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Lecture 7 : Biased or balanced
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1 Quantum programs and analysis

Recall :

1. If F : {0, 1}n → {0, 1} is easy to compute classically, then “If F (X1, . . . , Xn) Then Minus” is easy
to compute quantumly in a trash-free way.

2. The operations Hadamard: 1√
2

(
+1 +1
+1 −1

)
, Add&Diff:

(
+1 +1
+1 −1

)
, and Aug&Disp: 1

2

(
+1 +1
+1 −1

)
are all the same operation when we allow “unnormalized states.”

To compute Hadamard on the ith bit, we can pair up all states that differ on the ith bit and
perform A&D on the two states (if a state is not present, it has 0 amplitude) to get the resulting
amplitudes for the associated states.

2 Preparing “Uniform Superposition”

Recipe: Starting from n qubits initialized to 0, do H.A.T.! : H on each qubit, sometimes called the
“Hadamard Transform.”

Example: Say we start with amplitude 1 on 000. We want to know what is the result of H on A, H on
B, and H on C.

Via Add&Diff, we get 1 on 000, 1 on 100. Then, we get 1 on 000, 1 on 010, 1 on 100, and 1 on
1101. Finally, we get 1 on all possible quantum states. The result is a quantum state with uniform
amplitudes. It should be clear that this holds for all n.

Conclusion: After H.A.T.!, the final unnormalized state has amplitude 1 on all states, giving normalized

state of amplitude
√

1√
2n
.

Upshot : Say n = 3, we H.A.T!, and we now initialize a new qubit called “Ans”. Then suppose we “Add
Maj(A, B, C) to Ans”. We get uniform superposition on all states ABCD such that D = Maj(A,B,C).

However, say instead we don’t care about “Ans” and we instead do “If Maj(A, B, C) Then Minus”.
The resulting amplitudes are the “truth table” (−1 if the majority is 1, otherwise 1). The behavior if
we do “Print All”, we just get a uniformly random three bit string.

We can see something cool happen if we instead H.A.T.! on the sign-computed version of some F 2. For
the above example, we’ll illustrate this by using Avg&Disp.

After H on A, we get amplitude 1 on 000, 0 on 100, 0 on 001, 1 on 101, 0 on 010, 1 on 110, -1 on
011, 0 on 111. Computing the rest of the transformation is a bit tedious, let’s just figure out the final
amplitude on 000. After H on B, we have amplitude 1

2 on 000 and amplitude −1
2 on 001. Finally, after

H on C, we get amplitude 0 on 000. This amplitude corresponds to the average of the initial amplitudes
of all starting states.

1We can visualize this as a cube where there is an edge between states if they differ by 1 bit.
2This is the biggest, and perhaps only trick in all of quantum computing.
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Theorem: After preparing the uniform superposition and sign-computing F : {0, 1}n → {0, 1} and
doing Hademard Transform, the final normalized amplitude on 0 is the average of F ’s 2n ± values.

For general F , the final amplitude of 0 is 0 when F is balanced, i.e. it maps half of all n-bit strings to
1, and the other half to 0. If a function is not balanced, we say it is biased.

If F is balanced, then the amplitude on 0 is 0, so the probability of printing 0 is 0.

Otherwise, if F is biased, then the amplitude on 0 is non-zero, so the probability of printing 0 is strictly
positive.

Call the above quantum program CF . If F is easy in classical computation, then CF is easy in quantum
computation.

This is really cool! Theorem (Deustch-Tozsa): If we had the same thing in the setting of classical
computation, then PΣ2 = NPΣ2 .

But what about the other states? Let’s return to the tedium and take for granted that we get:

• 0 on 000

• +1/2 on 001

• +1/2 on 010

• 0 on 011

• +1/2 on 100

• 0 on 101

• 0 on 110

• -1/2 on 111

Using our fancy notation, we could also say that the final state is +1
2 |001⟩+

1
2 |010⟩+

1
2 |100⟩ −

1
2 |111⟩.
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