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Through a combination of analytic and numerical techniques, the formation of a black hole 
by a self-gravitating, spherically symmetric, massless scalar field is investigated. The 
evolution algorithm incorporates a Penrose compactification so that the Bondi mass, the news 
function, and other radiation zone limits can be obtained numerically. The late time 
behavior recently established by Christodoulou is confirmed and new asymptotic relations for 
late time and for large amplitude limits are derived. For example, it is shown, that the 
Bondi mass Ma and the scalar monopole moment Q satisfy the asymptotic relation Ma 
- P 1 Q I/42 at high amplitudes. It is found that the scalar monopole moment decays 
exponentially during black hole formation in contrast to the perturbation theory result for a 
power law decay rate in an Oppenheimer-Snyder background. It is demonstrated that 
the Newman-Penrose constant for the scalar field is globally well defined and has significant 
effects. 

I. INTRODUCTION 

In this paper, we investigate black hole formation by 
a spherically symmetric, general relativistic, asymptoti- 
cally flat, zero rest mass Klein-Gordon field. Our most 
important new results are (i) in the strong field limit, the 
Bondi mass equals the scalar field monopole moment, up 
to a universal constant; (ii) during black hole formation 
the monopole moment decays exponentially with respect 
to a distant observer, rather than as the power law pre- 
dicted by perturbation theory; and (iii) the Newman- 
Penrose constant for the scalar field significantly affects 
the late stage of gravitational collapse. 

The first of these results is purely analytic and derives 
from a novel application of the method of Laplace to 
obtain asymptotic formulas for the scaling behavior of the 
mass, as described in Sec. III. The other two results are 
partially based upon numerical simulations, whose meth- 
odology is described in Sec. IV. Result (ii), discussed in 
Sees. V and VI, is based upon a nonlinear version of 
Price’s’ model of a test scalar field on an Oppenheimer- 
Snyder background. Price showed that an initially 
smooth test field would evolve across the horizon without 
developing a singularity and that its monopole moment 
would be completely radiated away. His work furnished 
the impetus for the no-hair picture of black holes. Result 
(iii) establishes the manner in which the Newman- 
Penrose constant’ for the scalar field is consistent with 
the no-hair scenario. Perturbation arguments have ques- 
tioned the appropriate asymptotic region in which the 
Newman-Penrose constant is well defined.3*4 Our results 
demonstrate that the Newman-Penrose constant is glo- 
bally well defined at future null infinity J+, that it is 
indeed conserved, and that it can lead to nontrivial qual- 
itative effects. This is presented in Sec. VI, along with an 

overview of the main features of the energetics and as- 
ymptotics of black hole formation for a variety of initial 
waveforms. The numerical algorithm incorporates a Pen- 
rose compactification that allows the first illustrations of 
the conformal singularity forming at future time infinity 
I+. 

Christodoulou5-* has made a penetrating analysis of 
the existence and uniqueness of solutions describing grav- 
itational collapse of a scalar field, in the spherically sym- 
metric scalar case, and has established a rigorous version 
of the no-hair theorem. Working in the framework of the 
characteristic initial value problem on an outgoing null 
cone, he proved that weak initial data evolves to 
Minkowski space asymptotically in time but that suffi- 
ciently strong data forms a horizon, with nonzero final 
Bondi mass M&- and zero scalar monopole moment. The 
geometry is asymptotically Schwarzschild in the ap- 
proach to I+ outside the sphere r = 2Mx. Figure 1 
depicts such a field beginning at initial retarded time a0 
and forming a horizon at Us The situation is akin to the 
Oppenheimer-Snyder collapse except for the radiation to 
J+, whose backscatter causes the r = 2M,p curve to 
intersect the horizon only in an asymptotic limit at I+. 

II. FORMALISM AND BACKGROUND 

We begin with a brief description of the Bondi for- 
malism for the model and of Christodoulou’s main re- 
sults. The spherically symmetric solutions of Einstein’s 
equation for a zero rest mass scalar field a, 

Gpy= 874 VP@ V,,@ - &,, V,+ VW], (2.1) 

have a characteristic initial value formulation based upon 
outgoing null cones emanating from the central geodesic.’ 
Let the coordinate u be the proper time along this geo 
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H 

FIG. 1. A collapsing scalar field. An asymptotically Schwarzschild ge- 
ometry arises in the approach to I+ in the nonshaded region. 

desic, with u = const on the outgoing null cones. Let r be 
a surface-area distance on these null cones. Then, in the 
corresponding Bondi coordinate system, the line element 
takes the form 

ds2=ewdu[(V/r)du+2dr] -r2(d6*+sin28d~*), 
(2.2) 

where f3 and C$ are the usual polar coordinates. At r = 0, 
we adopt as coordinate conditions 

V(u,r)=r+O(r3) and P(u,r)=O(r*), (2.3) 

so that the metric reduces to a Minkowski (null polar) 
form along the central worldline. The resulting metric 
does not take an asymptotic Minkowski form in the limit 
r-03 of J+. We set H(u) =B(u,co). Then Bondi time 
Cfor a Minkowski frame at J+ is related to proper time 
u along the central geodesic by 

di7 
-=e2H. 
du (2.4) 

The coordinates C, r, 6, and C$ constitute a standard Bondi 
frame whose line element is given by (2.2) with the re- 
placements V + V = e-2HVand/3-+P=fl-H. Bondi 
time ii is more convenient in discussing asymptotic quan- 
tities such as the mass and news function. However, cen- 
tral time u is more convenient in dealing with horizons. A 
horizon forms at a finite central time II = uX but at an 

infinite Bondi time Lx = CO, with the central redshift de- 
termined by Eq. (2.4). 

The field equations are equivalent to the two hyper 
surface equations: 

P,,= 2d a,,> 2, (2.5) 

v,,= G, (2.6) 

and the scalar wave equation Cl@ = 0, which in Bondi 
coordinates takes the form 

2(r@),ur=r -‘(rV@,,),, (2.7) 

Initial null data for evolution consists of @( uo,r) at initial 
time u,-,. We use the gauge freedom + + Cp + const to set 
Cp ( uo, CO ) = 0. Furthermore, we only consider nonsingu- 
lar, asymptotically flat data satisfying the smoothness 
conditions 

g(uo,O)=O, g(uo,co)=Q(ao) and &ng(uo,oo)=O, 

for n#O, (2.8) 

where g = r@ and Q(U) is the scalar monopole moment. 
By radial integration of the hypersurface equations [ (2.5) 
and (2.6)] using the boundary conditions (2.3)) this data 
uniquely determines, in turn, p( uo,r) and V( uo,r). For- 
mal evolution then proceeds by determining a,@ ( uo,r) 
from the radial integral of the wave equation (2.7), 
which gives, after integration by parts, 

r v 
2*,, = VQ,, + 

JO 0 
; @‘,r dr. 

This formally preserves the smoothness conditions, i.e., 
&g satisfies the analog of (2.8). 

Asymptotic quantities of special physical interest are 
the Bondi mass 

M(u)=iee2Hr2( V/r),,I,=, (2.10) 

and the scalar news function 

N(u) =e-2HQJu). (2.11) 

Here Q is the scalar monopole moment and the factors of 
e - 2H arise from the relation of central time to Bondi 
time. The Bondi mass loss equation is 

e - 2HM,u= - 4rrN2. (2.12) 

The Bondi mass may be reexpressed as a null cone 
integral in the three different forms: 
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e2(BmH)r 2(a,r)2 dr 

=2?r * 
s 

rVe-2fl(Q,r)2 dr. (2.13) 
0 

The news function can be also be reexpressed as a null 
cone integral, 

N=ie-2H Im F@,rdr, 
0 

(2.14) 

as follows immediately from (2.9). In the flat space case, 
for which V = r, this integrates to give N = 
- $I)( t(,O), which equates the signal at null infinity to 

the signal arriving at the origin. In the curved space case, 
the News Function Mean Value Theorem” gives a related 
result: 

N= - iW@), (2.15) 

for some value O<{< CO. This provides insight into the 
limitations of backscattering in constructively rechannel- 
ing incoming waves to produce high-amplitude outgoing 
radiation. No matter how contrived the incoming fields 
might be at a given retarded time, the resulting news 
function is restricted by the maximum magnitude of @. 

Assuming that the scalar field has an asymptotic ex- 
pansion, 

@=Q(u)/r+ Q2(u)/r2 + e-e, (2.16) 

then an expansion of the scalar wave equation implies 
that Q2+ = 0. Q2 is the Newman-Penrose constant for the 
scalar field.* Also of interest is the positive quantity 

s 

m 
P=4rr r(g,,) 2 dr. (2.17) 

0 

PI’* like the square root of the Bondi mass, provides a 
norm on the vector space of asymptotically flat initial 
data. Using the field equations and boundary condition, 
integration by parts leads to 

1 * pece-*Hp =- ,u ,u s 2 0 
[1 _ e*(8--H) 

+ 4(/3 - H)e2’8-m]dr. (2.18) 

Besides the asymptotics of the neighborhood of J+, 
there is the important but more difficult issue of asymp- 
totic behavior in the neighborhood of I+. When the final 
Bondi mass vanishes, this behavior is analogous to that 

for linear waves in a Minkowski background. When a 
horizon forms, Christodoulou’s’ powerful results supply 
some of the key features. Let the horizon form at I( 
= uz with Bondi mass Mp Then the geometry has the 
asymptotic behavior 

,X0- HI ~ I 
0, for r<2Mx, 
1, for r>2Mz, (2.19) 

in the limit u -, us Referring to (2.13) and (2.18)) this 
implies that P becomes singular at the rate 

P-M+, (2.20) 

with respect to Bondi time, during the formation of a 
horizon. 

Ill. SCALING 

Two types of one-parameter scale freedom play a nat- 
ural role in this system. Metric resealing, defined by gc(,, 
+ a2gp, Cp -+ @ leaves the Einstein equation (2.1) invari- 
ant, leads to no essentially new physics, and merely 
changes the length and time scales. Formation of a hori- 
zon is invariant under metric resealing. The mass of the 
horizon is not invariant and can be made arbitrarily small 
or large by resealing. By means of the coordinate trans- 
formation u -* u/a, r+ r/a, metric resealing may be reex- 
pressed as /3( u,r) -p( u/a,r/a), V( u,r) -+ V( u/a,r/a), 
and +(u,r)-*G(u/a,r/a). 

The other freedom, amplitude scaling, pertains to re- 
scaling the null data. For given initial data, the one-pa- 
rameter family of resealed data @(uo,r;;l) = A@( uo,r) 
preserves asymptotic flatness but, unlike metric scaling, 
does not commute with evolution, cP(ur,r;il) 
#,%a( ul,r), except in the small /z linearized limit. In that 
limit, energy scales quadratically M( u$) - A*M( u) and 
the news function scales linearly, N( u$> -IZN( u). 

In the opposite large il extreme, interesting saturation 
effects occur. From the hypersurface equations (2.5) and 
(2.6), we find 

P(uo,$) =A*P(uo,r) 

and 

(3.1) 

r V( uo,r;A I= 
s 

e2~2~~~~,d dr. 
0 

The second mass expression (2.13) then gives 

(3.2) 

M(A) =27rA* 
I 

m gA2(fimH)r 2(Q,r)2 dr, (3.3) 
0 

where we suppress the implicit dependencies on u. and r 
but indicate all A dependence. 
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This mass integral has the appropriate structure for 
extracting its large il dependence by means of the method 
of Laplace.” This method gives the asymptotic large r 
behavior of the integral, 

In the intermediate case with Q = 0 and Q, = 0( l/r P), 
M( uc;A) has Q(n”p> asymptotic dependence (p> 1). 

Compare these results to the weak field limit, 

b I( T,U,b) = 
I 

f(x)eTh(“) dx, (3.4) 
a 

m M(A) --r/l* 
s r ‘(@,A’ dr, (3.11) 

0 

where h( 6) > h(x) for a<x < b, by (i) introducing the 
truncated integral I( r,b - e,b), (ii) replacing f(x) and 
h(x) in 1(r,b - e,b) by the leading terms in their Taylor 
expansions about x = b, and (iii) evaluating the resulting 
integral in the limit e-r CO. 

The application of this method to M(A) depends 
upon the large r behavior of a. First, suppose Q, contains 
a monopole moment so that Cp - Q/r. Then p attains its 
maximum H asymptotically at infinity, with 

/9=H- (TQ%~) +O(l/r3), (3.5) 

according to the expansion of (2.5). By introducing the 
new integration variable x = r/( 1 + r), the integration 
limits are compactified between x = 0 and x = 1. The 
method of Laplace can then be applied in a straightfor- 
ward manner to (3.3), which leads to 

in which M depends quadratically on /l. In the strong 
field case, (3.7) and (3.10) indicate how a redshift-type 
effect weakens this dependence. In the noncompact case, 
M depends at most linearly on il with the dominant con- 
tribution coming from the far-field monopole moment, 
which is least affected by redshifting. In the compact case, 
redshifting completely saturates the A dependence and 
the null data approaches that for a horizon at R = 2M. 
The study of a specific analytic model” with compact 
null data also shows that the news function is completely 
redshifted away, N(A) -0 as il + CO holding R constant. 

If time evolution commuted with amplitude scaling 
then (3.7) would imply the asymptotic relation 

M,,d uo;a I- - (dflz> I Q,,-(uo$) I. (3.12) 

In turn, the relations (2.11) and (2.12) between mass 
loss, news, and monopole change, would then imply that 

M(A) -27rA2@ Iy m e-2rA2d(x-‘)2 dx. 

Integration then gives 

(3.6) 
M,,-( uo;a I- - 7r/8 and iV(uc$) -a/8, (3.13) 

M(M) - (dfl) I Q(uo;A) I. (3.7) 

In this regime, the mass is essentially the magnitude of 
the monopole moment! The approximation 

in the high-amplitude limit. Although these relations are 
hypothetical, they provide benchmarks for comparison 
with the actual evolution of high-amplitude data. 

Mz(dv3 IQ1 (3.8) 

provides a necessary condition that can be used to test 
whether the field is in the high-amplitude regime, at any 
retarded time such that Q#O. The method of Laplace can 
be used to extend the asymptotic relation (3.7) to higher 
order. In terms of the conserved quantity Qz in (2.16), 

The quantity P defined in (2.18) scales quadratically 
with respect to A. From the &dependent versions of 
(2.13) and (2.18), its derivative with respect to Bondi 
time can be expressed in the form 

P,~=M - A a,M. (3.14) 

M-;lQl +g+O ; . 
0 

(3.9) 

Next, consider the case that the initial data @ has 
compact support, with R the smallest value of r outside of 
which Q, = 0. Then fi attains its maximum Hat r = R, so 
that the method of Laplace can then be applied directly in 
terms of the integration variable r, with integration limits 
between 0 and R. This gives 

In the linear regime, the Bondi mass scales quadratically 
so that il aAM - 2iU and (3.14) reduces to P,;i - 
- M. Thus P must monotonically decrease in the weak 

field regime. Since P is a norm for a, this explains how 
flat space-time arises as a basin of attraction for the weak 
field case. On the other hand, our prior result (3.9) for 
the high-amplitude scaling of M implies that 

P,ii-2QDQ + O( l/A), (3.15) 

M( uo;A) -R/2. (3.10) 

in the generic case Q#O. This can be either positive or 
negative (or zero) depending upon the relative signs of Q 
and QP Thus the conserved quantity Qs has an important 
qualitative effect on the evolution of a high-amplitude 
field. 
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IV. NUMERICAL SOLUTION 

Numerical algorithms for a spherically symmetric 
self-gravitating massless scalar field have been previously 
developed by Goldwirth and Piran,‘* in a study of cosmic 
censorship, and by Choptuik,‘3 in a study of the sensitiv- 
ity of black hole formation to initial data. Here we use a 
curved space version of a nonspherical algorithm devel- 
oped for nonlinear wave equations in flat space-time.‘4*‘5 
In the spherically symmetric case, it has similarities to 
the Goldwirth-Piran algorithm. A major difference is the 
use of a numerical grid that compactifies J+ so that it is 
well suited for investigating asymptotic properties. Also, 
the underlying numerical implementation and conver- 
gence analysis differ appreciably from the Goldwirth- 
Piran code and the Courant limit automatically halts the 
evolution at I+. 

The numerical grid is based upon the outgoing null 
cones and the compactified radial coordinate x = r/( 1 
+ r) . Thus points at J+ are included in the grid at x = 1. 

In terms of x and g = r+, the asymptotic expansion 
(2.16) takes the form 

g=Q+ QzCl -xl + *-es (4.1) 

so that the the Newman-Penrose constant Q2 equals the 
negative of the slope of g at J+. We use constant grid 
displacements Au and AX. On a given null cone, the hy- 
persurface equations (2.5) and (2.6) are handled by nu- 
merical integration. Numerical evolution, from null cone 
to null cone, is based upon an integral relation equivalent 
to the scalar wave equation (2.7). 

In order to describe this scheme quantitatively, first 
consider the flat space wave equation, obtained by setting 
V = r and /3 = 0. Let B denote the null parallelogram 
formed by incoming and outgoing radial null rays in the 
(u,r) plane that intersect at vertices P, Q, R, and S, as 
depicted in Fig. 2. In the case of spherical symmetry, 
g = r@ obeys the two-dimensional wave equation intrin- 
sic to this plane, whose surface integral over I: implies the 
null parallelogram relationgQ = gp + gs - gR. Now con- 
sider the curved space case, with X formed out of the 
curved space null rays. The (u,r) submanifold has the 
intrinsic metric 

h,,dX dx”=e”du[ (V/r)du + 2 dr], 

and the wave equation for g reduces to 

(4.2) 

q l(*)g + ( V/r) J (e - wg/r) = 0 , (4.3) 

where Cl(*) is the D’Alembertian associated with h,,,. In 
two dimensions, the geometry is conformally flat, the 
wave operator has conformal weight - 2 and the surface 
area element has conformal weight 2, so that the surface 
integral of q l@)g over B gives exactly the flat space result. 

u + du 
0 

FIG. 2. Scheme for the marching algorithm. 

Upon integration of (4.3), curvature introduces an area 
integral correction to the flat space null parallelogram 
relation, giving 

gQ=gP+&-gR - f Jz dudr (p),rF. (4.4) 

This identity gives rise to an explicit marching algo- 
rithm for evolution. Let the null parallelogram span null 
cones at adjacent grid values u. and u. + Au, as shown in 
Fig. 2, for some 8 and 4. Imagine for now that the points 
P, Q, R, and S lie on the grid, so that xQ - xp = xs 
- xR = Ax. Ifg has been determined on the entire u. cone 

and on the u. + Au cone radially outward from the origin 
to the point P, then (4.4) determines g at the next radial 
grid point Q in terms of an integral over 8. The integrand 
can be approximated to second order, i.e., to 0( Ax Au), 
by evaluating it at the center of 2. To the same accuracy, 
the value of g at the center equals its average between the 
points P and S, at which g has already been determined. 
Similarly, the value of ( V/r),? at the center can be ap- 
proximated to second order in terms of values of V at 
points where it has already been determined. 

After carrying out this procedure to evaluate g at the 
point Q, the procedure can be repeated to determine g at 
the next radially outward grid point, the point T in Fig. 
2. After completing this radial march to null infinity, the 
field g is then evaluated on the next null cone at u. 
+ 2 Au, beginning at the vertex where smoothness gives 

the startup condition that g = 0. 
In practice, the points P, Q, R, and S cannot be cho- 

sen to lie exactly on the grid because the velocity of light 
in terms of the compactified coordinate x is not constant 
even in flat space. As a consequence, the fields g, p, and V 
at the vertices of the null parallelogram, i.e., P, Q, R, and 
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S, are approximated to second order by interpolating be- 
tween grid points. However, cancellations arise between 
these four interpolations so that Eq. (4.4) is satisfied to 
fourth-order accuracy. The net result is that the numer- 
ical version of (4.4) steps g radially outward one zone 
with an error of fourth order in grid size. In addition, the 
smoothness conditions (2.3) are incorporated into the 
startup for the numerical integrations for V and /3 to 
ensure no loss of accuracy at the boundary r = 0. The 
resulting global error in g, after evolving a finite retarded 
time, is then O( Au hx) after compounding errors from 
l/(Au hx) number of zones. Second-order global accu- 
racy is indeed confirmed by convergence tests of the code. 

0.3 - 

0.2 - 

00 0.1 - 

Because of the explicit nature of this algorithm, its 
stability depends upon an analog of the Courant condi- 
tion that the physical domain of dependence be contained 
in the numerical domain of dependence. In the present 
spherically symmetric case, this condition requires that 
the ratio of the time step size to radial step size be limited 
by (V/r)Au<2 Ar, where Ar = A[x/( 1 - x)]. This con- 
dition is built into the code using the value V/r = e2H, 
corresponding to the maximum of V/r at J+ . The stron- 
gest restriction on the time step arises just before the 
formation of a horizon. In this limit, V/r-+ CO so that the 
conformal singularity at I + freezes the numerical evolu- 
tion. In order to evolve across the horizon, exterior radial 
points must be dropped from the domain of the grid. 

0.0 

-0 1 3 I 4 1 

0.0 0.5 1.0 1.5 2.0 

r 

FIG. 3. Evolution of static-static data to flat space. 

Here R fixes the length scale and a determines the scalar 
monopole. The space-time has a naked singularity if it is 
extended to r = 0. 

V. STATIC-STATIC DATA 

The numerical evolution of characteristic initial data 
induced by pasting an initially static monopole to a flat 
interior provides a nonlinear version of the test-field prob- 
lem treated by Price.’ This example demonstrates several 
important physical properties. 

The simplest static, spherically symmetric, self-grav- 
itating zero rest mass scalar field is @ = const, which is 
pure gauge and not by itself physically interesting. A 
static solution, which is the analog of the solution Cp = l/ 
r in a Minkowski background,16 can be obtained by set- 
ting @‘,U = 0 in the wave equation (2.7). This gives 

rV@,r=const, (5.1) 

whose solution is 

Static-static initial null data at u = u. can be con- 
structed by setting cP(uo,r) = Q. = const for r<R and 
@(uo,r) = Q(V), as given in Eq. (5.2), for r>R, choos- 
ing Q. to make the data continuous. However, the evo- 
lution of this data does not remain static. There are two 
distinct regions, separated by the radially incoming char- 
acteristic curve N through r = R at u = up This char- 
acteristic is a shock front across which the curvature has 
a jump discontinuity. To the past of Jv; the field remains 
constant and the metric flat, until time u = 2R when Jzr 
intersects the origin. To the future of J’Y, backscattering 
distorts the initial profile of @. For fixed R, there are two 
distinct types of evolution depending upon the value of 
aW (Changing Q. should not be confused with the am- 
plitude scaling discussed in Sec. III.) 

A. Decay to flat space 

<o(V)= & In [ VTR;;fla:l; ) ] ’ 
with V(r) given implicitly by 

(5.2) 

x [ V+ R(e2”- l)]‘+‘a”hcr. (5.3) 

For sufficiently small a0 the system evolves asymp- 
totically to Minkowski space-time. Figures 3 and 4 dis- 
play the numerical evolution for a0 = 0.25 and R = 1. In 
order to give physical perspective to these results consider 
first the flat space case, in which g( u,r) would propagate 
toward the origin as a dispersionless one-dimensional ra- 
dial wave. The boundary condition g( u,O) = 0 corre- 
sponds to perfect reflection off the origin, which results in 
an outgoing wave that propagates instantaneously to 
Jf in terms of retarded time u. For static-static data in 
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I t I , 

00 02 04 06 06 10 

I 

FIG. 4. Evolution to flat space described in the x coordinate. 

the flat space case, g would consist of a piece linear in r, 
for r < R, and a constant piece for r > R. Thus, interpreted 
as a one-dimensional radial wave, all the wave energy 
would be concentrated in the r.c R region and would be 
propagated to infinity in the time u,$- - u. = 2R that it 
takes the incoming characteristic JV to hit the origin. 
Prior to that time, the system would radiate energy at a 
constant rate. 

Some vestige of this flat space picture, but modified 
by the dispersive effects of self-gravity, is evident in Fig. 
3, which graphs g(u,r) vs r at several retarded times. It 
distinctly illustrates the breakdown of Huyghen’s princi- 
ple due to curvature. The numerical code handles the 
propagation of the shock front without any substantial 
difficulty. It introduces some slight high-frequency nu- 
merical noise just outside the shock front, but too small to 
be perceptible in the figure. 

Figure 4 displays the global behavior in terms of a 
graph of g(u,x) vs x = r/( 1 + r), between times u. and 
u. I t. Comparison with Fig. 3 gives an idea of the distor- 
tion of the wave profile introduced by the x coordinate. In 
accord with Eq. (4.1), the value of g at J+ (x = 1) 
equals the monopole moment Q and the negative of the 
slope of g at J+ equals the Newman-Penrose constant 
Q2. It is evident from Fig. 4 that the numerical evolution 
conserves Q2. Except for these interesting theoretical as- 
pects, the evolution is otherwise boring. 
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FIG. 5. Evolution of static-static data to a black hole. 

6. Horizon formation 

For R = 1, our numerical results show that the sys- 
tem forms a horizon when Q. > 0.286. Figure 5 illustrates 
the evolution of g( u,x) for cPo = 0.574. The early stage of 
the evolution appears innocuous but then the outer region 
of the profile flattens. This marks the beginning of the 
process of “shedding hair” as a black hole starts to form. 
As this process intensifies in the late stage, a cusp begins 
to form near r = 2Mp, where MS = M( u&-) with ux 
the time at which the horizon forms. The cusp corre- 
sponds to the conformal singularity developing at If. 
Figure 6 graphs e2(@ - H, at late times just prior to horizon 
formation. The step function limit (2.19), predicted by 
Christodoulou, is clear. The graph also shows the accu- 
rate agreement between the locations of the step function 
and the r = 2Mz surface, where the final Bondi mass of 
the black hole Mp is numerically computed. Here the 
three formulas for the Bondi mass (2.13) give almost 
identical numerical values. Outside the r = 2Mx surface, 
0-0 and the geometry approaches the Schwarzschild 
geometry in the limit of I+, again in agreement with 
Christodoulou’s results portrayed in Fig. 1. 

Figure 7 graphs the dependence of the monopole mo- 
ment on central time. After a long swan dive to a negative 
value, it rises abruptly to zero just before the horizon 
forms. The numerical evolution is stopped just short of 
the horizon due to the inability of the grid to resolve the 
cusp. The redshift factor at this time is dii/du =: 10’. 
According to perturbation calculations’ for a test scalar 
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FIG. 6. Formation of a step function. 

field, the monopole moment should decay as l/i? with 
respect to Bondi time. This would correspond to a value 
s = - 2 of the logarithmic derivative s = d log 1 Q( i7) I/ 
d log G plotted in Fig. 8 for the final phase of evolution. 
The plot shows no agreement with the perturbation the- 

0.00 

0.40 

a 0.20 

-0.20 1 I I I 
0.00 0.20 0.40 0.60 

u 

FIG. 7. Decay of the monopole for static-static data. FIG. 9. The square of the monopole for static-static data. 
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FIG. 8. The logarithmic derivative. 

ory prediction. This is surprising since in this final phase 
the metric is very close to a Schwarzschild metric in the 
region exterior to r = 2M&p. The decay of the monopole 
with respect to central time is very closely approximated 
by (uX - u)*‘~, as can be seen in Fig. 9, which plots 
@ for the same time interval used in Fig. 8. Although we 
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have no rigorous derivation of this behavior, it corre- 
sponds to the predictions of the following toy model. 

C. A toy model 

Some aspects of the bifurcation phenomenon, which 
separates evolution to flat space from evolution to a ho- 
rizon, can be modeled in the following simple way. The 
values of the monopole moment Q and the radius of the 
shock front R determine unique static-static initial data. 
In terms of the variable a, 

Q=2R sinh aemtitanha. (5.4) 

At the initial time uo, it is easy to integrate the evolution 
equation (2.7) to find Q,,, since the time dependence is 
purely due to the shock front. This gives 

Q,,= - sinh a. (5.5) 

A toy model with two degrees of freedom Q and R 
can be extracted by requiring Eqs. (5.4) and (5.5) to 
hold for all times, supplemented by the condition R,, 
= - f, which expresses the constant velocity of the 
shock front with respect to the flat interior. [Physically, 
this last equation is sensible only up to the time uJ- for 
which R ( u_)-) = 01. Matching the u derivative of (5.4) 
to (5.5), we obtain 

e2atanhn _ 1 = 2Ra,, [ 2 tanh a - coth a + 2a/cosh2 a]. 
(5.6) 

Since the left-hand side of (5.6) is positive, a either 
monotonically increases or decreases depending upon 
whether the bracketed expression on the right-hand side 
is positive or negative, respectively. The bracket is a 
monotonically increasing function of a, which is negative 
for a below the critical value ac =: 0.586 and positive 
above that value. Correspondingly, for a0 = a( uo> 
< a, a decays to zero; and for a0 > a, a grows to infin- 
ity. In either case, according to (5.4), the monopole mo- 
ment decays to zero. This models the decay of the mono- 
pole moment under evolution to either flat space or a 
horizon. 

For small a, corresponding 
(5.6) has the limiting form 

a3= - Rap,, 

whose solution is 

to the weak field case, 

(5.7) 

a=ao[ 1 - 4ai log(R/Ro)] - lj2, (5.8) 

where R. = R ( uo). Thus a and Q decay to zero at pre- 
cisely the time u.,,- when R = 0, in agreement with the flat 
space limit. 

For large a, corresponding to the strong field case, 
(5.6) has the limiting form 
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e-2aa,,= 1/(2R), 
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(5.9) 

whose solution is 

e-2a=e-2q + 2 log(R/Ro). (5.10) 

Since log(R/Ro) -+ - 03 as u -+ UN, there exists some 
time UP, intermediate between u. and UN such that 
a(u) -+ 00 as u + UX. In this limit, Q(ux) = 0. It is 
possible to extract the asymptotic decay rate of the mono- 
pole moment by Taylor expanding the time dependence 
of (5.10) about UR and using the large a version of Eq. 
(5.4), which relates Q to a. This gives 

Q(U)- dRp(uw-- u), (5.11) 

where RF = R (uz). This is in good agreement with the 
numerical results shown in Fig. 9. 

For small values of u - uo, Eq. (5.6) has the same 
canonical form as the equation 

(a: - a&+=& 

with solution 

(5.12) 

(a - a,) = =t J(ao - a,)2 + 24 - uw (5.13) 

For initial data a0 < a, the negative root is the correct 
choice; and for a0 > a, the positive root. But there is no 
unique solution for a0 = a, so that the toy model gives no 
insight into the critical case. 

VI. WAVEFORMS: ENERGETICS AND COLLAPSE 

We now present a perspective of the energetics, as- 
ymptotics, and scaling properties of a general waveform 
undergoing collapse to a black hole. We discuss three 
cases, each adding an additional degree of complexity to 
the initial wave profile. 

A. Example A 

First consider the one-parameter set of initial data, 

*(uo,r) =A/(1 + r). (6.1) 

The energy is initially concentrated in a spherical shell 
centered about the radius r = 1. We are particularly in- 
terested in how the features of the collapse depend upon 
the amplitude scale il. From numerical experimentation, 
we find that the critical value for horizon formation is 
A,= 1.317. 

Figure 10 gives a log-log graph of the computed val- 
ues of the initial Bondi mass versus L For small 1, the 
graph is a straight line of slope 2, corresponding to the 
quadratic ,l dependence of the mass in the weak field 
case. For large il, the graph is a straight line of slope 1, 
corresponding to the linear il dependence in the high- 
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FIG. 10. Scaling of the Bondi mass for example A. 

amplitude regime. The critical value & lies in the transi- 
tion region between quadratic and linear dependence. The 
graph extends to the value ;1 = 15, past which terms in 
the code of magnitude e -U lead to excessive numerical 
underflow. At this value, the computational results agree 
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FIG. 12. Evolution of g for example A. 

with the asymptotic relation M- (?r/fl) 1 Ql , predicted 
by Eq. (3.7), to 1 part in 10 OCO. An important point to 
be appreciated here is that the high-amplitude limit is not 
out of the reach of numerical treatment. 

Figure 11 plots P(U) for several representative values 
of a. The qualitative features of these graphs can be ex- 
plained in terms of asymptotic results previously dis- 
cussed. For the two graphs with /z < ,I, P decays to zero 
as the system decays to flat space, in keeping with the role 
of P as a norm. For the three graphs with I. > il, P 
exhibits interesting asymptotic behavior. First, at the ini- 
tial time U= 0, these three graphs of P all have approx- 
imately the same slope. This is a manifestation of the 
high-amplitude relation (3.15) applied to the present case 
in which Q = - Q2 = A, so that dP/dU - - i in the 
high-amplitude limit. For the value ;1 = 2.5, we find nu- 
merically that dP/diiis initially - 0.71. The high-ampli- 
tude limit (3.15) remains a good approximation to 10% 
accuracy even for values il z il,. Also note that the pres- 
ence of the Newman-Penrose constant Q2 has a marked 
effect on the evolution, in this case driving P down at 
early times, even though the system ultimately forms a 
horizon. These three graphs each tend toward straight 
lines at large Bondi time, exhibiting the asymptotic rela- 
tion (2.20), which implies that dP/dG + Mp From the 
asymptotic slope of these graphs, it is evident that sys- 
tems that start out at higher amplitude develop horizons 
with greater mass. 

FIG. 11. P plotted versus Bondi time for various scales. 
Figure 12 displays the evolution of the wave ampli- 

tude, in terms of plots of g( U,X) at several values of the 
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FIG. 13. Evolution of g for example B. 

central time U, for jl = 1.5. Initially the waveform is the 
straight line &0,x) = x. The time sequence is obvious 
from the formation of the cusp at r = 2M&p. In the last 
profile, the “hair” outside r = 2iUp has been shed, ex- 
cept for a small neighborhood of J+. Notice how this 
occurs while g maintains a constant slope at J+, in ac- 
cord with the conservation of Q2. This illustrates the 
manner in which the conservation of the Newman- 
Penrose constant is consistent with the no-hair scenario. 
This same feature is also evident in the earlier example 
portrayed in Fig. 5, in which g has a constant negative 
slope at J+, corresponding to a positive value of Q2. 

The decay of the monopole moment begins as in Fig. 
7 with a long dive from its initial positive value followed 
by an upward bob beginning at some small negative 
value. However, in this case, Q bobs up to a positive value 
and then decays very sharply toward zero. Considerable 
numerical noise arises at these late times from the singu- 
larity developing at I+, which leads to discretization er- 
ror from the sharpness of the cusp and from roundoff 
error due to the high redshift. The code becomes unreli- 
able when the redshift between central time and Bondi 
time is 109. In this example the large slope at J+, corre- 
sponding to the large Newman-Penrose constant, con- 
tributes to the noise. 

In order to translate dependence on central time into 
Bondi time it is necessary to know the time behavior of H. 
Although no rigorous derivation is known, a heuristic 
argument that seems to give the correct asymptotic time 
behavior of H can be based upon the qualitative features 
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FIG. 14. Monopole decay for example B. 

of the late stages of black hole formation that are evident 
in Fig. 12. Just before the formation of the horizon, the 
time and radial changes are dominated by the neighbor- 
hood of r = 2Mp. This suggests the asymptotic approx- 
imation g,,- - 2Mfl,r;;, whereby (2.17) leads to 

dP 2d * 
s 

dH 
%-+- 165-M, XG o r( @,,)2 dr= 8&f& dC , - (6.2) 

where the last equality follows from the global integral of 
(2.5). Comparison with (2.20) then gives 

H - ii/8Mx, (6.3) 

so that (2.4) implies 

(ILH - u)/4Mz--exp( - G//MT). (6.4) 

This is exactly analogous to the relation between Kruskal 
and Schwarzschild times. The relationship (6.3) is con- 
firmed numerically to very convincing accuracy. A (uz 
- U) “2 monopole falloff then takes the form of an expo- 

nential decay with respect to Bondi time, 

Q(U) -const exp( - G/g/8~~). (6.5) 
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FIG. 15. The square of the monopole for example B. 

B. Example B 

The one-parameter set of initial data, 

I 
Ar(1 - r)2, for r<l, 

@(u0,r)= o , for t-21, 

0.005 
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bd 
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(6.6) 

FIG. 16. The initial data for example B. 
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FIG. 17. Strong amplitude profile. 

describes a pulse-shaped wave profile of compact support 
with critical value ;1 C z 1.3. Figure 13 displays the evolu- 
tion of g( U,X) at several central times, for il = 1.5. As the 
system collapse to a black hole, the formation of the cusp 
at r = 2Mx, and the no-hair scenario is similar to the 
preceding examples. In this example, the conserved quan- 
tity Q2 = 0 so that the slope of g vanishes at J+ . At the 
last time depicted in the figure, the field has completely 
vanished, to graphical accuracy, outside r = 2Mp 

Figure 14 graphs the monopole moment versus cen- 
tral time. Initially the monopole vanishes but rises to 
some positive value. Then, as in the previous examples, 
there is a long dive to a small negative value followed by 
an upward bob. During this bob, the monopole moment 
decays toward zero without further oscillation. Figure 15 
graphs p(u) during this final decay up to the time when 
the redshift reaches lo5 and numerical noise is still neg- 
ligible. During this interval, the graph of @ approaches a 
straight line of finite slope, very accurately corroborating 
the (ux - U) 1’2 dependence hypothesized in Sec. V. The 
high accuracy here is possible due to the vanishing of the 
Newman-Penrose constant. Also, the asymptotic behav- 
ior of H, hypothesized in (6.3) is approached to within 
2%, thus confirming the exponential relation (6.4) be- 
tween central time and Bondi time. Approximately one- 
third of the initial mass is radiated in forming the black 
hole. Half this mass loss occurs during the initial period 
when the monopole moment is positive and the other half 
during the final bob. 
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FIG. 18. Weak amplitude profile. 

C. Example C 

As a last example, consider the initial data, 

Wu0,r)= o 
I 

(A/r> sin(20rr), for r(1, 
for t-21. t 

(6.7) 

Thus g(uO,r) consists of ten oscillations of equal ampli- 
tude, which are uniformly spaced with respect to r. The 
critical parameter value is II, z 0.0019. 

Figure 16 graphs the initial profile of g vs x; Fig. 17 
graphs g just before horizon formation in a strong ampli- 
tude case; and Fig. 18 graphs g in a weak amplitude case 
at a suitable time for comparison with the strong ampli- 
tude graph. The qualitative difference between Figs. 17 
and 18 highlights the nonlinear effects of self-gravitation. 
The most striking feature of the strong amplitude case is 
that the horizon forms quite insensitively to the detailed 

structure of the field in the inner region r < 2MX. The 
chief difference, between the strong and weak case, in the 
evolution of g inside this inner region arises from the way 
in which the outgoing wave from the origin interferes 
with the incoming signal. In the weak case this interfer- 
ence lowers the entire profile in Fig. 18 by a constant 
determined by the amplitude of the outgoing wave leav- 
ing the origin at that time. In the strong case, backscatter- 
ing couples the incoming and outgoing waves. The linear 
slope modulating the wave profile in Fig. 17 is a prime 
illustration of backscattering depleting the outgoing 
wave. 
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