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In an arbitrary Lorentzian manifold we provide a description for the construction of
null surfaces and their associated singularities, via solutions of the Eikonal equa-
tion. In particular, we study the singularities of the past light-cones from points on
null infinity, the future light-cones from arbitrary interior points and the intersection
of these with null infinity and unifying relationships between the different singu-
larities. The starting point for this work is the assumption of a known family of
solutions to the Eikonal equation. The work is based on the standard theory of
singularities of smooth maps by Arnold and his colleagues. Though the work is
intended to stand on its own, it can be thought of as being closely related to the
recently developed null surface reformulation of GR. ©1999 American Institute
of Physics.@S0022-2488~99!01302-X#

I. INTRODUCTION

In a recent work1 we studied properties of solutions of the flat-space–time Eikonal equa
namely,

hab]aS]bS50,

whose level ‘‘surfaces’’@S5S(xa)5const.#, are, by definition, null~or characteristic! three-
surfaces. These level surfaces, called by Arnold2,3 ‘‘big wave fronts,’’ can have self-intersection
and need not be smooth everywhere. In particular we were concerned with finding the a
form ~described parametrically! of the general solution to the equation, studying its level surfa
and the ‘‘small~two-dimensional! wave fronts,’’~i.e., the intersection of a three surface with a b
wave front! and then analyzing some of the resulting structures; the caustics of the full so
~three-dimensional!, the singularities of the big wave front~two-dimensional!, and the singularities
of the ‘‘small wave fronts’’~one-dimensional!. These singularities are defined, respectively, by
intersection of a big wave front and the small wave front with the caustic surface. A sp
application of these ideas was to the study of 2-parameter families of solutions to the E
equation from which it was possible to see an alternative analytic treatment of the structure
singularities. This latter point of view plays an important role in a recent reformulation of
known as the null surface formulation.4,5

In the present paper, we extend the ideas from the Minkowski case to,1 first to arbitrary
Lorentzian space–times and then specialize them to asymptotically flat space–times. Th
two main reasons for doing this:~1! We want to understand in detail the structure of light-con
in the large, i.e., globally, in arbitrary space–times which are of great relevance to the g
theory of gravitational lensing and~2! a recent reformulation of GR in terms of families o
10410022-2488/99/40(2)/1041/16/$15.00 © 1999 American Institute of Physics
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characteristic surfaces requires a deeper understanding of the singularities of the big an
wave fronts.

In Sec. II, we will show how from any arbitrary, but given, two parameter family of soluti
of the curved-space Eikonal equation, any arbitrary characteristic surface can be construc

This construction will, in Sec. III, be specialized to an asymptotically flat space–time w
the two-parameter family is chosen in a special way; namely, they are the family of past
cones from all the points on null infinity,I1. Directly in terms of this fiducial family we can
express any characteristic surface and in particular, we can express the light-cone,Cx , of any
interior pointxa. Of particular interest is the singularity structure of the cones,Cx , which can be
analyzed in terms of the variables of the fiducial family.

In Sec. IV, we will study the particular class of small wave fronts~two-dimensional! defined
by the intersection of the three-dimensional cones,Cx , with the null surfaceI1, i.e., the so-called
light-cone cutsc(xa) of I1. In particular we will be interested in finding~via Arnold’s theory of
Lagrange and Legendre maps2,3,6,7! the appropriate tools and variables to describe the singular
of these light-cone cuts.

Finally in Sec. V, we return to an issue that we deliberately postponed. We took, in Se
a fiducial family of solutions of the Eikonal and used them to study the singularities of o
characteristic surfaces but we avoided any discussion of the singularities of the fiducial f
itself. The reason for the postponement is that this discussion is more complicated and d
than the earlier ones and uses, in addition, different techniques; namely the equations of g
deviation.

The present work is partially intended to fill in the details of an earlier brief work in
Twistor Newsletter~TN43, 1997!, where we anticipated some of these results.

II. SOLUTIONS OF THE EIKONAL EQUATION IN CURVED SPACE

In this section we will treat the Eikonal equation in a general curved Lorentzian space–
(g,M), i.e.,

gab~xa!]aS]bS50 ~1!

and show how, if a special class of solutions is known,anysolution can be easily constructed. A
important special case of this will be the construction of any single characteristic surface,
level surface ofsome S, ‘‘a big wave front.’’

The difficult task~and it is very difficult, where perturbation techniques must be relied on! is
to produce this special class. Specifically, the special class will be a two-parameter fam
solutions,S05Z(xa,z,z̄) where the parameters are the complex stereographic coordinates o
sphere,S2, and the null covector,pa5]aZ(xa,z,z̄) ranges over the entire light-cone at each po
xa as (z,z̄) ranges overS2. Later, in asymptotically flat space–times, we will make a uniq
choice of this family.

Now assuming that an allowableZ(xa,z,z̄) is known we can produce an arbitrary solution
the following fashion:8 first, we rescaleZ with a constantb and add toZ an arbitrary function, at
least once differentiable, of (b,z,z̄) and then extremize it with respect to the (b,z,z̄), i.e., we
have

S5bZ~xa,z,z̄ !2h~b,z,z̄ ! ~2!

with

b]zZ2]zh50, b]z̄Z2]z̄h50, Z2]b h50. ~3!

For the simplicity of the immediate discussion~though the issue is an important one!, we
assume that the latter three equations can be solved for the (b,z,z̄) as functions of thexa, i.e.,
with
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~b,z,z̄ !5~B~xa!,Y~xa!,Ȳ~xa!!, ~4!

then on substitution back into Eq.~2!, the resulting function ofxa also satisfies the Eikona
equation. To see this we have, from~3! that

]aS5b]aZ1~Z2]bh!]b/]xa1~b]zZ2]zh!]z/]xa1~b]z̄Z2]z̄h!]z̄/]xa5b]aZ, ~5!

which satisfies the Eikonal equation, by the assumption onZ.
The important issue of how to deal with the case when Eq.~3! cannot be solved for (b,z,z̄)

is discussed later in this section.
Though we will not go into the proof one can show that given arbitrary Cauchy data,SC(xi)

for the Eikonal equation, i.e., a function of three arguments, then it determines the fun
h(b,z,z̄). The construction, thus, allows for the general solution to the Eikonal equation.

Remark 1:Since the functionh(b,z,z̄) determines a single solutionS* (xa) of the Eikonal
equation~i.e., a one parameter family of characteristic surfaces! by replacing theh(b,z,z̄) by the
function h(b,z,z̄;h,h̄) the above construction then produces a two-parameter family of solu
of the Eikonal equation,S* 5Z* (xa,h,h̄). We thus have that from any special two-parame
family, Z we can construct any other two parameter family that could also be used as the
cial’’ family.

We now specialize the construction so that we can obtain any single characteristic sur
be given byS5u5constant; Eqs.~2! and ~3! are replaced by the specialization,b51,

S5Z~xa,z,z̄ !2h~z,z̄ !5u, ~6!

]zZ2]zh50, ]z̄Z2]z̄h50. ~7!

Assuming that Eq.~7! can be solved for

~z,z̄ !5~Y~xa!,Ȳ~xa!!, ~8!

that any characteristic surface can be obtained by a judicious choice ofh(z,z̄) can be seen from
the argument that if we begin with any spacelike two-surface,G, parametrized by the same (z,z̄),
i.e., given by

xa5x0
a~z,z̄ !, ~9!

we can choose

h~z,z̄ !5Z~x0
a~z,z̄ !,z,z̄ !. ~10!

The resulting characteristic surface.S50, is formed by the null normals toG and since any
characteristic surface is formed by the null normals to some two-surface we have prove
contention.

Actually, in general, there are lower dimensional regions where Eqs.~7! cannot be solved for
the (z,z̄) pair. These regions~three dimensional! define the caustics of the solution. The interse
tion of these caustic regions with any particular level surface ofS ~big wave front!, i.e., with u
5S5const defines the ‘‘big wave front’’ singularities7 of Arnold. The intersection ofu5S with
a generic three-surface,~e.g., a constant time surface! defines a ‘‘small wave front’’ while the
intersection of the ‘‘small wave front’’ with the caustic three-surface, defines the ‘‘small w
front’’ singularities. Though for precise usage we should only refer to the full three dimens
caustic region as the ‘‘caustics,’’ we, however, will take the liberty of referring to the singular
of either the big or small wave front as the ‘‘caustics.’’
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These caustic regions~or on the big or small wave front singularities! which are characterized
by the inability to solve for the (z,z̄) are simply determined from the implicit function theorem
by the condition

D̂[U ]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z2

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z]z̄

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z]z̄

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z̄2

U50, ~11!

a condition that will later play a basic role.
To determine the solutionS, there is an alternative to solving Eqs.~7! for the (z,z̄) that is

often more desirable and can be used even whenD̂50. Equations~6! and ~7! can be considered
as defining families of three different 3-surfaces parametrized by the (z,z̄) pair. Their intersection
defines a family of curves~parametrized by the (z,z̄)! that are the null geodesics that rule the lev
surfaces ofu5S. The equations can always be solved in the following manner: of the fouxa

there will be a subset of three of them~sayxi! and the fourth one, sayx* such that

xi5Xi~x* ,u,z,z̄ !, ~12!

which are the null geodesics themselves. They define, parametrically, the level surfaceu
5S.

An alternative treatment of the null geodesics, Eq.~12!, is to introduce a geodesic paramet
~not in general an affine parameter! by

r 5~11zz̄ !2
]2

]z]z̄
~Z2h!, ~13!

which, with Eqs.~6! and ~7!, can be solved for

xa5Xa~r ,u,z,z̄ ! ~14!

yielding the parametric description of the null geodesics ruling the level surfaces ofS. Unfortu-
nately this description can break down at the caustics ofSwherer sometimes becomes infinite.
nevertheless is a means of treating the geodesics almost everywhere.

Remark 2: The description we have given here for the construction of solutions to the E
equation involves the construction of envelopes of tangent lines to the original two-para

family of solutions Z(xa,z,z̄) to form the S(xa). This description and the treatment of the caust
is an example of V. I. Arnold’s theory of generating families.2,7

III. EIKONAL EQUATION IN ASYMPTOTICALLY FLAT SPACE–TIMES

Before the introduction of a special or fiducial family of null surfacesS05Z(xa,z,z̄), we
begin with a brief discussion of asymptotically flat space–times. These space–times a
conformal rescaling of the space–time metric bringing null infinity~the end points of all future-
directed null geodesics! into a finite region thereby defining a~null boundary! for the space–time.
Though we will not be using the conformal rescaling explicitly, we will however use the lang
of the conformal boundary. The boundary, referred to asI1, can be attained by limiting proce
dures in the unrescaled space–time. The boundary, which is a null three surface with to
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R3S2 can be given coordinates (u,z,z̄), with u on theR part and the complex stereograph

coordinates (z,z̄) on theS2 which label the null generators~geodesics! of I1. It is this structure
that we will use to obtain the fiducial family of null surfaces.

For eachgenerator ofI1, i.e., for (z,z̄)5(z0 ,z̄0)5constant, we choose the one parame
family of past null coneshaving their apexes on that generator. This yields the special solutio
the Eikonal equation,u5Z(xa,z0 ,z̄0). Doing the same for each generator defines for us
unique fiducial family of solutions.S0[u5Z(xa,z,z̄), the past cones of each point ofI1. We
emphasize that we are describing these null surfaces in the language of the con
compactification—in the language of the physical space–time they describe the family
asymptotic plane waves and in the case of flat space theyare the family ofall plane waves. As the
concepts described here are conformally invariant, the choice of language is at our discre

Our special family of solutions

u5Z~xa,z,z̄ ! ~15!

has the two important dual meanings:~1! As we just mentioned for fixed point. (u,z,z̄), on I1,
asxa varies, it defines the past cone of the point and~2! for a fixed value of thexa, as (z,z̄) are
varied over theS2, u5Z defines a two-surface onI1, the end points of all the null geodesic
leavingxa. This two-surface is referred to as thelight-cone cutof the pointxa and is denoted by
c(xa). The functionZ(xa,z,z̄) will be referred to as thelight-cone cut function.

Both meanings tou5Z(xa,z,z̄) play a fundamental role in the remainder of this work. T
actual determination ofu5Z(xa,z,z̄) is quite difficult and up to the present, depends on per
bation arguments that have not yet been completed. We nevertheless will assume that the f
Z(xa,z,z̄) is known; we then study several consequences of this knowledge.

Remark 3: Though we will not be concerned with it here, we mention that the Z(xa,z,z̄) codes
all conformal information of the space–time metric4,5,9and in fact determines a conformal metri

Furthermore Z(xa,z,z̄), with a scalar functionV(xa,z,z̄) that acts as a conformal factor, can b
used as the basic variables, replacing the metric, in a reformulation of the Einstein equation.4,5,9

Our goal here is somewhat simpler~though some of the calculations themselves are
simple!; we want to study the structure of the singular regions of different surfaces. First, we
show how to construct from theZ(xa,z,z̄), using the techniques of the previous section, the en
light coneCx0

of an arbitrary interior pointx0
a and then study its singularities. The light-cone c

c(x0
a) is the intersection ofCx0

with I1, defining a small wave front; its singularities will then b
studied. Finally we return to and study the singular regions of the fiducial family of null surfa
defined by the light-cone cut function,Z(xa,z,z̄) itself.

We first define, in the case of asymptotically flat spaces, several variables that play an
tant later role. Instead of using the notation of]z and]z̄ for the (z,z̄) derivatives, we make use o
the edth notation, e.g.,ZZ5(11zz̄)]zZ. ZZpZ5(11zz̄)2]z]z̄Z or Z2Z5]z$(11zz̄)2]zZ%, etc.
We then have by direct calculation from theZ(xa,z,z̄),

~1! v[ZZ, v̄[ZZ, the tangent directions to the light-cone cuts,

~2! L[Z2Z, L̄[Zp2Z, ‘‘accelerations’’ along the~ z̄,z! constant curves,

~3! R[ZZpZ extrinsic curvature of the light-cone cuts. ~16!

Using this notation, the determination of the caustics, i.e., the vanishing of the determinD̂
from Eq. ~11! is equivalent, using Eq.~7!, to
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D[UZ2@Z~xa,z,z̄ !2h~z,z̄ !# ZZp@Z~xa,z,z̄ !2h~z,z̄ !#

ZZp@Z~xa,z,z̄ !2h~z,z̄ !# Zp2@Z~xa,z,z̄ !2h~z,z̄ !#
U50. ~17!

IV. LIGHT-CONES AND THEIR SINGULARITIES

In this section we consider the future light-cone of a pointx0
a , namely, the set of all~future

directed! null geodesics that pass throughx0
a . As a three-surface in the four-dimensional spac

time, the light-cones in general have singularities that are caused by the focusing effect
space–time curvature. These singularities are characterized by the vanishing of the ge
deviation vector associated with neighboring geodesics on the light-cone and are what w
been referring to as the caustics of the null surface. It is our purpose here to first find
light-cones and then describe their singularities in terms of the light-cone cut function,Z(xa,z,z̄).

As we pointed out earlier~Sec. II!, given a two-parameter family of solutions to the Eikon
equation,Z(xa,z,z̄), any characteristic surface can be constructed by adding a term that de
only on the parameters (z,z̄); i.e.,

S~xa,z,z̄ !5Z~xa,z,z̄ !2h~z,z̄ !

and extremizing with respect to the two parameters. If we choose

h~z,z̄ !5Z~x0
a ,z,z̄ ![Z0~z,z̄ !, ~18!

then the level surface obtained from

S505Z~xa,z,z̄ !2Z~x0
a ,z,z̄ ! ~19!

with the extremal conditions

Z@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !#50,

~20!
Zp@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#50,

describes the light-cone from the pointx0
a . To see this, we first remember that this construct

yields characteristic surfaces, then we see that the surface does go through the pointxa5x0
a and

coincides onI1, with the light-cone cut ofx0
a . Finally if we take its gradient, i.e.,

]aSux5x0
5]a@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#ux5x0
5]aZ~xa,z,z̄ !ux5x0

[pa~x0
a ,z,z̄ !, ~21!

we see that it ranges over the entire light-cone atx0
a .

A Caveat:We have assumed that the cut function,u5Z(xa,z,z̄), for fixed xa is a single
valued function onI1. In fact, in general, this is not true; most often there will be regions onI1

where it will be multivalued and it must be given as several different ‘‘sheets’’ in different (z,z̄)
patches. Though this does not present obstacles in principle, it does present technical difficu
implementation. Then Eqs.~19! and~20! must be repeated on the different sheets. A way to av
this difficulty is to describe the light-cone cut function and the light-cone cut itself parametric
i.e., to write it asu5U(xa,l,l̄) andz5G(xa,l,l̄) with single-valued functions. For simplicity o
presentation we will, for the moment, continue to treat the cut function as if it were single va

If, to the set of Eqs.~19! and ~20!, we add, from Eq.~13!, the equation

r 5~11zz̄ !2
]2

]z]z̄
~Z2Z0![ZZp~Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !!, ~22!
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they implicitly define all the null geodesics of the light-coneCx0
, i.e., they determine

xa5Xa~x0
a ,r ,z,z̄ !. ~23!

If the geodesic goes fromx0
a to I1 without encountering a caustic thenr goes from 0 to infinity

along that geodesic; if however it does encounter a caustic beforeI1, r then becomes infinite
beforeI1.

The location of the caustics ofCx0
~or the conjugate points tox0

a! is given by the vanishing of

D from Eq. ~17!, with h5Z(x0
a ,z,z̄);

D[UZ2@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !# ZZp@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#

ZZp@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !# Zp2@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#
U50, ~24!

or, with definitions~16!,

D5~L2L0!~L̄2L̄0!2~R2R0!250. ~25!

We have thus been able to express the location of the caustics of an arbitrary light-cone in
of derivatives of the cut functionZ(xa,z,z̄). Given a fixed pointx0

a and a particular null geodesi
~labeled by (z,z̄)!, the curvature and ‘‘acceleration’’ of its light-cone cut is given
(R0(x0

a ,z,z̄),L0(x0
a ,z,z̄)) while for an arbitrary point along that geodesic it would

(R(xa,z,z̄),L(xa,z,z̄)). D which begins as zero atr 50, does not vanish any other place along
geodesic that does not encounter a caustic but does go to zero at the caustic. There are
geodesics (z,z̄)c which meet the caustic onI1. For this limiting case, it is difficult to study the
behavior of Eq.~25! sinceL⇒0 andR⇒`, the flat-space limits, which applies here since t
pointsxa nearI1 are in the very weak field region andR0 andL0 are infinite~see next section!.
Other techniques for this study are needed.~See Fig. 1, the light-cone with the crossovers a
cusps.!

V. THE LIGHT-CONE CUTS AND THEIR SINGULARITIES

As we saw earlier, the cut function,u5Z(xa,z,z̄) has the dual meaning of being the pa
light-cones of the points (u,z,z̄) of I1 and representing the light-cone cut of an interior point,xa.
Fixing the interior pointxa5x0

a , we studied, in the last section, its light-cone and saw that
could locate its caustics but as the caustics approachedI1 difficulties developed. We wish to
study the singularities of the light-cone cuts by an alternative method.

First of all, if we assume thatall the null geodesics leavingx0
a arrive atI1 without encoun-

tering a caustic then the cut function,u5Z(xa,z,z̄), will describe a single-valued smoot
2-surface onI1. If however some did encounter caustics then the cut-surface will only be p
wise smooth and will have, in general, self-intersections. The appropriate way to describe t
is not through the cut function but instead via the mapping of the space of null directions ax0

a ,
i.e., atS2(x0

a), coordinatized by (l,l̄), ontoI1. It would be given by the relations

~u,z,z̄ !5~U~x0
a ,l,l̄ !,G~x0

a ,l,l̄ !,Ḡ~x0
a ,l,l̄ !!, ~26!

which are just the ‘‘end-points’’ or boundary points of the null geodesics originating atx0
a in the

(l,l̄) directions.~If the (l,l̄)⇒(z,z̄) were invertible, then one would have the smooth caseu

5U(x0
a ,l,l̄)5Z(x0

a ,z,z̄).!
To obtain a clearer picture the light-cone cut can, in some sense, be thought of as an in

late ‘‘small wave front.’’ The ‘‘early’’ wave fronts on the future lightcone ofx0
a are smooth

deformations of spheres, but they may become singular at sufficiently late times, from the fo
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due to curvature. Therefore, light-cone cuts of~early! points in space–time are generically singu
two-surfaces in three-dimensions, and they must exhibit the standard stable singularities, th
ridges, and swallowtails. In this view, for a fixed pointx0

a , a singularity in the light-cone cu
would be a conjugate point tox0

a . Generically, because singularities of two-surfaces lie on cur
the singularities of a light-cone cut would single out a one-parameter set (z(s),z̄(s)) of null
geodesics in the future light-cone for which the apex is a focal point.

Because Eq.~26! arises from the Hamiltonian evolutions~null geodesic flow! the map is a
Legendre map and we can use the general theory of Legendre submanifolds and Legendre
Arnold and his colleagues in order to have a description of the location of the singularities
light-cone cuts.3,6 A two-dimensional surface in a three-manifold which is obtained by a Lege
map can always be represented as the projection of a smooth 2-surface~a Legendre submanifold!
in a five-dimensional space, with the singularities located by the singularities of the projecti
other words, there exists a way to ‘‘unfold’’ a singular surface by adding two dimensions t
space where the surface lives. In this view, one of the three original dimensions~theu coordinate
of I1! is singled out from the remaining two-dimensional space; the two-dimensions, (z,z̄), are to
be considered as a configuration space. The two added dimensions consist of the two-dime
cotangent space over the configuration space. Thus the enlarged five-dimensional space o
our surfaces ‘‘unfold’’ consists of points (z,z̄,pz ,pz̄ ,u), a contact bundle over the sphere. It
preferable to usereal coordinates, and later translate the results in terms of our complex co
nates. Thus, in the following we assume that we have real coordinates (q1,q2) on the sphere,

FIG. 1. The future light-cone and light-cone cut of a pointx0 .
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which can be taken to be the real and imaginary parts ofz, and their corresponding momenta
(p1 ,p2).

A smooth ‘‘unfolding’’ is generically represented in terms of a smooth generating func
G(q1,p2). The points (q1,q2,p1 ,p2 ,u) that lie on such unfolding are given by

q252
]G~q1,p2!

]p2
, ~27a!

p15
]G~q1,p2!

]q1 , ~27b!

u5G~q1,p2!1p2q2, ~27c!

and arbitrary values forq1 andp2 . This is the expression of a two-dimensional surface withi
five-dimensional space, parametrized by (q1,p2).

Remark 4: Note that from the general theory, there must be an invertible relationship be

the parametrization(q1,p2) of the Legendre submanifold and the directions(l,l̄).
A projection of this surface down to the space (q1,q2,u) is parametrically represented by

map (q1,p2)→(q1,q2(q1,p2),u(q1,p2) which breaks down at points where the Jacobian ma

I ]q1

]q1

]q1

]p2

]q2

]q1

]q2

]p2

]u

]q1

]u

]p2

I 5I 1 0

2
]2G

]q1]p2
2

]2G

]p2
2

]G

]q12p2

]2G

]q1]p2
2p2

]2G

]p2
2

I ~28!

drops rank, from 2 to 1 or 0. The drop in rank takes place where the three 232 determinants
vanish, namely, where

]2G

]p2
2 50, ~29!

p2

]2G

]p2
2 50, ~30!

]G

]q1

]2G

]p2
2 50. ~31!

Clearly all three equations can be satisfied if and only if

K~q1,p2![
]2G~q1,p2!

]p2
2 50. ~32!

Thus Eq.~32! locates the curveK(q1,p2)50 in the (q1,p2) parameter space and hence, v
Eqs.~27a! and~27c!, it locates the singular points on the surface. Equation~32! also expresses th
location of points where Eq.~27a! fails to be invertible; namely, if we think of Eq.~27a! as
implicitly defining p25h(q1,q2), thenh fails to be differentiable there.~From the drop in rank, it
is straightforward to see that]h/]q2 blows up. See Eq.~39a! below.!

In order to translate this treatment into our complex notation, we pass from (q1,q2) to the
complex coordinatesz5 1

2(q
11 iq2) and reinterpret
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u5G~xa,q1,h~q1,q2!!1q2h~q1,q2!

as our cut functionu5Z(xa,z,z̄), wherexa are fixed parameters and play no role in the discuss
of this section. We can then express Eq.~32! in terms of derivatives ofZ in the following manner.

Beginning with the functionL[Z2Z, we express it parametrically in terms of (q1,p2),

L52~11zz̄ !z̄
]Z

]z
1~11zz̄ !2

]2Z

]z2 , ~33!

where

]

]z
5

]

]q1U
q2

2 i
]

]q2U
q1

. ~34!

Carrying through the calculation, which involves several implicit differentiations, we first arriv

v5~11zz̄ !S ]G

]q12 ip2D , v̄5~11zz̄ !S ]G

]q1 1 ip2D , ~35!

where

z5
1

2 S q12 i
]G

]p2
D , z̄5

1

2 S q11 i
]G

]p2
D . ~36!

Then

L52z̄v1~11zz̄ !2H ]2G

]~q1!22S ]2G

]q1]p2
2 i D 2S ]2G

]p2
2 D 21J . ~37!

Similarly, we obtain a parametric expression forR[ZpZZ5(11zz̄)2(]2Z/]z]z̄) in the form

R5~11zz̄ !2H ]2G

]~q1!22S 11S ]2G

]q1]p2
D 2D S ]2G

]p2
2 D 21J . ~38!

In deriving ~37! and ~38!, the following were needed:

]h

]q1 52
]2G

]q1]p2
S ]2G

]p2
2 D 21

,
]h

]q2 52S ]2G

]p2
2 D 21

, ~39!

which are obtained by taking derivatives]/]q1uq2 and]/]q2uq1 of Eq. ~27a!.
From ~37! and~38! we can see that bothL andR diverge at points where Eq.~32! is satisfied,

and only at those points, sinceG is assumed to be smooth. Therefore, we can locate the sing
points ~a curve!, (z(s),z̄(s)) of light-cone cuts by either of the conditions,

P~x0
a ,z,z̄ ![

1

ZpZZ~x0
a ,z,z̄ !

50, ~40!

L~x0
a ,z,z̄ ![

1

Z2Z~x0
a ,z,z̄ !

50 ~41!

for given values ofx0
a .
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We interpret this result as follows. The light-cone cut represents a wave front that ha
gressed out to infinity, tracing the future light-cone of the pointx0

a . For a class of pointsx0
a ~at

least sufficiently early!, the wave front starts out spherical, but there is a time at which it beco
self-intersecting. Late wave fronts have singularities which represent the location of points
jugate tox0

a . When the wave front reaches infinity, the points conjugate to the apex lie at in
and form the singularities of the light-cone cut~See Fig. 2, for a smooth light-cone cut and Fig.
for a generic light-cone cut with cusp ridges and swallowtails.!

Finally note that the vanishing ofP(x0
a ,z,z̄) andL(x0

a ,z,z̄) are not inconsistent with Eq.~25!
of the previous section where asI1 is approached.L→0. R→` and theL0→` andR0→`.

VI. SINGULARITIES OF THE PAST LIGHT-CONES FROM I1

Up to this point we have simply assumed that we had the three parameter family o
surfaces~or equivalently the two parameter family of solutions to the Eikonal equation! that we
called the fiducial family or the light-cone cut function, namely,u5Z(xa,z,z̄), with (u,z,z̄)
constant. We never raised the issue of the location of their singularities until now. The reaso
that, to locate them, requires a different technique, namely the use of pairs of geodesic de
vectors ~Jacobi fields! and their associated area element. It will be the vanishing of the
element~obtained from the Jacobi fields! along a geodesic that locates the singularities. We be
by returning to certain structures obtainable from the light-cone cut functionZ(xa,z,z̄) that were
defined earlier; namely,

u5Z~xa,z,z̄ !, ~42!

which represents the past light-cones from all points onI1,

v5ZZ~xa,z,z̄ !, v̄5ZpZ~xa,z,z̄ !, ~43!

FIG. 2. A regular light-cone cut.

FIG. 3. A singular light-cone cut, showing cusp ridges and swallowtails.
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which label the null geodesics leaving the point (u,z,z̄) of I1. From the compactified point o
view they are the~stereographic! angles labeling the directions from the past light-cone while fr
the physical space point of view they are the ‘‘distance’’ between the asymptotic parallel g
sics,

R5ZpZZ~xa,z,z̄ !, ~44!

which defines an ‘‘optical distance’’ or geodesic parameter~not affine! along the geodesics
(u,v,v̄)5const. As we mentioned earlier, geometricallyR is a curvature of the cut.

Using the notation

u i5u i~xa,z,z̄ ![~u,v,v̄,R!, with ~ i 50,1,2,1!, ~45!

Eq. ~45! can be interpreted either as a coordinate transformation,u i⇔xa, for every fixed value of
the two parameters (z,z̄) or simply as the introduction of four scalar functions parametrized by
(z,z̄). We will make extensive use of the transformation interpretation though care must be
in the regions where the Jacobian either vanishes or diverges. One might even expect t
troublesome region will be where the~big! wave front singularities develop.

In generic space–times, the presence of the curvature, Weyl or Ricci-type, has afocusing
effect on parallel beams of light.10 Thus, generically, two neighboring null geodesics in o
asymptotically parallel congruences meet at some point, which means that our coordinate
breaks down by assigning two different labels to the same space–time point.

We will describe two alternative approaches to the region of breakdown.

~1! We can calculate the Jacobian of Eq.~45! most easily by returning to the description of the c
functionZ by the generating function,G(xa,q1,p2) of the previous section,Z5G1q2p2 . By
a completely straightforward calculation~using MATHEMATICA to calculate the determinant!
we find that

U]ui

]xaU}S]2G~xa,q1,p2!

]p2
2 D21

, ~46!

U]xa

]uiU}S]2G~xa,q1,p2!

p2
2 D ~47!

so that the Jacobian breaks down precisely at the comparable point where the light-co
had its singularities.

Remark 5: In the previous section we saw that for fixed xa, but varying the(z,z̄), the

functions R(xa,z,z) and L(xa,z,z̄) both diverged at the singularities of the light-cone cut. W

can now see that for fixed(z,z̄) but varying the point xa along a null geodesic, the same functio
diverge at the caustic of the past light-cone.
~2! In the second approach, we derive an explicit algebraic condition to locate these regio

finding the points where a geodesic deviation vector vanishes. Our present derivation
great measure a reinterpretation of an earlier derivation due to Kozameh and Newm11

reproduced here in current notation in order to maintain the unity of the present work.

By ~in principle! inverting Eq.~45! we obtain

xa5Xa~u i ,z,z̄ !5Xa~u,v,v̄,R,z,z̄ !, ~48!

which for fixed values of (u,z,z̄) is the parametric form of the past cone ofI1 and for fixed
values of (u,v,v̄,z,z̄) it is the parametric form for the null geodesics on the cone each labele
(v,v̄).
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Of prime importance to us are the connecting vectors to the null geodesics that are on th
null cone. Two connecting vectors~from which all others can be constructed! are given by

Ma5
]Xa

]v
, M̄a5

]Xa

]v̄
. ~49!

We are interested in the areaA constructed fromMa andM̄a. Taking a pair of~complex! spacelike
unit vectorsma andm̄a ~gabm

amb50, gabm̄
am̄b50, gabm̄

amb521!, that are parallel transporte
along the null geodesics.Ma andM̄a can be written as

Ma5jma1h̄m̄a, M̄a5 j̄m̄a1hma, ~50!

so that the ‘‘area’’ form is

M [aM̄b]5~jj̄2hh̄!m[am̄b][Am[am̄b] . ~51!

From this we see that

A2[~gabM
aM̄b!22~gabM

aMb!~gabM̄
aM̄b![~M•M̄ !22~M•M !~M̄•M̄ !. ~52!

Our task~which requires a bit of preparation! is to express theM•M̄ andM•M in terms of
Z(xa,z,z̄) and its derivatives. We choose the one-form basis

ua
i []au i5~]aZ,]av,]av̄,]aR![~ua

0,ua
1 ,ua

2 ,ua
1! ~53!

and the dual vectors

u i
a5~u0

a ,u1
a ,u2

a ,u1
a!5~]Xa/]u,]Xa/]v,]Xa/]v̄,]Xa/]R! ~54!

which satisfy

u i
aua

j 5d i
j , u i

auc
i 5dc

a . ~55!

From the one-form basisua
i , using the space–time metric,gab, one can express the dual basis s

by

u i
a5gacuc

j h j i or uc
i 5gacu j

ah i j , ~56!

where

h i j 5u i
au j

cgac , h i j 5u a
i u c

j gac. ~57!

Returning to the computation of the area, we have for the tangent vector to the geodesics

u1
a[La5]Xa/]R, ~58!

and from the geodesic deviation vectors,Ma5]Xa/]v5u1
a andM̄a5]Xa/]v̄5u2

a that

M•M̄5h12 , M•M5h11 , M̄•M̄5h22 . ~59!

Remark 6: Note that la[V2La is the affine parametrized tangent vector to the geodesics.
(Eq. (63) below for the definition ofV.]

The calculation of the threeh’s though lengthy, is fairly straightforward; It is found from th
inverse ofh i j @i.e., from the second version of Eq.~57!#. The components ofh i j are found by
beginning with
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h005ua
0uc

0gac5gac]aZ]cZ50 ~60!

which vanishes by definition. By applying the operatorsZ and Zp several times to Eq.~60! one
finds4 for the relevant components ofh i j @see Eq.~16! for definitions#

h0050, ~61!

h0150, h0250, ~62!

h01[V25gac]aZZZp~]cZ!5gac]aZ]cR, ~63!

h1152V2LaZ2~]aZ!52V2La]aL52V2]L/]R, ~64!

h2252V2LaZp2~]aZ!52V2La]aL̄52V2]L̄/]R, ~65!

h2152V2, ~66!

which in turn leads to

M•M5h1152
1

V2S 12
]L

]R

]L̄

]R
D , ~67!

M•M̄5h1252

]L̄

]R

V2S 12
]L

]R

]L̄

]R
D . ~68!

The area then is

A25
1

V4S 12
]L

]R

]L̄

]R
D . ~69!

This expression forA tells us several things; first of all to keepA real we must have the inequalit

U]L

]RU<1, ~70!

and we learn thatV must diverge at the singularity given byA50.
We have thus learned in this section that the singularities of the past light-cones fromI1 can

be characterized by one of several methods:

~1! Using the generating functionG(xa,q1,p2), the singularities are given by the vanishing of t
Jacobian of the transformation~45!, i.e., by

]2G~xa,q1,p2!

]p2
2 50. ~71!

~2! This, in turn, tells us~from the previous section! that bothR(xa,z,z̄) andL(xa,z,z̄) diverge
as the singularities are approached.
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~3! From the geodesic deviation argument

V→` ~72!

as the singularity is approached.
~4! From Eqs.~69! and~70! we learn thatu]L/]Ru must be bounded but we can not see wha

its behavior is as the singularity is approached. However on the basis of several exa
e.g., Ref. 1, whereu]L/]Ru→1 it appears to be reasonable to expect that this result migh
true in general. If so, then we would have that@12(]L/]R)(]L̄/]R)#→0 as the singularity
is approached. In turn, from Eq.~69!, we would gain some information about how fast bothV

and @12(]L/]R)(]L̄/]R)# approach their limits.~See Fig. 4, a past light-cone fromI1.!

VII. SUMMARY AND CONCLUSIONS

In this work we have studied the kinematics or general structure of several different clas
surfaces~associated with surface forming null geodesic congruences! in asymptotically flat
Lorentzian space–times, namely, the future light cones of interior points,Cx ; the intersection of
Cx with I1, i.e., the light-cone cuts,c(xa); and the past light-cones from points (u,z,z̄) on I1.

These surfaces, which in general have singularities, are closely related to each ot
particular there is a close association between their singularities. As was pointed out earl
the future light conesCx0

with an apexx0
a that is sufficiently early in time, the small wave fron

begin spherical but as they evolve they become self-intersecting and develop singularitie~the
stable one being cusp ridges and swallowtails6! which represent the conjugate points tox0

a . The
limit, in the asymptotic future, of these small wave fronts is the light-cone cutc(x0

a); the singu-
larities of c(x0

a) being the points conjugate to the apex. They are also the intersection o
singularities ofCx0

with I1 ~see Figs. 1, 2, and 3.!

Alternatively ~an example of the reciprocity theorem of Penrose and Sachs11,12!, the singu-
larities of light-cone cuts must be related to the singularities of the past light cones from po
infinity. The singularities of light-cone cuts are interpreted as singling out the null geod
leavingI1 which are conjugate to or focus atx0

a . These null geodesic belong to two congruenc
of interest to us. First, they belong to the future light cone of the pointx0

a , and second, they belon
to the past light cone of the point (u,z,z̄) of I1 reached by the first set. The light-cone c
function, with the vanishing of eitherP(xa,z,z̄) or L(xa,z,z̄), locate both the singularities of th
light-cone cut and the interior points conjugate to points onI1 ~see Fig. 4!.

Most of the kinematic issues raised here are, we believe, now reasonably well understo$It
still would be of considerable interest to determine the behavior of@12(]L/]R)(]L̄/]R)#, in the
neighborhood of the caustics.% Our interest now is to apply these kinematic insights to the stud

FIG. 4. The foliation of space–time by past light-cones from points at null infinity.
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null surfaces~specifically, light-cones! in vacuum Einstein spaces. Though there is a formalism4,5

in which the Einstein equations have been rewritten as differential equations for the cut fun
Z(xa,z,z̄) andV(xa,z,z̄) ~aside from some very special cases!, the equations have been difficu
to deal with because of the difficulty of treating the caustics, which are ubiquitous. We fee
the situation has changed; we now know how to identify the presence of the caustics in te
both R and L. $The reason for our interest in the term@12(]L/]R)(]L̄/]R)# is that it arises
frequently in denominators of the field equations and we would like to know if it always ten
zero at a caustic.% We have also realized that it probably will be very advantageous to use
representation ofZ(xa,z,z̄) by

Z~xa,z,z̄ !5G~xa,q1,p2!1q2p2 ~73!

with q252]G/]p2 , z51/2(q11 iq2) ~see Secs. V and VI!. Our immediate goals are first to fin
the behavior of@12(]L/]R)(]L̄/]R)# near caustics and then rewrite the field equations in te
of the G(xa,q1,p2) rather thanZ(xa,z,z̄).
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