinate transformasfenx?, for every fixed value of
the two parameter</({) or simply as the introduction of four scalar functions parametrized by the

(£,0). We will make extensive use of the transformation interpretation though care must be taken
in the regions where the Jacobian either vanishes or diverges. One might even expect that the
troublesome region will be where ttibig) wave front singularities develop.

In generic space—times, the presence of the curvature, Weyl or Ricci-type, foassing
effecton parallel beams of lighf Thus, generically, two neighboring null geodesics in our
asymptotically parallel congruences meet at some point, which means that our coordinate system
breaks down by assigning two different labels to the same space—time point.

We will describe two alternative approaches to the region of breakdown.

(1) We can calculate the Jacobian of E45) most easily by returning to the description of the cut
function Z by the generating functior(x?,q*,p,) of the previous sectio, =G+ q°p,. By
a completely straightforward calculatiqnsing MATHEMATICA to calculate the determingnt
we find that

‘ (HZG(xaq pz)) 49
5p2 ’
FG(E,qLpy)

@m( P ) “0

so that the Jacobian breaks down precisely at the comparable point where the light-cone cut
had its singularities.

Remark 5: In the previous section we saw that for fixd but varying the(¢Z,?), the
functions Rx?,¢,¢) and A(x?,Z,¢) both diverged at the singularities of the light-cone cut. We
can now see that for fixed, ) but varying the point Xalong a null geodesic, the same functions
diverge at the caustic of the past light-cone
(2) In the second approach, we derive an explicit algebraic condition to locate these regions, by

finding the points where a geodesic deviation vector vanishes. Our present derivation is in

great measure a reinterpretation of an earlier derivation due to Kozameh and Né&wman,
reproduced here in current notation in order to maintain the unity of the present work.

By (in principle) inverting Eq.(45) we obtain
X*=X*(6',¢,0)=X*(u,0,0,R,{,0), (48)
which for fixed values of ,,{) is the parametric form of the past cone ®f and for fixed

values of (1,0, , g,z) it is the parametric form for the null geodesics on the cone each labeled by

(w,w).
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Of prime importance to us are the connecting vectors to the null geodesics that are on the past
null cone. Two connecting vectoffrom which all others can be construcjeate given by

X3 oXa
Ma= Ma=——. (49)

w’ dw

We are interested in the ar@aconstructed fronM? andM?. Taking a pair ofcomplex spacelike
unit vectorsm® andm? (g,,m*m°=0, g,,m*m°=0, g,,m*mP= — 1), that are parallel transported

along the null geodesic#1? andM? can be written as

M2a=¢me+7me,  M23=&mP+ pm?, (50)
so that the “area” form is
MEMPI = (££— pm)midmPl= AmiamP]. (51)
From this we see that
A?=(gapM*M®)?= (gapM*M®) (gapM*M®)=(M - M)?= (M -M)(M - M). (52

Our_task(which requires a bit of preparatiprs to express th - M andM-M in terms of
Z(x?,Z,¢) and its derivatives. We choose the one-form basis

0= 0,0'=(0,Z,0,0,0,0,d,R)= (62,05 65 ,6%) (53
and the dual vectors
0= (68,65 ,60% ,05)=(9X?du,dX? dw,dX? dw,dX? IR) (54)
which satisfy
0R0,=05], 670,=3F. (55

From the one-form basiég, using the space—time metrig?®, one can express the dual basis set
by

07=g*0Ln; or 6,=0actin", (56)
where
7= 076/Gac, 7' =0,010%. (57)
Returning to the computation of the area, we have for the tangent vector to the geodesics,
$=L2=9X? IR, (58
and from the geodesic deviation vectol?=dX?/ do= 6> andM?=JX? Jo=6* that
M-M=7%,_, M-M=7%,,, M-M=7y__. (59)

Remark 6: Note thati=2L2 is the affine parametrized tangent vector to the geodesics. [See
(Eg. (63) below for the definition dd.]

The calculation of the thre@’s though lengthy, is fairly straightforward; It is found from the
inverse of7') [i.e., from the second version of E€57)]. The components ofy!! are found by
beginning with
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7%= 03620%°=0?°9,29.2=0 (60)

which vanishes by definition. By applying the operatérand & several times to Eq(60) one
finds' for the relevant components af’/ [see Eq(16) for definitiong

7°°=0, (61
7°"=0, 7° =0, (62
71=02=g?%9,758(3.Z) = §2°3,Z IR, (63)
7T == Q2L%2%(9,2) = — QPL29,A = — Q2IAIIR, (64)
7 =—02L382(9,2) = — Q2L%9,A = — Q%9 /IR, (65)
77— +_ _ QZ, (66)
which in turn leads to
1
M-M=n, =~ —\ (67)
IN IA
QZ -
JR IR
1N
_ oR
( IA IA
QZ -
R JR
The area then is
1
A= —. (69
I IA
Q4 1—— —
JR IR

This expression foA tells us several things; first of all to keépreal we must have the inequality

dA

R =<1, (70

and we learn tha€) must diverge at the singularity given #~=0.
We have thus learned in this section that the singularities of the past light-cone§ froem
be characterized by one of several methods:

(1) Using the generating functioB(x?,qt,p,), the singularities are given by the vanishing of the
Jacobian of the transformatiqdb), i.e., by

FCOCG P2 _
P

(2) This, in turn, tells ugfrom the previous sectigrthat bothR(xa,g,Z) andA(xa,g,Z) diverge
as the singularities are approached.

(71
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y+

FIG. 4. The foliation of space—time by past light-cones from points at null infinity.

(3) From the geodesic deviation argument

O— (72
as the singularity is approached.
(4) From Eqgs.(69) and(70) we learn thatdA/JR| must be bounded but we can not see what is
its behavior is as the singularity is approached. However on the basis of several examples,
e.g., Ref. 1, wherggA/9R|— 1 it appears to be reasonable to expect that this result might be
true in general. If so, then we would have that- (dA/JR)(dA/IR)]—0 as the singularity
is approached. In turn, from E¢9), we would gain some information about how fast b&h

and[l—(&A/aR)(aK/aR)] approach their limits(See Fig. 4, a past light-cone frof .)

VIl. SUMMARY AND CONCLUSIONS

In this work we have studied the kinematics or general structure of several different classes of
surfaces(associated with surface forming null geodesic congruéneesasymptotically flat
Lorentzian space—times, namely, the future light cones of interior paptsthe intersection of
¢, with 3%, i.e., the light-cone cuts(x?); and the past light-cones from points,{,{) onJ™.

These surfaces, which in general have singularities, are closely related to each other; in
particular there is a close association between their singularities. As was pointed out earlier, for
the future light conegx0 with an apexx§ that is sufficiently early in time, the small wave fronts

begin spherical but as they evolve they become self-intersecting and develop singuldrities
stable one being cusp ridges and swallowtaishich represent the conjugate pointsxp. The

limit, in the asymptotic future, of these small wave fronts is the light-coneced); the singu-
larities of ¢(x§) being the points conjugate to the apex. They are also the intersection of the
singularities of€XO with J* (see Figs. 1, 2, and 3.

Alternatively (an example of the reciprocity theorem of Penrose and $athsthe singu-
larities of light-cone cuts must be related to the singularities of the past light cones from points at
infinity. The singularities of light-cone cuts are interpreted as singling out the null geodesics
leavingJ™ which are conjugate to or focus . These null geodesic belong to two congruences
of interest to us. First, they belong to the future light cone of the pginand second, they belong
to the past light cone of the poinu({,¢) of J* reached by the first set. The light-cone cut
function, with the vanishing of eithe?(x?,{,¢) or L(x3,¢,{), locate both the singularities of the
light-cone cut and the interior points conjugate to pointsién(see Fig. 4.

Most of the kinematic issues raised here are, we believe, now reasonably well undefistood.
still would be of considerable interest to determine the behavipt ef(dA/JR)(dA/JR)], in the
neighborhood of the causti¢€ur interest now is to apply these kinematic insights to the study of
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null surfacegspecifically, light-conesin vacuum Einstein spaces. Though there is a form&ltsm
in which the Einstein equations have been rewritten as differential equations for the cut function,

Z(xa,gf) andQ(xa,g,z) (aside from some very special cagahe equations have been difficult
to deal with because of the difficulty of treating the caustics, which are ubiquitous. We feel that
the situation has changed; we now know how to identify the presence of the caustics in terms of

both R and A. {The reason for our interest in the tel[m—(aA/aR)(a/T/aR)] is that it arises
frequently in denominators of the field equations and we would like to know if it always tends to
zero at a caustit.We have also realized that it probably will be very advantageous to use the

representation oZ(xa,g,z) by

Z(x3,¢,)=G(x3,q%,p2) +a%p2 (73

with q°=—dG/ap,, {=1/2(q"+iq?) (see Secs. V and Y1Our immediate goals are first to find
the behavior of 1— (aA/aR)(aA/aR)]_near caustics and then rewrite the field equations in terms
of the G(x3,q%,p,) rather tharZ(x?,¢,¢).
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