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What affects strategy selection in arithmetic?
The example of parity and five effects
on product verification
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The parity effect in arithmetic problem verification tasks refers to faster and more accurate Jjudg-
ments for false equations when the odd/even status of the proposed answer mismatches that of the cor-
rect answer. In two experiments, we examined whether the proportion of incorrect answers that vio-
lated parity or the number of even operands in the problem affected the magnitude of these effects.
Experiment 1 showed larger parity effects for problems with two even operands and larger parity ef-
fects during the second half of the experiment. Experiment 2 replicated the results of Experiment 1 and
varied the proportion of problems violating parity. Larger parity effects were obtained when more of
the false problems violated parity. Moreover, all three effects combined to show the greatest parity ef-
fects in conditions with a high proportion of parity violations in problems containing two even oper-
ands that were solved during the second half of the experiment. Experiment 3 generalized the findings
to the case of five rule (i.e., checking whether a false product ends in 5 or 0), another procedure for
solving and verifying multiplication problems quickly. These results (1) delineate further constraints
for inclusion in models of arithmetic processing when thinking about how people select among verifi-
cation strategies, (2) show combined effects of variables that traditionally have been shown to have sep-
arate effects on people’s strategy selection, and (3) are consistent with a view of strategy selection that
suggests a bias either in the allocation of cognitive resources in the execution of strategies or in the order
of execution of these strategies; they argue against a simple, unbiased competition among strategies.

A very striking feature of human cognition is that peo-
ple use multiple strategies to accomplish most cognitive
tasks. In domains as diverse as arithmetic, serial recall,
question answering, sentence verification, reading, and
naive physics, people know and use multiple strategies
(see, e.g., Ashcraft, 1992; Collins, 1978; Donley &
Ashcraft, 1992; Glucksberg & McCloskey, 1981; Hasher
& Zacks, 1979; Jacoby & Dallas, 1981; LeFevre,
Sadesky, & Bisanz, 1996; Lemaire, Abdi, & Fayol, 1996;
Lemaire, Fayol, & Abdi, 1991; Lemaire & Siegler, 1995;
Mandler, 1980, Norman, 1973; Reder, 1982, 1987; Reder
& Anderson, 1980; Reder & Ritter, 1992; Siegler &
Shrager, 1984; Smith, Shoben, & Rips, 1974; Stone &
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Van Orden, 1993). Different strategies are selected by the
same subject on different problems, as well as on the
same problem solved on different occasions. One expla-
nation for people’s use of multiple strategies is that they
may be invoked flexibly, depending on the inherent char-
acteristics of the task (such as problem difficulty) or on
transitory situational demands (such as the need to answer
quickly or accurately in particular contexts). Recently,
explorations of strategy use have been concerned with
people’s ability to fine-tune their control over strategy se-
lection while performing cognitive tasks (e.g., Lemaire,
Barrett, Fayol, & Abdi, 1994; Lemaire & Siegler, 1995;
Lovett & Anderson, 1996; Reder, 1982, 1987, 1988; Reder
& Ritter, 1992; Reder & Schunn, 1996, in press; Schunn,
Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997;
Siegler, 1988; Siegler & Lemaire, 1997). These explo-
rations have demonstrated that people are flexible in their
use of a set of strategies.

The use of multiple strategies has been widely docu-
mented in arithmetic. A number of important findings
have already been established regarding which strategies
are used, how often they are used, how they are executed,
how they are selected, and how each of these dimensions
changes with learning (Cooney, Swanson, & Ladd, 1988;
Geary & Brown, 1991; Geary & Burlingham-Dubree,
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1989; LeFevre, Sadesky, & Bisanz, 1996; Reder & Ritter,
1992; Reder & Schunn, 1996; Schunn et al., 1997; Sieg-
ler, 1988; Siegler & Lemaire, 1997; Siegler, Adolph, &
Lemaire, 1996). Of interest here is the nature of people’s
control over their strategy selection process. In particular,
are they biased in their tendency to use a particular arith-
metic strategy, and if so, what variables affect this bias?

As in other cognitive domains, arithmetic strategies may
be completely deliberate and conscious (such as adding
one operand the number of times indicated by the other
operand), whereas others may be performed without ex-
plicit awareness of its use (such as parity checking). In some
tasks, subjects are unable to articulate their strategy (see,
e.g., Krueger, 1986; Lemaire & Fayol, 1995; Reder, 1987).
We define a strategy as a procedure or set of procedures for
achieving a higher level goal or task. These procedures do
not require conscious awareness to be called a strategy.

The effect of using multiple strategies on people’s per-
formance has been investigated in arithmetic with two
types of tasks: production and verification tasks. In a pro-
duction task, subjects are presented with a series of prob-
lems (e.g., 8 X 4, 19 X 23) to solve, and the individual
strategies used by the subjects are identified, as well as
several characteristics of these strategies, such as their
frequency, speed, or accuracy. In a verification task, peo-
ple are asked to verify a series of problems (e.g., 8 X 4 =
32), and the effects of problem type (e.g., true problems,
such as 8 X 4 = 32, or false problems, suchas 8 X 4 =
31) on the subjects’ latency and accuracy are analyzed.
The use of multiple strategies is inferred from the pat-
terns of speed and accuracy that arise as a function of the
factors that define the stimulus set. In the present exper-
iments, we used verification tasks to investigate which
variables affect people’s strategy selection while solving
arithmetic problems. Two sets of variables were tested,
one concerning stimulus characteristics of the immediate
problem, and one concerning the context in which the
problems are solved—that is, the characteristics of the
previously presented problems.

Stimulus effects on strategy choice. Stimulus effects
investigated here are the parity and five effects. The odd/
even status of the multiplicands and of the proposed an-
swer affects latency and accuracy verification. People are
sensitive to the difference between the parity of the pro-
posed answer (e.g., 8 X 4 = 31) and that of the correct an-
swer (e.g., 8 X 4 = 32). This sensitivity to the difference
in parity has been found both in adults (Krueger, 1986;
Krueger & Hallford, 1984; Lemaire & Fayol, 1995) and in
children as young as 7 years old (Lemaire & Siegler, 1995;
Siegler, 1988). People are typically faster and more accu-
rate when the parity of the false proposed answer mis-
matches the parity of the correct answer than when parity
matches. In product verification tasks, the parity effect
may also be described with the following rule: To be true,
a product must be even, if either of its multipliers is even;
otherwise, it must be odd. The parity effect is sufficiently
robust that it overshadows another robust effect in arith-
metic verification, called the split effect—that is, shorter
latencies with false problems whose proposed answer is
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distant from the correct answer, such as in 9 X 7 = 68,
than with false problems whose proposed answer is close
to the correct answer, such as in 9 X 7 = 64 (Ashcraft &
Battaglia, 1978; Zbrodoff & Logan, 1990).

Another possible heuristic for confirming or rejecting
equations is the five effect. Problems with multiplicands
of 5(e.g.,5 X 7or9 X 5)are solved more quickly and ac-
curately than other problems with multiplicands or prod-
ucts of comparable magnitude (e.g., 6 X 7; Campbell,
1994; Campbell & Graham, 1985; Campbell & Oliphant,
1992; LeFevre, Sadesky, & Bisanz, 1996; Miller, Perimut-
ter, & Keating, 1984). Several reasons have been invoked
to account for this effect. One that is relevant to the pre-
sent study is that people would use a five rule (i.e., N X
5 = product with a unit digit equal to 0 or 5) to facilitate
their performance. This greater ease with five problems
has been replicated a number of times in a production task
with simple arithmetic problems only (e.g., 5 X 7 = ?) but
has never been reported in a verification task (e.g., 5 X
7 = 35. True? False?) or with complex problems (e.g., 5 X
39). In the present experiment, we wanted to test this effect
in the verification of complex arithmetic problems (e.g.,
5 X 18 = 90. True? False?). We also wanted to determine
whether people use the five rule to reject false problems,
by determining whether performance is better when they
verify false problems that violate (e.g., 5 X 18 = 93)
rather than respect the five rule (e.g., 5 X 18 = 95).

Contextual or generalized stimulus effects: Do
biases extend across trials? Consider the work of Le-
maire and Fayol (1995) on arithmetic verification. They
proposed that the two alternative strategies for retrieval
and parity checking are triggered and executed in paral-
lel, with the first strategy being completed controlling the
response. They found that parity effects were larger for
more difficult problems and argued that retrieving the cor-
rect solution would often beat parity checking with easy
problems, whereas parity checking would beat retrieval
for difficult problems.

Although a horse race competition is a simple account
of the results, an alternative account of the Lemaire and
Fayol (1995) data is that subjects were more likely to
check for parity discrepancies with more difficult prob-
lems. The result, that preference for a given strategy can
shift in an experiment, has been found in other domains,
such as story verification (Reder, 1987), problem solving
(Lovett & Anderson, 1996), and air traffic control (Reder
& Schunn, in press).

There are several goals in the present paper. In addi-
tion to determining whether strategy selection is affected
by features of the problem, we want to determine whether
strategy use will be biased by the likelihood of success
with a particular strategy—that is, whether the propor-
tion of trials on which a strategy such as parity checking
works influences the tendency to use it.

Reder (1987) provided an early demonstration that
strategy use is influenced by how often that strategy can
be executed successfully. In the experiment of Reder
(1987), subjects judged the plausibility of statements
about each story they read. The probability that a to-be-
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Jjudged statement had been explicitly presented in the story
varied: 80% for one group, and 20% for the other group.
The latency and accuracy patterns indicated that the per-
centage of statements that had been presented earlier in-
fluenced the tendency to use direct retrieval rather than
plausible reasoning to verify the statements (see Logan
& Zbrodoff, 1979, for similar effects in arithmetic).

Overview of the Experiments

The goal of Experiments 1, 2, and 3 was to extend our
understanding of how people select among strategies in
arithmetic verification. We also wanted to extend work
on parity effects (Experiments 1 and 2) and on five ef-
fects (Experiment 3) by determining whether the magni-
tude of these effects is affected by several variables—
namely, (1) the proportion of false problems that violated
the parity (Experiments 1 and 2) or five rule (Experi-
ment 3); (2) the complexity of arithmetic problems; and
(3) the number of even operands in arithmetic problems.
As was suggested by Krueger (1986; Krueger & Hall-
ford, 1984), parity and five-rule effects are interesting
because they illustrate that people use semantic features
of arithmetic problems to select strategies that will im-
prove their performance. Therefore, the present study
was expected to reveal more about how people use se-
mantic information in arithmetic problems as a useful cue
for improving their performance in verification tasks.

The same logic was used in all three experiments. Sub-
Jjects had to verify a series of complex arithmetic problems
(e.g.,8 X 4=132,9 X 27 = 243). In all the experiments,
subjects had to verify true (e.g., 8 X 6 = 48) and false
(e.g.,8 X 6 = 51) problems. We manipulated the propor-
tion of problems violating to problems respecting the par-
ity (Experiment 2) or the five (Experiment 3) rule, so that
one group of subjects had 80% of the false problems vi-
olating the rule and 20% respecting the rule, whereas an-
other group received the opposite proportion. In addition
to that ratio variable, we varied the number of even oper-
ands in a problem. The magnitude of parity and five ef-
fects was expected to vary with these variables.

We were also interested in how quickly people shift
from one strategy to another as the proportion of problem
types changes. That is, how quickly does strategy selec-
tion shift to reflect the base rate? Does it grow slowly
over the course of the experiment, or are subjects sensi-
tive during the first few trials?

EXPERIMENT 1

In the present experiment, we tested parity effects
with relatively complex arithmetic problems (i.e., single-
X double-digit problems). Parity effects have only been
reported with simple problems. However, inasmuch as
complex problems have simple problems embedded within
them, parity effects were expected. Observing parity ef-
fects with complex problems was of interest to us, as it
would further support the hypothesis that subjects use
self-terminating processes in complex arithmetic (Geary,

Frensch, & Wiley, 1993; Geary, Widaman, & Little, 1986;
Widaman, Geary, Cormier, & Little, 1989). That is, on
some problems, subjects would state their response be-
fore processing the 10s-column information and com-
pleting the whole verification process. Subjects were asked
to verify true and false problems. Half of the false prob-
lems were parity-mismatch problems and violated the
parity rule (e.g., 49 X 8 = 389); the other problems were
parity-match problems and respected the parity rule (e.g.,
49 X 8 = 394). Subjects were expected to be faster with
mismatch problems than with match problems.

The second goal of Experiment 1 was to determine
whether the advantage yielded by the alternative parity-
checking strategy is the same during all parts of the ex-
periment. In particular, we wanted to know whether
parity effects are larger during the second half of the ex-
periment than during the first half. Either outcome would
be of interest, as far as the use of alternative strategies is
concerned. Equal benefits in both parts of experiments
would suggest that the advantage of using a fast alterna-
tive strategy does not build up with its use in the course
of the experiment. Alternatively, observing larger bene-
fits in the second part of the experiment would show that
the advantage yielded by the use of an alternative fast
strategy grows with the use of that strategy, either because
the process of checking parity becomes faster with more
practice or because parity strategy becomes more favored.

A final goal of Experiment 1 was to explore the impact
of the number of even operands in the problems on the
magnitude of the parity effects. To test the impact of the
number of even operands, one third of the problems in-
volved two even operands (e.g., 6 X 18), one third in-
volved one even operand (e.g., 9 X 28), and the final third
involved no even operands (e.g., 7 X 19). On the basis of
Krueger’s (1986) results, the parity effects were expected
to be larger with problems involving two even operands
than with problems involving only one even operand and
larger with problems involving one even operand than with
problems involving no even operands. Such a pattern
would confirm that the number of even operands is an
additional cue for making use of parity information.

Method

Subjects. Thirty undergraduates (20 females and 10 males) at
Carnegie Mellon University participated in the experiment in par-
tial fulfillment of a course requirement. The mean age of the stu-
dents was 20 years, 3 months (the range was 17.9-29.5).

Stimuli. The stimuli were multiplication problems presented in
standard form (i.e., a X b = c¢), with the operands a and b being ei-
ther single-digit or double-digit numbers. The basic set of equations
consisted of 36 pairs of multipliers (see Appendix A for the com-
plete list of false problems). Twelve individual problems (6 pairs
with the larger operand on the right position and 6 pairs with the
larger operand on the left position) were selected for each of the three

‘types of multiplicands: two even, one even, or zero even (two odd)

multipliers.

Three types of multiplication problems were presented: true, false
parity-matched, and false parity-mismatched problems. True and
false problems had the same operands and differed only in the value
given as the proposed product. This value was the correct product
of the two operands for true problems. Two types of false problems



were selected. The first type, called parity-match problems involved
a false answer with an odd—even status that was the same as that of
the correct answer (e.g., 9 X 7 = 61). The second type, called parity-
mismatch problems, involved a false answer with an odd—even sta-
tus that was different from that of the correct answer (e.g.,9 X 7 =
62). For these false problems, incorrect answers were off by £1, £2,
or £3 from the correct answer,

The false products were constructed with several constraints that
were intended to avoid a number of potential confounds. First, we
controlled the size of the difference between the correct and the pro-
posed answers (i.e., the split). A positive split was counterbalanced
with a corresponding negative split, so that the sum of positive and
negative splits equaled 0. For each of the number in the even oper-
and condition, there were 12 individual problems: three each from
splits of £3 and 1 for mismatch problems, and 6 each from splits
of £2 for match problems.

Second, the side of the larger operand was controlled; half of the
problems had their larger operand in the right, half in the left posi-
tion. For problems with only one even multiplicand, half of the time
the even multiplicand was on the right of the operator, and half of
the time on the left. Finally, to avoid the use of other fast multipli-
cation rules (see, e.g., Miller et al., 1984), we did notuse 0, 1, or 5
as single-digit operands. v

Procedure. The problems were presented in a 48-point Palatino
font in the center of a computer screen. At the beginning of each
trial the word READY was displayed in the center of the screen for
750 msec. The equations were then displayed horizontally in the
center of the screen in the form a X b = ¢. The symbols and num-
bers were separated by spaces equal to the width of one character.
The equation remained on the screen until the subject responded. A
clock began timing at the onset of the equation and stopped when
the subject pressed one of two buttons, corresponding to true or
false. The software (PsyScope; Cohen, MacWhinney, Flatt, & Pro-
vost, 1993) collected data with 1-msec accuracy. The subjects were
instructed to use their left and right index fingers to respond, and
the assignment of response to buttons was counterbalanced across
subjects. The subjects were encouraged to respond as quickly as
possible without making mistakes. No particular strategies were
mentioned. The set of 144 problems was divided into two blocks of
72 problems each, with an equal number of true and false problems
and of problems with one even, two even, and two odd operands
within each block. The order of each block was counterbalanced
across subjects, and problems within each block were randomized
separately for each subject. The subjects were given a brief rest pe-
riod between blocks.

Results

One student was excluded from the analyses reported
here because he made 62% errors.

Speed and accuracy for true problems. The subjects’
mean! correct response times (RTs) and percent errors
for true problems were analyzed in a 2 (block: first and
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second halves of the experiment) X 3 (number of even
operands: one even, two even, two odd problems) analy-
sis of variance (ANOVA), with repeated measures on
each factor. The data are presented in Table 1. In the three
experiments reported here, unless otherwise noted, dif-
ferences are significant at an alpha level of p < .05 or
greater. There was no significant effect in latency or er-
rors for true problems.

Speed and accuracy for false problems. The sub-
jects’ mean correct RTs for correctly rejected problems
and percent errors were analyzed in a 2 (block: first and
second half of the experiment) X 3 (number of even oper-
ands: one even, two even, and two odd operands) X 2
(parity: match and mismatch problems) ANOVA, with re-
peated measures on each factor.

Parity effects were significant for both latencies and ac-
curacy (see Table 1): Match problems were rejected more
slowly than mismatch problems [2,677 vs. 2,449 msec;
F(1,28) = 14.84] and less accurately [F(1,28) = 9.53].
Interestingly, the block X parity interaction was signifi-
cant [F(1,28) = 10.67], for latencies. Planned compar-
isons showed that the 37-msec parity effect was not sig-
nificant in the first half of the experiment (¥ < 1) but that
the 419-msec effect was significant in the second half of
the experiment [F(1,28) = 13.17]. As can be seen from
Table 1, the larger parity effect in the second half of the
experiment stems from increased latencies for match prob-
lems and decreased latencies for mismatch problems.
The block X parity interaction was not significant for er-
rors (F < 1), showing significant parity effects of equal
size in the first and second halves of the experiment. Thus,
people benefited from the parity information early in the
experiment in committing fewer errors only, and later in
the experiment in both accuracy and improved latencies,
suggesting that their use of parity as a preferred strategy
or that the speed advantage of parity checking grew over
the course of the experiment.

There was also a significant number of even operands
X parity effects for both latencies [£(2,56) = 10.02] and
errors [F(2,56) = 9.16]. Figure 1 displays the basic par-
ity effects (match minus mismatch) as a function of the
number of even operands for both dependent measures.
Planned comparisons revealed that the 624-msec parity
effects on problems with two even operands were signif-
icant [F(1,28) = 13.17], as were the 188-msec effects on
problems with one even operand {F(1,28) = 5.05]. In con-

Table 1
Mean Reaction Times (in Milliseconds) and Percent Errors for False Problem Verification in Experiment 1

Two Even Operands

One Even Operands

Zero Even Operands

Bl B2 M BI B2 M Bl B2 M
Problems RT PE RT PE RT PE RT PE RT PE RT PE RT PE RT PE RT PE
True
3,573 3.8 3,525 43 3,549 4.1 3,641 35 3,596 54 3,619 45 3,770 4.6 3,755 7.2 3,763 59
False
Match 2,724 104 3,009 139 2,867 122 2588 58 2,742 52 2665 55 2364 59 2635 46 2499 53
Mismatch 2,282 1.8 2,203 12 2243 1.5 2428 12 2,527 52 2478 32 2857 4.1 2397 35 2,627 3.8
Parity Effects 442 86 806 127 624 10.7 160 4.6 215 0.0 187 23 -—-493 1.8 238 1.1 —128 1.5

Note—BI, Block 1, first half of the experiment; B2, Block 2, second half of the experiment.
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Figure 1. Mean parity effects (false match parity — false mismatch parity) in milliseconds and percent errors as a func-
tion of the number of even operands in Experiment 1. The scale on the left ordinate refers to the latency effects (shown
in the line graph), and the scale on the right ordinate refers to the parity effects in errors (shown in the bar graph).

trast, a reverse but not significant effect was observed
with two odd operands. Planned comparisons on errors
revealed that parity effects were significant only with
two even operands [F(1,28) = 23.05]. No other effects
proved to be significant.

Discussion

Experiment ] revealed that parity effects (1) emerged
with complex arithmetic problems, (2) were larger in the
second half than in the first half of the experiment, and
(3) varied with the number of even operands in the prob-
lems (with this effect being the largest for problems with
the two-even operands). Although parity effects had not
previously been investigated with complex problems, the
results should be expected because the complex prob-
lems are verified by decomposing into simple problems.
That is, parity effects have been found for simple (single-
digit) problems (see, e.g., Krueger, 1986; Lemaire & Fayol,
1995). The present data are consistent with previously
reported data suggesting that people solve those prob-
lems by means of column-wise retrieval processes com-
bined with a carry operation when needed (e.g., Geary &
Burlingham-Dubree, 1989; Geary et al., 1986). In the
present experiment, the significant true—false difference
in latencies [F(1,28) = 53.21] suggests that the subjects
did not always calculate the correct answer before mak-
ing a false decision, even when the parity rule would not
work. Instead, sometimes they rejected inequalities by
multiplying the unit digits and noticing a mismatch there.

It is noteworthy that the parity effects were larger in the
second half of the experiment than in the first and that
they were larger with a greater number of even operands.
The greater parity effects in the second half of the exper-
iment (Block 2) suggest that the strategy was more avail-
able with practice. This increase in strategy use also may
be due to the growing realization that many problems
can use that strategy successfully.

The fact that the largest parity effects were observed
with problems with two even multiplicands could have
several explanations. One is that the parity rule for prob-
lems with two-even operands holds for both addition and
multiplication problems. It may also come from sub-
Jjects’ knowing that the multiplication of two even num-
bers always produce an even product better than they
know other parity-related knowledge (e.g., the product
of two-odd numbers is always odd). It may be that not-
ing evenness as a feature that will invoke the parity rule
is twice as likely when there are two even operands. That
the parity effect was smallest with zero even operands is
consistent with this view.

EXPERIMENT 2

- Experiment 1 demonstrated that people use parity in-
formation to verify single- X double-digit problems and
that the size of parity effects changed with the number of
even operands. In Experiment 2, we asked whether par-
ity effects change with the match/mismatch problem



ratio and whether both the ratio and the number of even
operands affect strategy selection in arithmetic. That is,
will subjects both be sensitive to the local features of the
problem (number of even operands) and also be influ-
enced by the base rate of frequency of problems where
the parity rule is viable?

One group of subjects was presented with false prob-
lems in which only 20% violated the parity rule and 80%
respected parity; for the other group, this ratio was re-
versed, so that 80% of the false problems mismatched on
parity (violated parity) and 20% matched or respected
parity. Larger parity effects were expected in the condi-
tion in which the parity rule could be applied more often.

The second goal was to replicate the impact of the num-
ber of even operands on the magnitude of parity effects
and to determine whether these two factors would have
separable effects. As in Experiment 1, one third of the
problems involved two even operands, one third involved
one even operand, and the remainder had no even oper-
ands. The third goal of Experiment 2 was to replicate (and
confirm) the result that parity effects grow over the course
of an experiment. That is, if we replicate the sensitivity
to base rates found by Reder (1987), Lovett and Ander-
son (1996), and Reder and Schunn (in press), we also
want to see how quickly people adjust their strategy pref-
erence to reflect match/mismatch ratios. Parity effects of
equal sizes in both halves of the experiment for each of
the ratio conditions would suggest that people are imme-
diately sensitive to these base rates and can fine-tune their
strategy use in complex arithmetic problems.

Method

Subjects. Thirty-two Carnegie Mellon University undergradu-
ates (19 females and 13 males) participated in partial fulfillment of
a course requirement. The mean age of the students was 22 years,
I month (the range was 18.9-27.2).

Stimuli. The stimuli were multiplication problems presented in
a standard form (i.c., @ X b = ¢), with the operands g and b being
either single-digit or double-digit numbers. The basic set of equations
comprised 240 single- X double-digit problems (see Appendix B).

As in the previous experiment, half the problems were true, and
half were false. False problems were made of the same operands as
true problems but did not propose the correct product as the answer.
Instead they were off by +1, 2, +3, or £4 from the correct answer.
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These proposed answers could be either parity mismatch (i.e., the par-
ity of the proposed and the correct answers differing) or parity match.

The subjects were presented with 80% parity-mismatch prob-
lems in the high-mismatch condition and with 20% parity-mismatch
problems in the low-mismatch condition. In both the high- and the
low-mismatch conditions, one third of the problems had both mul-
tipliers operands being even (e.g., 4 X 86), one third of the problems
had one even multiplier (e.g., 6 X 97), and the final third of the
problems had no even multipliers (e.g., 3 X 89).

As in Experiment 1, a number of potential confounds were con-
trolled: (1) the side of the double-digit operand; (2) for the one-even
operand problems, the side of the even operand; and (3) both the
split and the size of the proposed answers. For both the high- and
the low-mismatch conditions, the sets of 120 true problems and 120
false problems were presented in two blocks of 120 problems each
(60 true and 60 false problems), each block respecting the propor-
tions of high- and low-mismatch problems and of the number of
even operand problems. Thus, in each block, there were 120 true and
120 false problems, a third of which were problems with two even
operands, a third problems with one even operand, and a third prob-
lems with two odd (no even) operands. In the high-mismatch con-
ditions, 80% of the false problems were parity-mismatch problems,
and 20% were parity-match problems. In the low-mismatch condition,
80% (n = 96) of the false problems were parity-match problems,
and 20% (n = 24) were parity-mismatch problems.

Procedure. The procedure was similar to that of Experiment 1.
The order of each block was counterbalanced across subjects, and
problems within each block were randomly presented for each sub-
Ject. The subjects were randomly assigned to one of the two ratio
conditions and were given a short rest period between blocks. Be-
fore the experimental trials, subjects were given a block of 20 prac-
tice (similar but not identical to experimental) problems to famil-
iarize them with the apparatus and procedure.

Results

Speed and accuracy for true problems. The sub-
Jjects’ mean correct RTs and percent errors for true prob-
lems were analyzed in a 2 (ratio: high and low mismatch)
X 2 (block: first and second halves of the experiment) X
3 (number of even operands: problems with two even,
one even, and zero even [two-odd] operands) ANOVA,
with repeated measures on the last two factors. The data
are presented in Table 2. There was a significant block ef-
fect [F(1,30) = 4.81], showing faster latencies in the
second half of the experiment (3,444 msec) than in the
first (3,711 msec). The only other significant effect was
the effect of the number of even operands [F(2,60) =

Table 2
Mean Reaction Times (in Milliseconds) and Percent Errors
for True Problem Verification in Experiment 2

Condition
Low-Mismatch High-Mismatch
Bl B2 M Bl B2 M
Operands RT PE RT PE RT PE RT PE RT PE RT PE
Two even 3669 50 3445 51 3,557 51 3979 34. 3,482 22 3,731 28
One even 3,825 28 3428 44 3627 36 3,712 44 3,642 18 3,677 3.1
Zeroeven 3,532 38 3316 39 3424 39 3548 42 3351 29 3450 3.6
M 3675 39 3396 45 3,536 32 3746 40 3492 23 3619 32

Note—BI, Block 1, first half of the experiment; B2, Block 2, second half of the experiment,
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3.14], showing a slight tendency for problems with two
odd operands (3,437 msec) to be solved faster than prob-
lems with one or two even operands (3,648 msec). No
other effects were significant. Error rates were low (3.7%)
and yielded no significant effects. Importantly, there were
no differences in verifying true problems between sub-
jects who received many mismatch problems and subjects
who received many match problems, showing that the per-
formance of the two groups of subjects was unaffected for
true problems on the basis of this manipulation and that
these two groups did not differ in basic arithmetic skills.

Speed and accuracy for false problems. Because the
goal of Experiment 2 was to assess combined influences
of the number of even operands and ratio manipulations
on parity cffects in the first and second half of the exper-
iments, the subjects’ mean latencies for false problems
correctly rejected and percent errors were analyzed, us-
ing a 2 (ratio: high and low mismatch) X 2 (block: first
and second halves of the experiment) X 3 (number of
even operands: problems with one even, two even, and
zero even operands) X 2 (parity: match and mismatch)
ANOVA, with repeated measures on the last three fac-
tors. The data are presented in Table 3.

There were no main effects or interactions on percent
errors, perhaps because of the high level of accuracy.
Consequently, all the reported effects are on correct la-
tencies. The main effect of parity was marginally signif-
icant: Match problems overall tended to be rejected more
slowly than mismatch problems [F(1,30) = 3.44]. Inter-
estingly, the ratio X parity interaction was significant
[£(1,30) = 7.34], showing larger parity effects in the
high-mismatch condition (352 msec) than in the low-
mismatch-condition (183 msec). Moreover, the block X
parity interaction was significant [F(1,30) = 4.25].
Planned comparisons showed that the 135-msec parity
effect was not significant in the first half of the experiment
(F < 1) but that the 399-msec effect was significant in the
second half of the experiment [F(1,30) = 6.44]. As can be
seen from Table 3, the larger parity effect in the second
half of the experiment stems from larger decrease in laten-
cies for mismatch than for match problems from the first
to the second part of the experiment. The parity factor
also interacted with number of even operands [F (2,60) =

5.97], showing larger parity effects for the problems with
two even operands (503 msec) than for those with one even
operand (197 msec) or for those with two odd operands
(102 msec). Figure 2 displays the parity effects as a func-
tion of proportion of parity violations and number of
even operands.

There were additional significant effects not involv-
ing the parity factor. Just as for true problems, the sub-
Jects were overall 504 msec faster in the second part than
in the first part of the experiment [F(1,30) = 14.41]. The
effect of number of even operands was reliable [F (2,60) =
4.48], showing faster latencies for problems with two
even operands (2,294 msec) than for problems with one
even operand (2,569 msec) or for problems with zero even
operands (2,652 msec). The interaction between these
factors [F(2,60) = 4.35] showed that the advantage of
the second half over the first half of the experiment was
smallest for problems with two even operands. However,
this pattern held true only in the high-mismatch condition
(differences of 453 vs. 1,191 msec between the second
and the first half of the experiment for problems with one
or two even operands and for problems with two odd oper-
ands, respectively) and not for the low-mismatch condi-
tion (357 vs. 214 msec), as was shown by a significant
three-way block X ratio X number of even operands
interaction [F(2,60) = 3.22]. No other effects proved to
be significant.

Discussion

Two sets of important results came out of Experiment 2.
First, a number of effects found in Experiment 1 were
replicated in Experiment 2. Parity effects were found, with
parity-match problems being rejected more slowly than
parity-mismatch problems. Moreover, the finding that
the magnitude of parity effects changes with intrinsic vari-
ables, such as the number of even operands (larger parity
effects for problems with two even operands), was also
replicated, providing converging support that the number
of even operands affects the tendency to use the parity
rule. Finally, parity effects were larger in the second half
of the experiment than in the first half, confirming that
the benefits of using the parity information grew with its
use during the course of the experiment. The increase in

Table 3
Mean Reaction Times (in Milliseconds) and Percent Errors
for False Problem Verification in Experiment 2

Two Even Operands One Even Operand Zero Even Operands
Bl B2 Bl B2 Bl B2

Condition RT PE RT PE RT PE RT PE RT PE RT PE
Low mismatch

Match 2762 55 2,529 4.1 2,731 39 2449 178 2422 3.1 2317 39

Mismatch 2309 1.6 2128 00 2,80 31 2098 3.9 2536 1.6 2212 28

Parity effect 453 39 401 4.1 -9 0.8 351 39 -114 15 105 1.1
High mismatch

Match 2376 24 2517 24 3111 20 2375 47 3544 36 2,528 24

Mismatch 1,957 1.6 L,777 1.6 2993 1.6 1957 13 3511 16 2,146 1.6

Parity effect 419 08 740 0.8 118 04 418 34 33 20 382 0.8

Note—B1, Block 1, first half of the experiment; B2, Block 2, second half of the experiment.
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vFigure 2. Mean parity effects (false match parity — false mismatch parity) in
milliseconds as a function of the number of even operands and the proportion of
problems that violated the parity rule in Experiment 2. )

the size of the effect could be due to strengthening the
parity rule with practice, making it faster to apply, or
making the relevance of checking for parity more salient
with increased exposure to so many parity violations.
This was especially the case for problems with one even
and zero even (two odd) operands; the parity rule was
salient from the beginning for problems with two even
operands.

The second set of important findings here concerns
the impact of the ratio variable and combined effects of
the different manipulations. Parity effects were larger in
the high-mismatch condition than in the low-mismatch
condition. The effect of this base-rate ratio variable can
be understood as people’s being more likely to use the
parity information (or allocate more resources to checking
parity) as the proportion of mismatch problems increases.
Note that such an effect of ratio has already been reported
in the arithmetic literature (Logan & Zbrodoff, 1979).
These authors observed that, when 20% of the false stim-
uli were confusable (e.g., 3 + 4 = 12), the confusion ef-
fect was larger than when 80% of the false stimuli were
confusable. Although their result does not speak to a bias
in strategy use, it is consistent with the present result on
parity and with the idea that people’s strategy selection
is influenced by the task environment and by the proper-
ties of stimuli.

Most interesting in Experiment 2 was the effect of com-
bining several variables that had been shown to have sep-
arate effects. Specifically, would the impact of the num-
ber of even operands on the parity effect vary with the
match/mismatch ratio? The results are very clear: The
largest parity effects were in the high-mismatch condition
with problems with two even operands. The effect of
more features (i.e., more even operands) priming the par-
ity rule was enhanced in the high-mismatch condition in

the second half of the experiment. This ratio X number
of even operands interaction for problems with two even
operands suggests that subjects are sensitive to all the
available cues and that each one potentially increases the
likelihood that the subject will use parity information
and quickly reject false arithmetic problems. Moreover,
this tendency increases over time with greater exposure
to the ratio bias, suggesting that people are influenced by
base rates as well.

EXPERIMENT 3

Experiments 1 and 2 showed that people adapted their
tendency to use a given strategy in response to charac-
teristics of the overall problem set (base rates of types of
false problems) and features of the specific problem
(number of even operands). In Experiment 3, we wanted
to check the generality of these conclusions. Specifically,
we varied the proportion of false problems that violated
another mathematical rule—namely, the five rule (i.e.,
N X S = product with a unit digit equal to 0 or 5). If our
conclusions generalize, people should be faster and more
accurate when the five rule is violated. And in particu-
lar, this effect would be larger when there were more
problems that could be rejected by invoking this rule.

As mentioned at the outsct of this paper, the use of the
five rule has received little attention by arithmetic re-
searchers. The only empirical result in the literature con-
cerning the five rule is that single-digit multiplication
problems involving 5 as one of the operands are easier to
solve than other problems (e.g., Campbell, 1994; Camp-
bell & Graham, 1985; LeFevre, Bisanz, Kaley, Buffone,
& Sadesky, 1996). We do not know whether this holds
when solving one- X two-digit unfamiliar problems, nor
whether subjects invoke the five rule when they reject
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inequalities that violate the rule. In sum, Experiment 3
was aimed at documenting (1) whether people invoke the
five rule to facilitate validation (or rejection) of equa-
tions (inequalities) and (2) whether the tendency to in-
voke this rule is affected by the proportion of trials on
which it applies.

In Experiment 3, the subjects had to verify a series of
true and false one- X two-digit arithmetic problems.
Half of the problems were five problems (e.g., 5 X 18),
and the other half nonfive problems (e.g., 6 X 18). Some
of the false five problems violated the rule (e.g., 5 X
18 = 93), and some respected the rule (e.g., 5 X 18 =
95). The types of problems are referred to here as mis-
match and match, respectively. Better performance with
mismatch problems than with match problems would
confirm people’s use of the five rule to reject false five
problems (an effect referred to here as the five-rule effect).

We manipulated the proportion of match and mismatch
problems. However, because the effect of five-rule vio-
lation had never been tested before, we first tested all the
subjects with an equal number of match and mismatch
problems (i.e., equal-mismatch condition). After a block
of equal proportions, half of the subjects were tested
with 75% of the false five problems being mismatch prob-
lems and 25% match problems (i.e., high-mismatch con-
dition). The other half of the subjects were then tested
with 75% match and 25% mismatch problems (i.e., low-
mismatch condition). One advantage of this design is
that it enables us (1) to make within-subjects comparisons
of changes in the size of five effects when subjects are
tested in equal versus unequal ratio conditions, and (2) to
check that five effects in the equal-ratio condition were
of the same size for both groups, confirming compara-
ble skills in the use of the five rule. Finally, we varied the
odd/even status of the nonfive operand in five problems,
so that half of the five problems had an even nonfive
multiplicand (e.g., 5 X 18) and the other half an odd
nonfive multiplicand (e.g., 5 X 17).

Method

Subjects. Twenty introductory psychology students (10 females
and 10 males) at the University of Provence at Aix-en-Provence,
France, volunteered to participate in Experiment 3. The mean age
of the students was 24 years, 5 months (the range was 21.7-29.9).

Stimuli. The stimuli were multiplication problems presented in
a standard form (i.e., @ X b = ¢), with the operands a and & being
either single-digit or double-digit problems. There were two types
of problems: Nonfive and five problems. Nonfive problems were
used for purposes of comparison with time to verify five problems
and to assess subjects’ arithmetic skills. Five problems always used
one number equal to five, the other being a two-digit number. Non-
five problems consisted of one single-digit number and one double-
digit number.

Each subject saw the complete set of 512 problems, half of which
were true and half false problems. True and false problems had the
same operands and differed only in whether the value given as the
product was correct.

For the five false problems, those that matched (respected the
rule) had incorrect answers that were off by +5 from the correct an-
swer (e.g., 5 X 14 = 75); mismatch problems had incorrect answers
that were off by +7 or +3 from the correct answer (e.g,5X18 =

93). For the nonfive problems, incorrect answers were off by +7 or
+3 from the correct answer in order to have splits of equal magni-
tude across five and nonfive problems and to have both five and
nonfive false problems violating the parity of the correct answer.
All false problems violated parity, regardless of whether or not they
violated the five rule. Nonfive problems had four different combi-
nations of operands: both even, both odd, even on the right X odd
on the left, or the reverse. For each of these, there were two instan-
tiations: one with a larger operand in the right position, and one with
alarger operand in the left position. As in the previous experiments,
across conditions, we counterbalanced or controlled the side of the
double-digit operand, the size of the correct answer, and the size
and direction of splits (see Appendix C).

The subjects in the high-mismatch condition were presented with
75% five-mismatch problems after participating in two blocks of
equal proportions of mismatch and match. In the low-mismatch
condition, the equal ratio blocks were followed by a block in which
only 25% of the false five problems mismatched. In both high- and
low-mismatch conditions, half the problems had an even nonfive
operand (e.g., 5 X 14), and half the problems had an odd nonfive
operand (5 X 13), defining two types of five problems: even and
odd problems.

For each ratio condition, the set of 256 problems was divided into
two blocks of 128 problems each, with there being an equal num-
ber of each type of problems (e.g., five vs. nonfive problems). For
the unequal ratio conditions (i.e., low- and high-mismatch condi-
tion), each block respected the proportions of high- and low-
mismatch problems.

Procedure. The procedure was similar to that of Experiments 1
and 2. Within each block, problems were randomly presented. The
equal-ratio condition was always presented first, followed by one of
the two unequal-ratio conditions, to which the subjects were ran-
domly assigned. The subjects were given a short rest period between
blocks. Before the experiment began in earnest, the subjects were
given a block of 20 practice (similar but not identical to experimen-
tal) problems to familiarize them with the apparatus and procedure.

Results

For purposes of comparison and clarity, we report anal-
yses on five versus nonfive problems and on false five
problems separately.

Speed and accuracy for five versus nonfive prob-
lems. Table 4 compares the subjects assigned to the low-
versus the high-mismatch ratio conditions on the blocks
of trials on which the proportion of five rule violations
was 50% (i.e., first and second blocks of the first half of
the experiment) to ensure that our random assignment
did not produce groups of individuals with different
arithmetic skills. Table 4 presents mean correct RTs and
percent errors as a function of future assignment to treat-
ment condition, first versus second block of the equal-
ratio trials (i.e., first half of the experiment), true versus
false problems, and whether the problems involved 5 as
an operand.

There was a significant effect of block [F(1,18) =
26.36], showing faster latencies in the second block
(3,350 msec) than in the first block (3,908 msec). This
block variable interacted with the response variable
[F(1,18) = 16.59], showing a larger difference between
the first and the second block for false problems (721 msec)
than for true problems (393 msec). Moreover, true prob-
lems were verified more slowly than false problems
(4,076 vs. 3,182 msec; F(1,18) = 83.99]. This was pre-
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Table 4
Mean Reaction Time (in Milliseconds) and Percent Errors for True and False Problems
Under the Equal Ratio Condition in Experiment 3

Group to be Assigned to
the Low-Mismatch Condition

Group to be Assigned to
the High-Mismatch Condition

True False M True False M
Block RT PE RT PE RT PE RT PE RI PE RT PE
First
Nonfive problems 4,795 10.0 4,518 11.9 4,657 109 4,754 119 4,921 178 42838 149
Five problems 3,669 72 2422 49 3,046 6.1 3,874 7.5 2,307 4.3 3,091 59
M 4232 8.6 3470 84 3,851 85 4314 97 3614 11.1 3964 104
Second
Nonfive problems 4,475 7.3 3,412 147 3944 11.0 4501 53 3,524 14.8 4,013 10.1
Five problems 3,112 2.8 2,237 53 2,675 4.1 3428 6.6 2,109 3.8 2769 5.2
M 3,794 5.1 2,825 100 3,309 7.6 395 59 2817 93 3391 7.6

sumably due to subjects’ calculating the correct answer
before comparing it with the proposed answer for true
problems only and quickly rejecting false problems be-
cause the unit digit of the proposed answer differed from
that of the correct answer. We also suspect that the sub-
jects learned to rely on the parity rule or the five rule more
by the second block, thereby increasing the difference
between true and false with practice.

Five problems were verified more quickly than non-
five problems (2,895 vs. 4,363 msec) [F(1,18) = 38.51),
and this effect was larger for false (2,269 vs. 4094 msec)
than for true problems [3,521 vs. 4,631 msec; F(1,18) =
8.02]. Tukey HSD tests showed that the difference be-
tween five and nonfive problems was significant for both
true and false problems. However, these differences might
stem from different sources, as is suggested by their un-
equal size (1,110 vs. 1,825 msec). For true problems, the
difference between five and nonfive problems comes from
the fact that five problems are easier to solve than nonfive
problems (Campbell & Graham, 1985). Note that five
problems are practiced more frequently than nonfive prob-
lems (Ashcraft & Christy, 1995). For false problems, the
difference between five and nonfive problems comes
from subjects’ using the five rule with five problems to
quickly reject false five problems, a cue that was not avail-
able with true problems. No other main or interaction la-
tency effects were significant.

The pattern of error data paralleled those of latencies.
There were significantly more errors in the first block
(9.5%) than in the second block (7.6%) during the equal-
ratio portion of the experiment [F(1,18) = 5.29]. Five
problems produced fewer errors than did nonfive prob-
lems [5.3% vs. 11.7%; F(1,18) = 23.61]. The response
X problem interaction was significant [F(1,18) = 5.85],
showing a significant true—false difference (6.2%) for
nonfive problems only (again tested with HSD Tukey
tests). No other main or interaction effects were significant.

In summary, analyses of speed and accuracy of five
and nonfive true and false problems showed that the ran-
dom assignment of subjects to ratio conditions did not
create groups with spuriously different arithmetic skills.
We also confirmed the expectation of better performance

on five problems over nonfive problems and better per-
formance on false problems than on true problems. These
results generalize the conclusions about the ease of five
problems to situations involving problems that have not
been previously studied.

Speed and accuracy for false five problems. The
goal of this second series of analyses was to determine
(1) whether people use the five rule to reject false five
problems, and (2) whether, for a given subject, the size
of the five effect is affected by the proportion of trials vi-
olating the five rule. Table 5 presents mean correct la-
tencies and percent errors for false problems. These data
were analyzed using 2 (group: high and low mismatch)
X 2 (treatment: equal and unequal mismatch) X 2
(block: first and second) X 2 (parity: even and odd non-
five operands) X 2 (five rule: match and mismatch prob-

Table 5
Mean Reaction Times (in Milliseconds) and Percent Errors
for False Problem Verification in Experiment 3

Equal Unequal
Even 0Odd Even 0Odd
Block RT PE RT PE RT PE RT PE
Low-Mismatch Condition
First
Match 2,524 98 2650 72 1,510 58 1,717 2%
Mismatch 2,246 1.8 2,266 1.1 1,663 0.0 1,803 2%
Fiveeffect 278 8.0 384 6.1 -—153 58 -86 00
Second
Match 2,352 93 2444 72 1,476 0.0 2068 1f
Mismatch 2,071 25 2079 23 1,685 0.0 1,756 1.¢f

Fiveeffect 281 68 365 49 -209 00 312 Or
High-Mismatch Condition

First
Match 2,561 49 2382 33 1,674 1.0 2,062 4=
Mismatch 2,272 5.3 2,011 38 1,460 0.0 1,400 3%
Fiveeffect 289 —-04 371 —-05 214 1.0 662 0~
Second
Match 2,359 43 2,171 3.7 1,660 2.7 2078 63
Mismatch 2,093 5.1 1,814 19 1,378 20 1,318 1x

Fiveeffect 266 —-08 357 1.8 282 07 760 41

Note—Equal, equal match/mismatch ratio condition; unequal, unequa
match/mismatch ratio condition; even, problems with an even nonfive
operand; odd, problems with an odd nonfive operand.
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lems) ANOVAs, with repeated measures on the last four
factors. To clarify, the high- and low-mismatch groups
were treated identically during the first half of the exper-
iment (the equal-mismatch condition.) Block refers to the
particular quarter of the experiment—that is, the first or
second block, when match and mismatch were of equal
proportions, or the first or second block of the last two
quarters, when the match and mismatch proportions were
unequal.

There was a main effect of five rule, such that match
problems were rejected more slowly than mismatch prob-
lems [2,106 vs. 1,832 msec; F(1,18) = 24.72]. As was
predicted, the ratio X five rule interaction was signifi-
cant [F(1,18) = 5.32]. Planned comparisons showed that
the 147-msec five-rule effect was not significant in the
low-mismatch condition (F < 1), but the 400-msec five-
rule effect was significant in the high-mismatch condi-
tion [F(1,18) = 6.62]. The size of the five-rule effect
varied with the parity of the nonfive operand [F(1,18) =
8.3], showing larger five-rule effects with odd problems
(391 msec) than with even problems (156 msec).

Importantly, there was also a significant three-way
interaction of ratio X treatment X five rule [F(1,18) =
6.53), showing that the difference between the size of
five-rule effects in the equal and the unequal mismatch
ratio went in opposite directions for the low- and the
high-mismatch conditions. Specifically, the five-rule ef-
fects increased in the high-mismatch condition (from

321 msec in the equal-ratio condition to 480 msec in the
high-mismatch condition) and disappeared in the low-
mismatch condition (from 327 msec in the equal-ratio
condition to —34 msec in the low-mismatch condition).
These increased five-rule effects in the high-mismatch
condition, together with decreased effects in the low-
mismatch condition, held true for both even and odd
problems. These effects are displayed in Figure 3.

There was a significant main effect and an interaction
not involving the five-rule factor. There was also a general
speedup in performance from the first half (2,268 msec)
of the experiment (when the proportion of five-rule vio-
lations equaled the nonviolations) to the second half
(1,669 msec) of the experiment [when the proportions
were unequal; F(1,18) = 30.16]. The speedup from
Block 1 of the equal proportions to Block 1 of the un-
equal was 703 msec and was significantly larger than the
496-msec speedup from Block 2 of the equal proportions
to Block 2 of the unequal proportions [F(1,18) = 6.20].
This probably reflects the power law nature of improve-
ment in all tasks—namely, nonlinear improvements with
practice (that is, faster speedups early, tapering to smaller
speedups).

Error rates, although low, showed similar patterns.
The main effect of the five rule was significant: Mismatch
problems overall were rejected more accurately than
match problems [2.2% vs. 4.6%; F(1,18) = 12.39]. The
ratio X treatment X five rule interaction was significant
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Figure 3. Trends in the size of five-rule effects [false match (i.e., product ends in 5
or 0) — false mismatch]. The equal-condition data are from the first half of Experi-
ment 3, where the proportions of match to mismatch were the same. The unequal-
condition data are from the second half of the experiment, where the proportion
shifted to favor either the high-mismatch condition or the low-mismatch condition for

the two groups.



[F(1,18) = 7.39]. This interaction showed increased five-
rule effects in the high-mismatch condition (from 0.0%
in the equal-ratio condition to 1.8% in the high-mismatch
condition) and decreased five-rule effects in the low-
mismatch condition (from 6.5% in the equal-ratio condi-
tion to 1.5% in the low-mismatch condition). This in-
creased five-rule effect in the high-mismatch condition
and decreased five-rule effect in the low-mismatch con-
dition held true for both even and odd problems, and for
both error rates and latencies.

There were additional main effects and interactions
not involving the five-rule variable. The subjects erred
more in the equal- than in the unequal-mismatch condition
[4.6% vs. 2.2%; F(1,18) = 4.44], presumably an effect
of practice with the task. This factor interacted with the
odd/even status of the nonfive operand [F(1,18) = 8.72],
showing higher error rates with the equal ratio than with
the unequal ratio for even problems (5.4% vs. 1.4%) but
not for odd problems (3.8% vs. 3.1%). Finally, there was
asignificant ratio X treatment X block three-way interac-
tion [F(1,18) = 4.91]. This interaction showed decreased
equal-unequal differences when going from the first to the
second block (2.1% vs. 0.6%) under the high-mismatch
condition and corresponding increased differences under
the low-mismatch condition (2.2% vs. 4.5%). No other
effects were significant.

Discussion

Experiment 3 provided results relevant to several is-
sues. One issue concerns people’s arithmetic skills at solv-
ing five versus nonfive complex arithmetic problems.
Analyses of speed and accuracy on five and nonfive true
and false problems showed that, like simple arithmetic
problems, one- X two-digit problems involving 5 as an
operand are easier than other one- X two-digit problems,
thereby generalizing the conclusions about the ease of
five problems to novel arithmetic problems—that is, prob-
lems people have not verified or studied preexperimen-
tally. The better performance with false than with true
problems probably is due to people terminating the ver-
ification process on false problems whose unit digit did
not match that of the correct answer. In the postexperi-
mental debriefing, all the subjects said they rejected false
problems without calculating the correct answer, instead
basing their response on the difference between the unit
digits of the correct and proposed answers.

Experiment 3 also provided results concerning people’s
use of the five rule to reject false arithmetic problems.
Analyses of latencies and error rates for false five prob-
lems showed that people used the five rule as a cue to
quickly determine whether complex arithmetic problems
were false. When the subjects rejected false problems
that were consistent with the five rule (i.e., match), they
were slower than when they rejected problems that vio-
lated (i.e., mismatch) the five rule. Note that five effects
came out in this experiment above and beyond the pos-
sibility for people to quickly reject false match and mis-
match problems on the basis of the parity violation: The
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odd/even status of the proposed answer of both match
and mismatch problems violated the parity of the correct
answer. Match and mismatch problems could have been
rejected on this basis alone, absorbing differences between
match and mismatch problems. The fact that the five-
rule effect was biggest with problems that had no even
operands suggests that the subjects were also invoking
the parity rule some of the time. Recall that in Experiments
1 and 2, the parity rule was used less often when there
were no even operands.

The most important issue of Experiment 3 was whether
the size of this match-mismatch difference would change
as a function of the shifting proportion of five-rule vio-
lations. As was predicted, there was a much larger five-
rule effect in the blocks comprising a high proportion of
problems violating the five rule, as compared with the
initial blocks with equal proportions. Conversely, the
five-rule effects diminished in the second half of the ex-
periment for those subjects whose proportion of prob-
lems respecting the five rule shifted so as to outnumber
problems violating the five rule.

GENERAL DISCUSSION

The goal of the present study was to understand how
people select among strategies in arithmetic problem
solving and to determine whether this selection process
is affected by characteristics of individual problems and
by more global characteristics of the whole set of prob-
lems. The three experiments reported here indicate that
people’s performance on arithmetic problem verification
benefited from the use of features of problems (e.g., par-
ity of numbers and the presence/absence of five as an
operand) and that these benefits varied with changes in
situational parameters. Documenting parity and five ef-
fects in product verification was important for two rea-
sons. First, it confirms that semantic features of prob-
lems are critical for people’s performance in arithmetic
tasks. Second, it demonstrates the use of multiple strate-
gies in complex arithmetic, a domain in which some the-
ories do not take strategic components into account.

In the experiments reported here, we found both par-
ity and five effects in a task that required people to ver-
ify arithmetic problems: Subjects showed performance
benefits when the parity and five rules were violated. In
Experiments 1 and 2, parity-mismatch problems facili-
tated single- X double-digit product verification, extend-
ing previously reported parity effects on single-digit prob-
lems (see, e.g., Dehaene, Bossini, & Giraux, 1993;
Hines, 1990; Krueger, 1986; Lemaire & Fayol, 1995) to
single- X double-digit problems. Experiment 3 dem-
onstrated comparable facilitation on problems that vio-
lated the five rule.

These data on parity and five effects add to previous
evidence that strategic dimensions should be considered
in theories of arithmetic processing. Strategic processing
has only recently started to constrain models of adults’
arithmetic. Previously, the dominant views of arithmetic
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processing, referred to as associative or retrieval theo-
ries, gave little weight to strategic components. Their main
focus was on the description of how the retrieval strategy
operates (see Ashcraft, 1992, 1995; McCloskey, Harley,
& Sokol, 1991; Zbrodoff, 1995, for recent discussions).

An important issue in this research concerns the appro-
priate explanation for the greater parity (or five-rule) ef-
fects with a greater proportion of problems that can be
verified using these rules. The explanation for this effect
that we have promoted is that there is a shift in prefer-
ence for applying the shortcut (parity or five-rule) strat-
egy that reflects an increase in problems that can suc-
cessfully use this shortcut strategy. On the other hand, an
alternative explanation is that the larger parity effect in
the condition with more problems that can be solved by
using parity is caused by a differential speedup in the
parity-checking procedure from more practice. That is,
the larger parity effects with more parity problems re-
sults from that strategy’s winning more often in a simple
“horse race competition” among competing verification
procedures as it gets faster from more practice.

There is a set of converging findings that we believe
constitutes a formidable argument in favor of strategy
sensitivity/shift in preference, rather than of a differen-
tial speedup among parallel, competing strategies. First
of all, the data from Experiment 3 show a decrease in the
size of the five-rule effect when the subjects switched
from equal proportion of five-rule violations and non-
violations to only 20% violations (low mismatch). (Con-
versely, the group that went up to 80% violations showed
a large increase in the five-rule effect.) It is difficult to
argue that the reduction in the size of the effect is due to
a loss of practice in the low-mismatch condition. Over
the course of the experiment, subjects are getting more
practice on the five rule, regardless of whether they go into
the low- or the high-mismatch condition. Although there
might be some slowdown or forgetting, given that there
are fewer problems using it in the second half for this
group, as compared with the practice they had prior to the
start of the experiment, this explanation is not tenable.

Second, there are results in different domains that show
comparable findings of sensitivity to switching base
rates (e.g., Lovett & Anderson, 1996; Reder, 1987; Reder
& Schunn, in press). In some of these cases, the idea of
a parallel race among competing strategies makes no
sense—that is, one can observe the strategy being exe-
cuted. Nonetheless, one can see shifts in strategy prefer-
ence that depend on shifts in the base rate of whichever
strategy has worked recently. Moreover, in some cases,
this preference for a strategy (for landing planes on long
or short runways, in the Reder and Schunn paper) is spe-
cific to types of planes and could not be due to differen-
tial practice with specific key strokes. Finally, Reder
(1987) not only found the same result of bigger effects
when 80% of the trials biased use of the strategy rather
than 20%, she also found the same bias result when sub-

Jects were simply advised right before a trial whether or
not a particular procedure was likely to work.

In conclusion, the present experiments clearly estab-
lish that people control the strategies they use in arith-
metic and that their strategy selection is affected by both
problems and task characteristics. One of the reasons that
can be invoked for such a fine-tuning of strategies to sit-
uational variations is that it yields better performance (see,
e.g., Lemaire & Siegler, 1995; Logan & Zbrodoff, 1979;
Siegler & Lemaire, 1997), a perspective that is consis-
tent with the general view of human cognition that peo-
ple are pervasively adaptive in the ways they choose to
accomplish cognitive tasks.
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measures showed the same patterns of results.
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APPENDIX A
Set of False Stimuli Used in Experiment 1
(True Stimuli Were Made of the Same Operands
but Presented With the Correct Product)

Operands Match Mismatch
Two Even Operands Problems
4X38 154 149
6X18 106 111
6%28 166 167
8x32 254 253
8X26 206 207
8x36 286 291
16 X8 126 127
24X6 146 147
24X8 194 193
38x4 154 ' 153
42X6 254 249
48x4 194 193
One Even Operand Problems
4X37 146 149
6X19 116 117
6X31 184 183
8x17 134 137
8x27 218 219
9%x28 254 251
19%6 116 113
23X8 182 187
24X7 166 169
39x4 158 153
43X6 256 257
49%8 394 389
Zero Even Operand Problems
3X39 119 114
7X19 131 134
7X23 163 162
7%29 201 202
7X43 303 304
9x27 241 246
17X9 151 152
21%9 191 186
31%3 91 94
43X7 303 304
49X3 149 144

49X7 341 342
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APPENDIX B

Set of False Stimuli Used in Experiment 2

(True Stimuli Were Made of the Same Operands

but Presented With the Correct Product)

1. Low-mismatch ratio problems
Two Even Operands Problems

Match Problems
2 X 28 = 58
2X34= 66
2X 78 =152
2X 86 =176
4X28=114

4 X 42 =166

4 X 68 = 268

4 X 86 = 348
Mismatch Problems
2X28=59

4 X 68 = 269

Match Problems

2X27 =252

2 X 33 =68
2X 79 =156
2X87=178
4X29=112
4 X 4] = 168
4 X 67 = 266

4 X 83 =334
Mismatch Problems
2 X27 =57

4 X 41 =161
Match Problems
3xX27=283

3 X 31 =97

3 X 47 =139

3 X 77 =229

3 X 89 =263
3 X91 =277
7%X19=135
7%X21 =143
Mismatch Problems
3X27 =84
3X31=92

6 X 24 = 146
6 X32=196
6 X 78 =472
6 X 94 = 560
8 X 18 =148
8 X 36 = 284
8 X 62 =492
8 X 86 = 686

6 X 78 = 467
8 X 62 =497

28 X2 =58
36 X2=176
76 X 2 = 148
84 X 2 =166
26 X 4 = 106
48 X 4 =194
62 X 4 =244
86 X 4 = 342

28 X2 =153
62 X 4 = 251

One Even Operand Problems

6X23=134
6 X 31 =184
6X79 =478
6 X 97 = 584
8 X 19 =156
8 X 37 =292
8 X 61 =486
8 X 87 = 698

6 X 79 =471
8 X 61 =491

29 X2=62
37xX2=176
77 X2=152
83 X 2 =162
27 X4 =104
49 X 4 =198
63 X 4 =256
81 X 4 =322

29 X2=157
49 X 4 =197

Zero Even Operand Problems

7 X33 =233
7 X 77 =537
7 X 99 =697
9 X 17 = 149
9 X 23 =203
9 X 39 =353
9 X 63 =563
9 X 83 =749

7 X33 =232
9 X 23 =208

2. High-mismatch ratio problems
Two Even Operands Problems

Match Problems

2X28=58
4 X 68 =270

Mismatch Problems

2 X 28 =59

2 X34 =067

2X78=153
2X8 =173
4 X 28 =109
4 X 42 =171
4 X 68 =273
4 X 86 = 343

6 X 78 =472
8 X 62 =492

6 X 24 = 147
6 X32=193
6 X 78 = 467
6 X 94 = 561
8§ X 18 = 147
8 X 36 = 287
8 X 62 =493
8 X 86 = 689

21 X3 =61
27X3=179
37 X3 =109
79 X 3 =241
87 X3 =263
13X7=287
29 X 7 =207
31 X7=221

21 X3 =66
29 X3 =286

28 X2 =158
62 X 4 =246

28 X2=159
36 X2=173
76 X 2 =149
84 X 2 =167
26 X 4 =107
48 X 4 = 189
62 X 4 =247
86 X 4 =343

28 X6=172
34 X 6 =202
74 X 6 = 446
92 X 6 = 548
16 X 8 =132
38 X 8 =306
64 X 8 =510
82 X 8 =654

74 X 6 =443
64 X 8 =513

27 X 6 = 166
31 X6=182
77 X 6 = 464
93 X 6 = 554
17X 8 =138
39 X 8 =308
63 X 8 = 502
83 X 8 = 668

77 X 6 = 461
63 X 8 = 505

73 X 7 =507
91 X 7 =639
17 X9 =157
21 X9=193
33 X9=293
61 X 9 = 547
91 X9 =817
93 X 9 = 839

31 X7 =214
33 X9=2%

74 X 6 = 448
64 X 8 = 508

28 X 6 =171
34 X 6 =201
74 X 6 = 443
92 X 6 = 553
16 X 8 = 131
38 X 8 =301
64 X 8 =513
82 X 8 = 657
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APPENDIX B (Continued)

Match Problems

2X27=50
4 X 4] =168

Mismatch Problems

2X27=57
2X33=63
2X79 =159
2X87=173
4X29=119
4 X 41 =161
4 X 67 =269
4 X 83 =331

Match Problems

3X27=83
3X31=091

Mismatch Problems

3X27=84
I3IX31=92
3 X 47 =144
3X77=232
3 X 89 =264
IX91 =274
7X19=132
7 X 21 =148

One Even Operand Problems

6 X 79 =476
8 X 61 = 486

6 X23=139
6 X 31 =189
6 X 79 =471
6 X 97 = 581
§X19=153
8 X 37 =293
8 X 61 = 487
8 X 87 =693

29X2=62
49 X 4 =192

29 X2 =57
37 X2=171
77 X2 =157
83 X2 =167
27 X4 =111
49 X 4 =197
63 X 4 =253
81 X4 =323

Zero Even Operand Problems

7X33=233
9X23 =203

7 X33 =234
7X77 =536
7 X 99 = 692
9X 17 =156
9 X123 =204
9 X 39 =352
9 X 63 =564
9 X 83 = 746

21 X 3 =67
29 X3 =283

21 X3
27 X3
37X3
79X 3
3
7
7
7

N oSS

87 X
13 X
29 X
31 X

NN O NN — 00N
—_ O AW =N S

77 X 6 = 464
63 X 8 = 502
27 X6 = 165
31 X6 =183
77 X 6 = 461
93 X 6 = 559
17 X 8 = 137
39 X 8 =311
63 X 8 =501
83 X 8 = 667
31 X7 =221
33 X9 =295
73 X7 =512
91 X 7 =636
17 X9 =156
21 X9 =186
33 X9 =294
61 X 9 = 548
91 X9 = 818
93 X 9 = 836
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APPENDIX C
Set of False Stimuli Used in Experiment 3
(True Stimuli Were Made of the Same Operands
but Presented With the Correct Product)

1. Nonfive problems

Even X Even Even X Odd 0Odd X Even 0dd X 0dd
4X18=179 4% 19 =83 3 X 18 =61 3X17=44
8 X 28 =227 8 X 27 =219 7 %28 =199 9X31=272
4 X 68 = 265 4 X 69 = 269 3 X 68 =197 3 X 67 =194
8 X 86 = 691 8 X 87 = 699 7 X 86 = 605 7 X 79 =556
6 X 84 =511 6 X 83 = 505 9 X 84 = 749 7 % 29 =200
6 X 92 = 549 6 X 93 = 555 8 X 92 =733 9 X 43 =390
8 X 32 =249 8 X 31 =241 7 X 34 =235 9 X 81 =736
6 X 42 = 249 6 X 43 = 255 9 X 32 =281 7 X 93 = 648
34X 6=197 34 X9 =299 21 X8=175 27 X3=178
48 X 6 =285 48 X 7 =333 49X 4 =193 47 X3 =144
72 X 8 =583 72 %X 3=223 71 X 6 =433 79 X9 =718
98 X 4 = 389 98 X 3 = 291 97 X 4 = 385 97 X 3 =288
82 X 4 =331 82 X 7=1577 71 X 4 =291 19 X 7 = 140
74 X 6 =437 74 X 9 = 659 83 X 8 = 667 33X 7=1238
22X 8=183 22 X7 =161 37 X 6 =215 87 X 3 =264
28 X 4 =115 28 X 3 =87 29X 4 =119 83 X 9 =740
2. Equal-mismatch ratio problems

Even
Match Problems
$5X14=175 18 X5=095 5X13=170 17 X5=90
5 X26=135 24 X 5 =125 5% 27 =140 23 X 5=120
5% 38 = 185 36 X5=175 5% 39 =190 37 X 5=180
5 X 42 =205 44 X 5 =215 5% 41 =200 43 X 5=210
5 X 64 = 325 66 X 5 =335 5 X 63 =320 67 X 5 =340
5 X 76 = 385 74 X 5 = 375 5% 77 =390 73 X 5 =370
5 X 88 =435 86 X 5 =425 5 X 89 = 440 87 X5 =430
5 X 92 =455 94 X 5 = 465 5 X 91 =450 93 X 5 =460
Mismatch Problems
5% 18=93  12X5=63 $X 11 =258 19X 5=098
5% 22 =107 28 X 5 =137 5 X 29 =142 21 X 5 =102
$X34=177 32 X5 =167 5X33=172 31 X5 =158
5 X 46 =223 48 X 5 =233 5 X 47 =232 49 X § =238
5 X 68 = 343 62 X 5=313 5% 61 =308 69 X 5 = 348
5% 72 =357 78 X 5 = 387 5% 79 =392 71 X 5 =352
5 X 84 = 427 82 X 5 =417 5 X 83 =422 81 X 5=412
5 X 96 =473 98 X 5 =483 55X 97 =478 99 X 5 = 488
3. Low-mismatch ratio problems

Even
Match Problems
35X 12 =65 16 X 5 =285 5X13=70 17 X5=90
5X14=175 24 X 5 =125 5% 21 =100 19 X5 =100
5% 26 =135 28 X 5 =145 5 X 27 = 140 23 X 5=120
5% 32=155 36 X5=175 5 X 31 =160 37 X 5=180
5% 38 =185 44 X 5 =215 5%X39=190 43 X 5=210
5 X 42 =205 46 X 5 =225 5 X 41 =200 49 X 5 =240
5 X 62 =315 66 X 5 = 335 5 X 63 =320 67 X 5 =340
5 X 64 =325 74 X 5 =375 5 X 69 =350 71 X 5 =360
5% 76 =385 78 X 5 =395 5%X 77 =390 73 X 5 =370
5 X 82 =405 86 X 5 =425 5 X 89 = 440 81 X 5=400
5 X 88 =435 94 X 5 = 465 5 %X 91 =450 87 X 5=430
5 X 92 =455 98 X 5 = 485 5 X 99 =490 93 X 5 =460
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APPENDIX C (Continued)

Mismatch Problems
5X18=93 22X 5=117 5X11 =58 29 X5=152
5X 48 =237 34 X5=163 5X47 =232 33 X5=158
5X 68 =343 72 X 5 =367 5X61 =308 79 X 5 =402
5X 96 =477 84 X 5=413 5 X 97 =482 83 X 5 =408
4. High-mismatch ratio problems

Even
Match Problems
5X16=285 26 X5 =135 S5X13=70 27X 5=140
5X 44 =215 36 X5=175 5X 41 =200 39X 5=190
5 X 64 =325 76 X 5 =385 5X63 =320 77 X 5 =390
5 X 92 =455 88 X 5 =435 5 X 91 =450 89 X 5 =440
Mismatch Problems
5X18=93 12X 5 =63 5X11=58 17X 5 =288
5%X22=107 14 X5=173 §X23=122 19X 5 =298
5X24 =127 28 X 5 =137 5X29=142 21 X5=102
5X34=177 32X5=167 5X33=172 31 X5=158
5X42 =203 38X 5=187 5X43 =208 37X 5=182
5X 46 =223 48 X 5 =233 5§ X 47 =232 49 X 5 =238
5 X 66 =333 62 X5 =313 5X 61 =308 69 X 5 =348
5 X 68 =343 74 X 5 =377 5 X 67 =338 71 X 5 =352
5 X 72 =357 78 X 5 = 387 5X79=1392 73X 5=372
5 X 84 =427 82 X 5=417 5X83=422 81 X5 =412
5X 86 =427 94 X 5 =463 5 X 87 =432 93 X 5 =458
5X96 =473 98 X 5 =483 5X 97 =478 99 X 5 = 488

Note—Even, problems with an even nonfive operand; odd, problems with
an odd nonfive operand.

(Manuscript received April 18, 1997;

revision accepted for publication April 6, 1998.)





