21-237: Math Studies Algebra I September 14, 2022 Lecture 7: Group actions Lecturer: James Cummings Scribe: Rajeev Godse # 1 First Isomorphism Theorem Let $N \triangleleft G$. G/N is a **quotient group** on cosets of N in G with group operation $(g_1N)(g_2N) = g_1g_2N$. This yields a natural HM $\phi_N: G \to G/N$, the **quotient homomorphism** via $\phi_N(g) = gN$. See that $\ker(\phi_N) = N$. First Isomorphism Theorem: For HM $\phi: G_1 \to G_2$, let $N = \ker(\phi)$. Then, $\operatorname{im}(\phi) \simeq G/N$ via $\psi(gN) = \phi(g)$. Proof: For $g, g' \in G_1$, $\phi(g) = \phi(g') \iff \phi(g^{-1}g') = 1 \iff g^{-1}g' \in \ker(\phi) = N \iff gN = g'N$. Therefore, ψ is a bijection. $\psi((gN)(g'N)) = \psi((gg')N) = \phi(gg') = \phi(g)\phi(g') = \psi(gN)\psi(g'N)$, so ψ is HM. So ψ is IM. #### 1.1 Related facts **Fact**: For a group $G, K_1, K_2 \leq G, K_1 \subseteq K_2 \iff K_1 \leq K_2$. **Fact**: For a group G, $N \triangleleft G$, the subgroups of G/N are in bijection with $\{H : N \leq H \leq G\}$. In this bijection, H/N corresponds to H (makes sense because if $N \triangleleft G$, $N \leq H \leq G$, then $N \triangleleft H$). # 2 Group actions #### 2.1 Definition Let G be a group and let X be a set. An **action** of G on X is a function¹ from $G \times X = \{(g, x) : g \in G, x \in X\}$ to X satisfying the following axioms: - 1. $1 \cdot x = x$ for all $x \in X$. - 2. $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$ for all $g_1, g_2 \in G, x \in X$. Let G act on X. For $x \in X$, the **stabilizer** G_x is $\{g : G : g \cdot x = x\}$, and the **orbit** O_x is $\{g \cdot x : g \in G\}$. ## 2.2 Examples - 1. Let G be any group, let $X = \{H : H \leq G\}$, and let $g \cdot H = H^g$. - 2. Let $[n] = \{1, ..., n\}$, $[n]^k = \{A \subseteq [n] : |A| = k\}$. Recall that S_n is the group of permutations on [n]. Let $\sigma \cdot A = \{\sigma(j) : j \in A\}$. #### 2.3 Equivalence relation Say $x \sim y \iff \exists g \in G. \ g \cdot x = y$. This is an ER on x: 1. Reflexivity: let g = 1 and apply axiom 1. $^{^{1}}g \cdot x$ is the value of the function on (g, x) - 2. Symmetry: If $g \cdot x = y$, then $g^{-1} \cdot y = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = 1 \cdot x = x$. - 3. Transitivity: follows from axiom 2. The equivalence class of x with respect to \sim is O_x . *Note*: $G_x \leq G$. The proof follows the structure of the ER proof above. ### 2.4 Orbit Stabilizer Theorem Let $g_1, g_2 \in G$ and $x \in X$. Then, $g_1 \cdot x = g_2 \cdot x \iff (g_2^{-1}g_1) \cdot x = x \iff g_2^{-1}g_1 \in G_x \iff g_1G_x = g_2G_x$. **Theorem**: There is a bijection between the left cosets of G_x and points in the orbit of x, in which $gG_x \leftrightarrow g \cdot x$. Thus, if G is finite, $|O_x| = [G:G_x] = \frac{|G|}{|G_x|}$.