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5  Modeling Working Memory in a Unified

Architecture

An ACT-R Perspective

MARSHA C., LOVETT, LYNNE M. REDER, AND
CHRISTIAN LEBIERE

FIVE CENTRAL FEATURES OF THE MODEL

We describe a model of working memory that ts developed within the
ACT-R cognitive architecture. Some of its main features are derived from
the basic features of ACT-R: _ ) -
(1) Processing depends on the current goal of the system.

(2) Theaccessibility of declarative and procedural knowledge varies with
experience, .

In addition, the following features are important to working memory in

particular:

{3) There is a imited attentional resource, focused on the cument goal,
that increases the accessibllity of goal-relevant knowledge relative to
other knowledge. ’

(4) In more complex and memory-demanding tasks, this limited
resource is spread more thinly thus impairing retrleval of goal-rele-
vant items.

(5) The *capacity” of this attentional resource may vary from person to
persen, influencing the ability to access goal-relevant information
across domains.

In performing almost any cognitive task, one must engage working memory to
malintain and retrieve information during processing. For example, in mental
arithmetic (e.g., multiplying large numbers without pencil and paper), one
must hold intermediate results in memory while solving the problem.
Similarly, in sentence processing, one must maintain various syntactic and
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MH52808-01 from the Natlonal [nstitutes of Mental Health.
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semantic structures until subsequent processing reveals their roles. Because
working memory is involved in 50 many tasks, studying its characteristics and
its impact on cognitive processes is critical to gaining a deeper understanding
of how people perform cognitive tasks in general.

Past research highlights two important results, each of which demonstrates
that working memory modulates task performance. First, when the working
memory demands of a task increase (either by increasing the number of items
in a “pure” memory task or by increasing the difficulty of concurrent process-
ing in a dual-task situation), errors and latencies tend to increase (e.g.,
‘Anderson, Reder, & Lebiere, 1996; Baddeley, 1986; Caplan, Rochon, & Waters,
1992). Second, groups of subjects who have been separately identified as hav-
Ing “low” or “high” working memory capacity exhibit different degrees of
sensitivity to increases in working memory load (e.g,, Engle, 1994; Just &
Carpenter, 1992). Together, these results suggest a view of working memory as
a cognitive resource that (a) can be allocated to enable the maintenance and
processing of information, (b) Is inherently limited, and (¢} differs in supply
across individuals.

Within this view, however, there are still multiple ways for working mem-
ory to be implemented. Computational modeling has therefore contributed
greatly to this field because it requires that the working memory mechanisms
posited by a given theory be specified in a rigorous (programmable) way. The
resulting model provides a detailed account of how such mechanisms interact
and ylelds quantitative predictions that can be compared with observed data.
This makes possible the systematic comparison of models representing differ-
ent theorles. Computational models are also particularly appropriate for
studying Individual differences in working memory because they enable
researchers to maintain the basic structure of their theory while perturbing a
particular “individual difference” component. The different patterns of
results that such a varlablized model exhibits can be compared with the dif-
ferent patterns of results displayed across subjects performing the same task.
Thus, computational models can be evaluated not only according to how well
they fit aggregate data but according to how well they account for the
abserved differences among people,

Gur approach to the study of working memory involves developing com-
putational models of a few different working memary tasks and comparing
model predictions to performance data - at both the aggregate and individual
levels. We see several advantages to our approach. First, we obtain predictions
from a running computer simulation. This offers quantitative predictions
along several dimensions (e.g., latencies, percent correct, patterns of errors).
Second, we evaluate each model by comparing its predictions to aggregate
and individual subject data. The latter is particularly important because of the
systematic subject-to-subject variation in working mermnory capacity that has
been observed (e.g., Cantor & Engle, 1993; Daneman & Carpenter, 1980;
Waters & Caplan, 1996). Third, we model several tasks, all using the same the-
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ory of working memory developed within the ACT-R framework {Anderson,
1993). This is important for testing whether a single theory can cover the vari-
ety of tasks in which working memory plays a role. This final point reflects
the fact that our work is embedded within a unified cognitive architecture (cf.
Newell, 1982), as are some other working memory theories (Kieras, Meyer,
Mueller, & Seymour, Chapter 6, this volume; Young & Lewis, Chapter 7, this
volume). :

In this chapter, we describe the basic features of the ACT-R theory and
relate them to several working memory issues (the designated questions). We
present an ACT-R model that predicts working memory results at the aggre-
gate level and then go on to report our work in progress — developing ACT-R
models of individual’s working memory performance, We summarize some of
the encouraging resuits we have obtained thus far and discuss their implica-
tions for future work,

The ACT-R Theory

The ACT-R theory of cognition specifies a fixed computational architecture
that applies to all cognitive tasks. Within this architecture one can develop
ACT-R models for different tasks. The main difference among ACT-R models
Is not in their way of processing information but in the initial knowledge
with which they are endowed. This initlal knowledge includes the facts and
skills that are relevant to the task being modeled and that are presumed to
be known by the subject population being studied. For example, a model of
elementary school students solving arithmetic preblems would only repre-
sent certain arithmetic facts (e.g., 3 + 4 = 7) and skilis (e.g., how to carry a
digit). Regardless of the content of this Initial knowledge, ACT-R assumes
the same performance and learning mechanisms for all tasks. Specifically,
knowledge is always learned, deployed, interfered with, and decayed in the
same way. These mechanisms are implemented in a simulation program
that can be used to generate a set of theoretical predictions for a given task
model. The interested reader is invited to visit the ACT-R home page (at
http://act.psy.cmu.edu/) to learn more about developing ACT-R models.
Before describing ACT-R’s mechanisms, we provide an overview of how
knowledge is represented in the system.

Symbolic Components of ACT-R

ACT-R is a hybrid system with symbolic and subsymbolic aspects.
Knowledge is represented symbolically, whereas the processes acting on
knowledge occur at a subsymbolic level. In this section, we describe the two
symbolic representations in ACT-R. Declarative knowledge (for facts) is repre-
sented as a network of interconnected nodes, and procedural knowledge (for
skills) is represented 4s a set of productions. Figure 5.1a depicts a node repre-
senting the fact 3 + 4 = 7. This node is labeled “Addition-fact; and is linked to
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Figure 5.1. (a) A declarative node representing the fact “3 + 4 = 7. (b} A node repre-
sentation of the goal to add 3 + 4.

“three,” "lour,” and “seven,” which comprlse the fact’s first addend, second
addend, and sum, respectively. The links In Figure 5.1a vary in strength (S,
indicating the strength of the relationship between connected concepts —
nodes that frequently occur together will have high associative strengths.
Separate from declarative knowledge is the set of all productions held by the
system. Each production represents a contingency for action. A production
takes the form IF <condition>, THEN <actions, Here, <condition> specifies
the circumstances under which the production is relevant, and <action> spec-
ifies a possible action to be taken. Table 5.1 presents a production for retriev-
ing the sum in an arithmetic problem.

The processing of declarative and procedural knowledge in ACT-R Is pri-
marily driven by the current goa! of the system (e.g., finding the sum of three
plus four). The current goal contains the information in the focus of atten-
tion and uses a declarative node structure (Figure 5.1b). Tts contents are
either established by previous processing (e.g., when one part of a problem
is solved, attention is switched to another part} or by stimuli in the envi-
ronment (e.g., upon hearing a loud nolse, the focus of attention may switch
to process the sound). Figure 5.2 sketches the cycle of processing. First, the
goal acts as a filter to select only those productions relevant to its current
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Table 5.1. Sample Production for Arithmetic Retrieval

IF the current goal Is to add a + b when no sum has been computed
. and an addition fact stating that the sum of a + b Is ¢ €an be retrieved
THEN

update current goal's sum to be ¢

L o O
filtering — Procedural
2

Memory 1
- -

2
Tetrieval

Declggtive
C%1\/&5:105%30

Figure 5.2. The role of the current goal [n ACT-R's processing cycle: (1) It acts as a filter
on procedural memory so that oaly goal-relevant productions are avallable. (2) Along
with the selected production, the goal (via Its links to declarative memory} makes some
nodes more accessible than others. {3y Once a declarative node is retrieved, information
from that node Is used to update the current goal.

state. For example, the production in Table 5.1 is relevant to the goal in
Figure 5.1b because both specify adding two numbers when no sum has
been computed. Of the productions offering such a match to the current
goal, the production with the highest expected utility (estimated from past
use) is selected for continued processing. (See Lovett & Anderson, 1996, for
more details on this selection mechanism and how it enables the successful
modeling of varlous problem-solving data.) Second, the retrieval specified
by the selected production is attemnpted. This retrieval is influenced by both
the current goal (via its connections to declarative memory) and the
selected production (via the retrieval pattern specified in its condition). in
the addition example, an addition fact involving “three” and “four” is
retrieved because the current goal Includes “three” and *“four” and the
Retrieve-Sum production specifies retrieving an addition fact. Third, the
contents of the retrieved node are used to update the current goal according
to the production’s action specification, for example, If “3+4=7" I5
retrieved, “seven” Is added to the Current goal’s “sum” link. Then, the cycle
of processing is reinitiated with the modified goal.
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Figure 5.3. The time course of base-level actlvation for a node that s created at time &
and later accessed at time fy (see Equation 1).

Subsymbolic Processing in ACTR

The above processing cycle describes performance at a symbolic level.
Learning and other performance mechanisms, however, are defined in terms
of processes at the subsymbolic level. Here, we focus on the subsymbolic
mechanisms acting on declarative knowledge because they are most relevant
to working memeory. ‘

For declarative knowledge, activation 1s the main unit of “currency” for
learning and processing. Each node has a certain base-level activation that
influences its accessibility. Specifically, when a fact is first learned (stored as a
new node), it s endowed with an Initial activation. Each time that fact is
accessed (retrieved), It receives a boast to its base-level activation (learning).
However, each of these "boosts” decreases as a power function of time (for-
getting). Figure 5.3 shows how base-level activation changes with time for a
node that was created at time ¢; and later accessed at time t;, The ACT-R func-
tion for base-level activation of node i s .

Bi=log ), {1

where t; Is the time lag since the kth access of node i and d Is the decay rate. A
node’s base-level activation reflects that node’s prior history of use. Because
this prior history of use is a good index of future iikelihood of use, the system
is adaptive: Nodes that have high activation (high past use) are both more
likely to be needed and more accessible.

.———— addend1 add-facty 220 m

2k

Figure 5.4. The goal (dotted) and declarative nodes for an arithmetic task {adding three
plus four), The goal's source activation W is divided between the goal nodes “three” and
“four” and then is spread along the arrows to addition facts in declarative memory.,

Base-level activation represents a node’s overall accessibility but does not
account for any effects of the current context. In ACT-R, the current goal rep-
resents a person’s focus of attention and thus drives context effects. The goal
propagates “attentional” activation to declarative memory, raising the accessi-
bility of some nodes relative to others, For example, Figure 5.4 shows the cur-
rent goal (dotted) propagating activation along the arrow-links to refated
nodes in declarative memory. Specificaity, the goal’s attentional activation, ot
source activation W, is divided among the goal nodes “three” and “four,” and
then these shares (W3 and W,) are each spread among neighboring nodes in
declarative memory. The amount of source activation received by neighbor
node i from goal node j is the product of W, (the source activation from goal
node j) and §; {the strength of the link between goal node j and neighbor
node ). A node that is connected to the goal by more than one link receives
source activation along ali those links. For Instance, in Figure 5.4, “add-fact/”
receives Wi-Sy + Wiy Sy units of source activation. The total activation of
declarative node i, then, is the sum of its base-level activation and its received
source activation: '

A;:B[+£)M-Sﬂ. (2)

The main Implication of this equation is that both past use of a fact and its
relevance to the current goal jointly determine that fact’s accessibility.
Familiar facts will be more accessible than unfamiliar facts because of their
difference in use, and contextually relevant facts will be more accessible than
irrelevant facts because of their difference In associatien to the current goal.
These activation mechanisms have been used to model many memory exper-
iments successfully (Anderson & Matessa, 1997).
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In summary, ACT-R claims that when people focus their attention on the
current goal, they are directing additional activation to declarative memory
elements that are related to that goal. Source activation spreads from each
goal node in proportion to the steength of association between that node and
various declarative nodes. Declarative nodes also differ in terms af base-level
activation, which is determjned by their past history of use. One way of con-
ceiving ACT-R's distinction between base-level activation and source activa-
tion is that the former represents the activation of each node without any
context effects and the latter repsesents a kind of attentional activation that
gets dynamically applied to particular nodes based on the current context,

Performance Functions for Declarative Retrieval

The latency T, for retrieving node i is a function of total activation A,
Specifically,

Ti= Fe-A, (3)

where F is a time-scaling factor. An important implication of Equation 3 is
that there is a cost for accessing a declarative node; the lower the node’s acti-
vation, the greater the time taken to retrieve it. To generate ACT-R's prediction
for the time to take a certaln observable step, we add all the retrieval times
(Equation 3) and action times for the productions leading up to that step, (The
defaulz action time Is 50 ms; productlons that involve motor actions have
longer action times.) Thus, ACT-R predicts longer latencles on average for
steps requiring longer production sequences andfor the retrieval of less acti-
vated declarative nodes.

To handle nodes with very low activation, ACT-R posits a retrieval thresh-
old below which nodes will not be retrieved, (One can think of this threshold
as a fixed waiting time; if a node is rot retrieved within that time, the retrieval
attempt is aborted.) Of the nodes with above-threshold activation, it would be
natural for the maximally activated node to be retrieved, However, ACT-R rec-
ognizes that there may be noise in the system, so noise is added to each
node’s total activation, and then the node with the highest “noisy” activation
is selected, The following equation describes the behavior of a system with
this noisy selection process:

P {retrieve;) = e Aif/Le At {4

where the denominator sums over all nodes competing to be retrieved and s
represents the level of activation noise.! This equation states that the lower a
node’s total activation relative to competing nodes, the lower its chance of
being retrieved.

'‘This noise is approximately Gaussian, centered at 0, and with spread parameter 5. The
fetrieval threshold is Included as one of the “competing nodes” in Equatien 4 to reflect the
fact that a node’s “nolsy” activation must be greater than its competitors” and the retrieval
theeshold in order to be retrieved,
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The probability of declarative node | not being retrieved -~ an error of omis-
sion — is just the complement of Equation 4. Errors of commission (when an
incorrect node is retrieved) are produced by a mechanism known as partial
matching. This mechanism allows a node to be retrieved even if it does not
exactly match the production’s retrieval condition. Such a node competes
based on a reduced total activation, A/

Ai=Aj- M, ()
where M represents a mismatch penaity. This penaity is a measure of the “psy-
chological distance” between node i and the node described in the produc-
tion’s retrieval condition.? [t produces a bias against retrieving nontarget
nodes. Nevertheless, with activation noise, nodes that are stightly dissimllar
to the production’s specification may be retrieved, especially if their total acti-
vation is high enough to compensate for the mismatch penalty.,

In summary, both latency and probability of retrieval are nonlinear func-
tions of a node’s total activation (after noise and partial matching are taken
into account). As we will show, this nonlinearity has an impact on how Indj-
vidual differences manifest themsclves In our model predictions.

Working Memory In ACT-R
Basic Mechantsms and Representations in Working Memory

Before describing the mechanisms and representations of working memory
in ACT-R, it is important to define working memory in terms of this theory.
There are two ways to do s0. One 1s to equate working mcmdry with the cou-
tent that is being malntained during processing (e.g., the elements represent-
Ing the memory items in a working memory task). This cantent-oriented
definition identifies working memory as a subsct of the entire declarative
memory. That is, working memory is not a special repositery of information
but just those declarative nodes that are highly activated because they have
been stimulated from the environment and/or are strongly linked to the cur-
rent goal (source activation). According to this definitiun, working memory
mechanisms are just the mechanisms acting on declarative memory: leatning,
decay, and attentional activation, ‘

The second way to define working memory emphasizes the process that
enables memory elements to be concurrently maintained. This definition takes
working memory as the propagation of source activation from the current goal.
Defining ACT-R’s working memory in these terms emphasizes the attentional
activation mechanism that differentially activates items relevant to the current

2If declarative nodes were represented as feature vectors, the psychological distance batween
themn would be a function of the overlap in their representations. Since declarative nodes

are represented symbolically In ACT-R, this distance function is specified in the model
description.
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context. This process-oriented definition of working memory is complemen-
tary with the content-oriented one above: Nodes in the highly activated subset
of declarative memory receive an important part of their activation from the
process that spreads source activation. Note that other working memory
researchers have similarly considered working memory as the union of content
and process {e.g., Bymne, 1998; Cowan, Chapter 3, this volume).

Both definitions identify the basic mechanisms of working memory as the
spreading of source activation (which primarily affects nodes strongly linked
to the goal) and the general declarative mechanisms of base-level learning
and decay (which affect all of declarative memory, of which working memory
is a part). These mechanisms are always at work, influencing the accessibility
of declarative knowledge and allowing for both context and learning/forget-
ting effects.?

With working memory defined, we can now address the issue of represen-
tation. Because working memory Is a subset of all declarative memaory, work-
ing memory representations are the same as those used for declarative nodes
in general. Throughout declarative memory, however, different node struc-
tures (representations) are used for different kinds of information. For exam-
ple, the arithmetic fact depicted in Figure 5.l1a includes the (eatures
"addend1,” *addend2,” and “sum,” whereas the memory-list item depicted
later in Figure 5.8 incorporates the features “trial,” “positton,” and “value.” %
Each node incorporates its represented features in the linked structure, Similar §
items, such as addition facts *3+4 =7"and "3 + §=8," can thus be related in - 348
several ways: They can use the same node structure {both have links fot 27
addend1, addend2, and sum), they can have common elements (both include
“three™), and they can have strong associative links ("3+4=7"and "3+5=
8" may co-occur frequently). Note that it is also possible for different people
{e.g., an expert vs. a novice} to represent the same object in different ways by
encoding different features. Thus, a pair of nodes representing two items may
be more or less similar for different people, both in terms of their representa-
tional structures and in terms of their strengths of association.

Such differences in representation influence processing in ACT-R. For
examnple, the partial matching mechanism described above allows for inter-
ference among similarly represented items, Thus, confuslons involving the
retrieval of one node for another will tend to be limited to nodes of the same
structure (e.g., misretrieving one arithmetic fact for another, or confusing one

3 The learning/forgetting of base-level actlvation (Equation 1) allows far a variety of memory
effects that are not the focus of this chapter. For example, familiar (highly practiced) declar-
ative nodes will show siower decay than new podes. Such differences have been observed
and modeled with separate decay-rate parameters by Healy, Fendrich, Cunalngham, and R
Till (1987). In the system we are describing, such a famlliarity effect arlses naturally from 2 - 5%
single decay parameter: The more practiced an jtem, the more activation boosts that are
combined to produce the item’s total activation. Adding together mote power-decay func
tions (each with a common decay rate) produces a combined function with slower decay.

word for another). Moreover, the greater the feature overlap between two
items, the more likely such confusions are to occur That is, confusions
petween phonologically similar words are more likely than confusions
between phonologically dissimilar words, and confusions between related
arithmetic facts are more likely than confusions between unrelated facts.
Thus, interference effects arise mainly because of representational similarity.
This implies that in dual-task situations where the two tasks tequire process-
ing of similarly represented itemns, interference effects can substantially
impait performance. Such effects have been found in several studies (e.g.,
Baddeley & Lieberman, 1980; Logie, 1986; Shah & Miyake, 1996).

The Nature of Working Memory Limitations

In ACT-R, working memory limitations are invoked by the constraint that
source activation is limited and must be divided among the goal nodes, that
is,

LW, = W. (6)

Here, W represents the total amount of attention focused on the current goal
and W, the share of source activation propagating from goal node j. Equation
6 implies that, for a fixed W, less source activation will be spread from each
goal node the more goal nodes there are. Hence, in complex tasks (more goal
nodes) there will be a smaller modulating effect of source activation on the
accessibility of related declarative nodes.*

The share of source activation that is propagated from each goal node Is
spread among the different links emanating from that goal node. For exam-
ple, in Figure 5.4, the source activation W, is spread to both add-fact) and add-
fact. (In a complete model, there would be many more links.) Note that the
link strengths S; are learned values that reflect the co-occurrence between
nodes. As a default, the learned link strength S is approximated by the
expression C-log(np, with 1y as the number of nodes linked to node j. Thus,
the more links emanating from a given goal node, the less source activation
that is propagated along each link. Hence, for more memory-intensive tasks
(i.e., more elements connected to each goa! node), a smaller amount of source
activation reaches any one linked node.

The key implication of a limit to source activation {W) is that the size of its
modulating effect will be Teduced in cases when source activation is divided
among more goal nodes and spread among more links to declarative memory.,
Since relative amounts of total activation determine the latency and probabil-
ity of retrievals (Equations 3 and 4), this reduction in the effect of source acti-
vation leads to degraded memory performance. Therefore, retrievals in

4 For simpliclty, we take source activation as divided evenly among the r nodes in the current

goal: W= 1‘,5,5 Thus, in Flgure 5.4, Wy= W4=3“éz. Of coutse, an uncqual diviston of W is
possible,
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complex, memory-loaded tasks will be less accurate and take longer than will
retrievals in simpler tasks. This effect holds regardless of whether the memory
load is part of a Memory span task or part of a dual-task situation. We wil]
show examples of each of these below,

[n summary, ACT-R posits a limit in attentional resources (or source activa.
tion W) that leads to degraded memory retrieval in complex and memory-
loaded tasks. The attentional limit is not a Cap on total activation in the
System but a cap on a particular kind of dynamic, attentional activation
spreading from the goal. This attentional limit produces a limit in the degree
to which goal-relevant items can be differentially activated. Such goal-based
modulation of processing is similar to that proposed by O'Reilly, Braver, and
Cohen (Chapter 11, this volume}. Morcover, because this limltation affects
the degree to which memory items can be differentially activated, it posits
that relative activation levels are more tmportant than absolute activation lev.
¢ls; thus, it is compatible with theories that attribute working memaory limita.
tions to inhibitory processes (e.g., Conway & Engle, 1994; Kane, Hasher,
Stoltzfus, Zacks, & Connelly, 1994; Stoltzfus, Hasher, Zacks, Ulivi, &
Goldstein, 1993; Zacks & Hasher, 1994),

The Control and Regulation of Working Memory

The primary mechanisms controlling working memory have already been
delincated: (a) spreading source activation and (b learning and decaying
base-level activations. These mechanisms combine to produce the total acti-
vation levels of all declarative nodes (including those highly activated nodes
that comprise working memory). Total activation, in turn, affects the accessi-
bility of declarative nodes (Equations 3 and 4y,

The main regulatory processes among these are the limit to source activa-
tion (W) and the decay of base-leve| activation. The limit on W constrains the
degree to which goal-relevant nodes can be differentlally activated relative to
other nodes. Because this limitation specifies a fixed amount of source activa-
tion that must be shared and spread, there is a gradual degradation in mem-
ory performance as task complexity and memory demand increase (i.e., more
complex tasks lead to thinner spreading of source activation, reducing its ben-
efits). This implies that only a limited number of declarative nodes can be
effectively differentiated (based on added source activation) from the remain-
ing elements in declarative memory.,

The decay of base-level activation, on the other hand, does not reflect a lim-
itation in the amount of activation but rather in the duration of activation.
Thls mechanism specifies that declarative nodes’ activation {and hence general
accessibility) will decrease as a power function of the time since they have
been used (Equation 1). Therefore, nodes will tend to remain above threshold
for enly a limited amount of time. Like the spreading of source activation, this
decay mechanism helps to keep working memery to a relatively small size.
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Given these regulatory processes, there are two ways a node can be main-
tained in a highly activated state: {a) It can be part of the current goal and
thus be in the focus of attention (e.g., when the concept “three” is activated
by seeing a “3" in the environment),5 (b) it can be strongly.connected to one
or more goal nodes and thus receive a large amount of source activation {e.g.,
when the fact “3+4=7"in memory is highly relevant to the goal).

The Relationship of Working Memory to Attention and
Consciousness

Attention and our notion of working memory are closely related. As we
have described above, working memory processing Is heavily Influenced by
source actlvation, the "attentionat energy” that is directed at the current goal
and spread from the goal nodes. We view the limitations of working memory
as stemming from limited attentional resources {Equation 6). Several of the
tasks that we discuss and model In this chapter involve dual-task procedures
In which attention must be divided among concurrent goals (e.g., reading
and remembering). In our models of these dual-task situations, source activa-
tion Is spread more thinly among a greater number of goal nodes ~ essentially
dividing the attentional resource W between the two goals - leading to worse
performance than under single-task conditions.

In lay terms, “attention” often refers to a dimenslon of motivation or alert-
ness, suggesting that people can direct more or less of their attention to the
current task. We have not modeled this kind of attention directing, but it
could be modeled by varying the total amount of source activation or how it
Is shared among different components of the current goa!l. This is an interest-
ing Issue to explore in connection with how people strategically (vs. automat-
ically) allocate attentlonal resources,

Relating working memory to consclousness is difficult. The most natural
link under our framework is to consider those nodes with above-threshold
actlvation as accessible to conscious awareness. Declarative nodes below this
threshold still vary in tatal activation; this affects the precessing required to
bring them Intc awareness (cf. Reder & Gordon, 1997). For example, one’s
own name s so highly practiced, very little environmental stimulation can
belng it Into awareness {e.g., cocktail party effect). It is also possible to refer to
our second definition of working memory - the spreading of source activation
from the goal - and link consciousness to the ability to maintain a focus of
attention that influences the processing of information,

¥ Note that In the current system, the current goal does not undergo decay. Thus, it [s diffi-
cult to explain forgetting of the current goal In ACT-R. See the section on Biological
Implementation for a generalization of ACT-R that handles this problerm and makes con.
nectlons to neural actlvatlon data.
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The Unitary Versus Non-Unitary Nature of Working Memory

As implicd above, the value of W impacts processing (i.e., retrieval proba-
bilities and latencies) of all kinds of information. It represents a general
resource that is used in any task that involves retrieval from declarative mem-
ory. According to ACT-R, then, higher W will load to better performance in
any task, all else being equal. This leads to one of the hypotheses explored in
our research: that the performance of an individual on one task Is predictive
of his or her performance on another task because both tasks tap into the
same attentional resource w. This unitary hypothesis is similar to Engle,
Kane, and Tuholski’s {see Chapter 4, this volume); indeed, our model offers an
information-processing account consistent with their analysis that supports 2
latent variable underlying working memory performance.

It is important to note, however, that all else is not always equal. For exam-
ple, different situations may involve processing different kinds of declarative
nodes (c.g., those representing spatial versus verbal information) and the
interference among nodes across these situations may differ {see Basic
Mechanisms section). Also, various tasks and subject populations may differ
in terms of the base-level activation of the nodes involved, which can make
W's effect on performance seem variable across tasks. For example, the
latency of retrieval (Equation 3} is a nonlinear function of the sum of base-
level and source activation: When base-level activations are high, the modu-
lating effect of W is small and when base-level activations are low, W's effect
is large. Finally, in many situations, patticipants’ strategies for approaching a
task may differ. These differences can affect the number and timing of
retcievals and mask a common effect of W, especially if peopie choose strate-
gies that compensate for their working memory capacity. This discussion
highlights several of the soutces of variability we try to reduce to study true
differences in the limit to source activation. However, in most tasks, it is Likely
that both kinds of variability (domain-general and -specific) influence work-
ing memory processes (cf. O'Reilly et al., Chapter 11, this volume).

It Is interesting to contrast this view with other views that posit separate
working memory capacities for different types of processes. For example, Shah
and Miyake (1996) argue for separate verbal and spatia! working memory
capacities. Although 1t would be difficult to discriminate between models that
specify unitary versus separate working memory pools, we prefer 10 posit a
unitary working memory and ascribe individual differences in performarice
patterns across tasks to (2) different patterns of experience and (b) differences
in buffer use. As discussed earlier, differences in the amount of practice at vat-
lous types of tasks (strength of productions), different strategies (sets of pro-
ductions), and differences in knowledge representations (declarative nodes)
may result in performance differences that vary with the type of task. These
differences could produce performance differences across tasks even under a
single working memory capacity.

Otners Nave aigee D AL IIe et o Wiaeers U Senae
ity for dual tasks (Baddeley & Lieberman, 1980C; Brooks, 1968; Logie, 19985)
pecause of sharing of an input or processing puffer. Differences in modality-
specific buffers may also account for some of the observed difference among
individuals that has been taken as evidence for separate spatial and verbal
working memory pools.

The Relationship of Working Mentory to Long-Term Memory
and Knowledge

As we noted before, working memory is not 2 special repository of infor-
mation but rather a subset of declarative memory that is distinguished by
higher activation levels. Otherwise, working memory elements are processed
(e.g., they undergo leaming and forgetting) just like any other node.

1t is worth relating our view of working memory to the approach of
Eriesson and Kintsch (1995) and Ericsson and Delaney (Chapter 8, this vol-
ume). We believe that their findings and our theoretical approach are com-
patible because learning processes play 2 large role in both. Their subject SF
was trained to recall digit strings of over 80 digits. This superior digit span was
achieved with a lot of training on recalling digits, practice at converting digits
into mnning times (e.g., “826 is 8.26 seconds, an excellent 2 mile time"), and
knowing ahead of time the length of the digit string so that the appropriate
tree structure could be “joaded.” Each of these processes was presumably
tearned and refined over SFs long training. For example, SF clearly had spe-
cialized, highly practiced procedures for recoding digits into running times
(facilitated by the fact that he was an accomplished long-distance runner),
special tree structures on which to hang these running times, and so on (see
Chase & Ericsson, 1981, 1982 for more discussion). In contrast, SF was not
able to recall letter strings that were at all exceptional in length. This speaks to
the specificity of what SF tearned and argues that his W was not altered, only
his procedures and declarative knowledge.

The Biological Implementa tion of Working Memory

The question of how working memory is implemented in the brain is a dif-
ficult one: It requires bridging the gap between the abstract theoretical con-
struct of working memory and the complex biological processes of the brain -
neither of which is completely understood. Researchers have used three dif-
ferent approaches to attack this problem: (a) consider their working memaory
model analogous to the human brain and compare performance of both sys-
tems after specific impairments, (b) enalyze the predictions of their model
and look for these features in brain-imaging data, and {c) extend thelr meodel
to refer to biological mechanisms and explore the model’s performance, The
first two approaches apply to the theory described in this chapter, so we will
discuss them below. The third approach, exemplified by the work of O'Reilly
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et al, {Chapter 11, this volume), does not apply directly because ACT-R's
processes have traditionally been described at a functional level rather than a
biological one. (However, seo Lebiere & Anderson, 1993, for a connectionist
implementation of ACT.R.)

The first approach - tomparing model performance to human perfor-
mance when both have undergone some impairment - is relatively common

level and kind of impairment akin to that exhibited among frontal-lobe-
damaged patients. For example, the impaired motor-sequencing model per-
formed inappropriate actions on each device (e.g., pulling instead of
twisting a twister), and the tmpaired Stroop model exhibited greater inter-
ference from unattended stimulus features (it was slower to name the ink
color of color-name words),

The impairment procedure applied to these models (weakening strengths
of assoclation) is closely related to reducing W, the source activation from the
Boal. Bath *impairments reduce the amount of source activation arriving at

Since impairing the spreading actlvation process In a computational model
produces effects similar to frontal lobe damage, the logic of this approach sug-
gests that spreading source activation may have its Counterpart in the human

activation are associated with frontal lobe function, Although this model-to-

brain mapping is at an abstract level, it Is consistent with the role of pre-

frontal cortex pasited in the O’Reilly et al. model {Chapter 11, this volume).
The second approach to understanding the biological implementation of

neural activation. Relating such data to models of working memory is a more
fecent approach (Cohen et al,, 1994; Just, Carpenter, Keller, Eddy, &
Thulborn, 1996; Li, Williamson, & Kaufman, 19922). For example, L,
Williamson, and Kaufman have studied the habituation responses of various
cortical (and subcortical) regions of the brain using event-related potential

faty
7o
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and magnetic source imaging techniques. One of their andings relevant to
out work involves the response of two areas in the auditory cortex, In pactic-
ular, they found that the event-related field response (100-ms component) for
repeated tones shows an activation trace that decays with time after the pre-
sentation of the tone, They postulate that this trace (measured In terms of
reduced responsiveness at Increasingly short ISis) reflects the neyral availabil-

e~ft- fn}/t’ (7)

where tis the current time, to is the time of the tone's onset, and t1s the decay
rate.

declarative learning mechanism, where nodes’ base-leve] activations consist
of accurnuiated pewer-decay functions, However, such a mapping suffers
from the fact that the time Course of decay studjed by Lii et al. (19922, b) was
on a much shorter time scale {and fit by an exponential functlon). The more
approprlate mapping we have found relates the amount of source activation
W to the decay rate T, assuming a slight extension to ACT-R's treatment of
source activation. (See Appendix A.) The basic idea involves viewing the goal's
source activation as z “leaky capacitor” (Scinowsky, 1981) that needs to be
continually pumped with source activation to malntaln a fixed lovel W. That
Is, instead of W being automatically and Instantaneously transferred to a new
goal, source activation of the previous goal would gradually decline (3 1a
Equation 7), and source activation of the new goal would gradually bulid to
asymptote. In such a system, the total source activation across all goals {past
and present) is a limited amount W that relates directly to the decay rate 1
from Equation 7. jt s noteworthy that Li et al, (2992b) found individual dif-
ferences in the decay rate 1 for different subjects, Just as we propose that djf-
ferences In W will predict working memory differences among subjects,

This new view of W allocation helps explain why the brain might employ

. ®limlt to attentional resources such as attention or source activation, If atten-

tion could be allocated without Iimit {or, under our new generalization, if
source activation did not decay), the system would not be able to focus differ-
entially on the current goal. Not only would this make it difficult to distin-
guish the current goal from past goals, but goal-based modutation of
declarative information would become ineffective with so many goals simuj-

resources and is similar to the analysis of Young and Lewis {Chapter 7, this
volume) supporting functional limitations to warking memory.
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Table 5.2, Critical Productions for Memory-Loaded Algebra Tosk ] dual-tas x;cocff . -3\.X- . % all the connected
&
Substitute for a: W %aa’ : _w'? ﬁ | ?fdmf a?d
IF  the goal Is to solve an equatlon with a in it 4 1 arithmetic facts
* and fls the first element of the memory list > W,
THEN substitute ffora T
Substitute for b: 3.
IF  the goal Is to solve an equation with b in it - Ws
* and s Is the second element of the memory list )
THEN substitute s for b
Invert-transformation:
IF  the goal Is to solve an equation terml opl constantl = constant2
hid and op2 Inverts opi
THEN transform equation to the form term1 = constam2 op2 constant! —
Collect-sum: urren!
IF  the goal !s to solve an equation that cantains ¢ +d ¢
b and s is thesumof ¢+ d
THEN replacec +d by s
The Role of Working Memory in Complex Cognltive Activities
As mentioncd above, ACT-R posits that memory performance is degraded in S
more complex tasks because the limited amount of source activation (W) must g
be shared among more elements. In this section, we exemplify this prediction 48
in the context of a model of algebra problem solving. (See Anderson et al,, 38
1996, for detatls,) This particular aigebra task emphasizes working memory by B
incorporating a memory-load component. Specifically, tn each trial the partici- » ®) Giial-task)addend = 5 1l the connected
pant had to encode a digit list, hold the list in memory while solving an algebra 2 W % W, algebra and
problem, and then recall the digit list. The difficulty of both subtasks was X < . arithmetic facts
manipulated over trials. For example, the digit span was either 2, 4, or 6 diglts, -jos 2 7 <’

and the algebra problems required either one or two transformations. Finally, I
the trials were divided into two types: those for which the algebra equation had
all numeric constants {e.g., 3 x-8=7) and those for which the equation
required substituting digits from the digit span (e.g., ax- b =7, where subjects
had to substitute the first and second elements of the digit span for 2 and b, 388
respectively, and then solve), The {atter trial type was included to study working i
memory effects when the two subtasks required integrated processing. . Figure 5.5. Goal and declarative memory for the algebra-memory dual task. (3)
Table 5.2 shows some production rules used in the model for this task. Representation of a trial with high-complexity algebra problem and high memory-load
Notice that each asterisk (*) indicates retrieval from the memory list, and each 3 digit span. (b} Representation of a trial with low-complexity algebra problem and low
double asterisk (**) indicates retrieval of an arithmetic/algebra fact. The prob- 238 ~ memory-load digit span.
ability and latency of these retrievals depends on the amount of source acti- S
vation reaching the to-be-retrieved nodes. Figures 5.5a and 5.5b show that
these amounts will differ between high-load and low-load trials. In Figure
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5.53, very little source activation is reaching the relevant nodes in declarative
memary. This is because there are many goal nodes (less source activation per @

100

o2l node) and there are many links from these goal nodes to declarative

w0
L0

&

&

that this prediction implies that manipulating the difficulty of one task
should affect performance on that task as well as on the other task. For exam-
ple, making the algebra equation more complex leads to smaller shares of
source activation per goal nede, thus leading to less source activation spread-
fng to arithmetic facts and to Memory items. Less source activation will make
both arithmetic retrievals and memory span retrievals more error prone and
slower, Moreaver, making the algebra equation mare complex increases the
number of steps required to reach g solution. With more steps and slower
retrievals, thece will be o longer delay on high-load tiials before the memory
Span can be recalled. That extra delay Incurs greater decay for the memory
<dlgits, making thele retrleval even more difficult. This shows that, given lim- ;
{ted source activation, making one task more difficult can tmpair performance °

Parcent Strings Recalled

o<
o

75

4 G
Murmary Span

on both tasks,
Figure 5.6 shows some of the quantitatjve predictions of the model along
with the corresponding observed results. Notice that both the model and .
participants take longer to solve the algebra problems when they are more Iy
complex, when they require substitution, and when the memory list §s s
longer. In terms of steing recal, accuracy suffers the longer the list ang when -3. B
the algebra problems are complex, but there is ng reliable effect of substitu. £ 54
tion on memory,s 3
To generate predictions from this model, five free parameters were estj- 8
mated. For the experiment shown in Figure 5 6, there were 48 data peints in ?,3- © 1 step/no slip
total to be fit, and the obtained goodness-of-fit statistic was x2(df = 43) = 79.3, w
This value indicates 3 good fit (as can be seen), but there is significant residyal
variance not predicted. Qpe possible source of that residual variance is unac.

4 &
Memary Span
Figure 5.6. Selected (a) accuracy and (b) lateney results, adapted with petmission of

Academic Press from Anderson, Reder, and Leblere (1996). salid lines are behavioral
data, dashed lines are model predictions. .

50 can improve overal] model fits,

8 The lack of an effect of substitution On memory span is Probably due to the fact that the
longer delay from making the substitution counteracts the extrz practice of the first two
digits when they are accessed far substitution,



Modeling Working Memory Effects at the Individual Level

In this section, we describe some of the issues involved in modeling working
memory effects at the individual subject level. We take W (the amount of
source activation propagating from the goal) as the parameter reflecting indi-
vidual differcnices in working memory. That is, in contrast to previous work
(e.g., Anderson et al, 1996), which took W as a fixed limitation across sub-
jects (W= 1), we take W as a limitation that varies across the population (W ~
Normal(1,62)). The results we present here are preliminary in nature but are
encouraging with respect to our matn hypothesis that varying the W parame-
ter can capture individual differences in working memory performance. OQur
secondary hypothesis, based on the unitary nature of W in ACT-R, is that
individual differences reflected in the W parameter will be similar across tasks
and situations within the same individual. That is, we take an individual's W
parameter to be relatively stable across time and tasks.” The topics discussed
subsequently cover several issues associated with these hypotheses: theoreti-
cal Issues (What are ACT-R's predictions under different values of W?), empir-
lcal issues (How can current research paradigms be adjusted to focus on
individual differences caused by different warking memory capacities and not

by different strategies?), and modeling issues {How does variabllity In W
impact model predictions?),

Theoretical Issues: Capturing Individual Differences in Working
Memory

Just as varying the memory load of a task distributes source activation
more or less thinly and leads ACT-R to predict differences in performance
across task versions, varying the limit on source activation across individuals
(for a fixed task) leads ACT-R to predict differences in performance across indi-
viduals, As described above, the more complex the task, the less source activa-
tion added to goal-relevant nodes, making them less likely to be retrieved.
The same effect {s obtained by keeping task complexity constant and decreas-
ing the total amount of source activation (W) propagating from the goal.
Thus, ACT-R predicts that people with lower attentional capacity W will have
lower probability of retrieving goal-relevant nodes, all else equal. The value of
W also has an effect on retrievals through the latency function (Equation 3).
Here, when W Is lower, goal-relevant nodes have less total activation, making
their retrieval latencies longer. Longer latencies can have a secondary effect
on other retrievals - they incur delayed processing of other information or
less time for rehearsals, so other nodes’ base-level activations will tend to be

.

7There may be moment-to-moment fluctuations of W within an Individual (see section on

Attention and Consciousness), but we are hypothestzing that the differences in W between
Individuals are potentially greater.

v Al
lower when their retrieval is attempted. These effects can accumulate across a
task to produce markedly different behavior among subjects, as we will show.

It is noteworthy that our explanation of individual differences in working
memory, though fundamentally based on the W parameter, also relies criti-
cally on the timing differences caused by differencés in W. Thus, one view of
our approach is that it provides a computational account of the processing-
speed theory of age-related working memory differences (Salthouse, 1996), If
the amount of attentional energy, W, decreases with age, then all retrieval
latencies will be slower (not to mention somewhat more error prone) in older
populations, making overall processing times stower. A related computational
account of processing-speed theory by Byrne (1998) directly manipulates a
rate parameter to produce differences between young and old populations.
Our model, on the other hand, manipulates the parameter W thus indirectly
affecting processing rate.

Other research suggests that decrements in performance among elderly
subpopulations may be due to decrements in working memory capacity that
are linked to inhibitory processes {Connelly & Hasher, 1993; Hasher & Zacks,
1988; Kane et al., 1994; Stoltzfus et al,, 1993). Many of the effects seen in the
elderly, especially under dual-task conditions, are reminiscent of problems
associated with frontal-lobe-damaged patients. Postulating a lower value of W
for individuals in either population might explain how these clinical behav-
lors arise, For example, smalter W can produce distractibility or inability to
stay on task because less source activation propagates to goal-relevant items,
making it easier for goal-irreievant stimuli to capture attention,

Empirical Issues: Studying Individual Differences In
Working Memory

The first experiment we report was designed to explore whether we could
observe and modet individual differences - subject-by-subject differences - in
a dual-task memory experiment. We were specifically interested in capturing
individual differences in working memory capacity. This meant that we had
to be careful to design our experiment so as to minimize the introduction of
other sources of individual differences. For Instance, we sought to reduce
between-subjects variability in motivation and on-taskedness by having an
experimenter in the room to monitor each participant’s progress. The main
type of variability we sought to reduce, however, was strategic variability. We
focused on designing the experiment so that subjects would tend to use the
same strategy to perform the task. Building a model that matched this strat-
egy would make the model more accurate and hence its parameter values (for
both global and individuat subject parameters) more interpretable.

The task we devised for this purpose is a variant of the digit working mem-
ory task developed by Oakhill and her colleagues (e.g., Yuill, Qakhill, &
Parkin, 1989). It employs a dual-task procedure in that subjects had to read a
sequence of digits aloud while maintaining in memory a selected subset of
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Figure 5.7. Time-based display of 2 trial in the digit working memory task.

those digits. Figure 5.7 shows the time-stepped presentation of a single trial.
Diglts were presented individually, appearing in one box and then disappear-
Ing before the next digit appeared in the next box, Subfects had to keep pace
with the presentation rate by reading the diglts aloud. (We used two presenta-

tion rates, 0.5 s and 0.7 5.) The rightmost digit In each string (8 and 5 in the -

figure) was to be remembered for later recall. These to-be-remembered digits
were presented for double the presentation rate to allow for extra “memoriz-
Ing” time; thus, the slower presentation rate offered more end-of-string time,
After all the strings for a given trial were presented, subjects were prompted to

recall the rightmost digits in the order they were presented. Recalling these

string-final digits s analogous to recalling the sentence-final words in the
Reading Span Task (Daneman & Carpenter, 1980).

This digit working memory task is distinguished from related working
memory tasks in several ways. First, we maintained a precise digit-presenta-
tion rate via computer presentation. This reduced the varlability from subjects
choosing their own rates, Second, because our presentation rates weee qulite
fast, variability owing to different rehearsal strategies was reduced - there was
little time for any kind of rehearsal. Third, we varied the presentation rate to
study its impact on memory performance. Note that 3 slower presentation
rate increases the difficulty of the memory task by clongating the delay
between storing and recalling the memory digits, but it leaves more time for
additional processing of the memory digits. Fourth, we presented the differ-
ent trial types in a random order. This eases the assumption that subjects
come to each trial with an equal allocation of Tesources and eliminates poten-
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tially confounding time-based effects (e.g., learning, strategy change, bore-
dom, fatigue). Finally, we included strict fecall instructions for our task: The
goal was to recall both the Identity and positior. of each memory digit.
Specifically, subjects’ recall had to proceed once through the rmemory list
without corrections or backtracking but with the possibility of skipping
unknown digits, This procedure eliminated variability in recall arder and
reduced potential variability in‘recall strategies.

This task offers several options for manipulating task difficulty, 4 few
that we have explored are (a) number of strings per trial {i.e., number of to-
be-recalled digits), (b) number of digits to be read per string, and (¢) inter-
digit presentation rate. Finally, to verify the similarity of different subjects’
strategies In approaching this task, at the end of the experiment, we asked
subjects to describe their approach to the task, A commonly reported strat-
egy involved rehearsing memory digits at the end of each string after encod-
ing the current to-be-remembered digit. We have incorporated this
Information Into our model, More importantly for our study of individual
differences, the frequency of this response suggests that subjects did not dif-
fer greatly in the strategles they applied to the task. Also, because of the sim.
ple nature of the items to be remembered and the fact that chunking
strategies (i.e.,, encoding the digits into related groups) were so rare, it ts rea-
sonable to assume that undergraduate students would not differ greatly In
their representations or their relevant knowledge about numbers. These
arguments suggest that any memory differences to be found among subjects
in this task would largely be a result of “architectural” differences in work-
Ing memory capacity. At the very least, our procedure reduced other sources
of variabillty more than is typically done.

Modeling Issues I The Basic Model and Its Aggregate Preclictions

The processes required to perform this task involve reading, storing, and
recatling diglts. Based on subjects’ reports, it also appeared that people
rehearsed digits (as time allowed) at the end of cach string. We designed our
model of the task to reflect all of these processes. Qur model represents the
two main goals of this task separately: reading digits and recalling digits. This
corresponds to people switching between the goals as they precess a single
trial. Figure 5.8a depicts a goal to recall the digit in the Rrst position of the
current trlal. Note that the repeesentation of the corresponding memory digit
(Figure 5.8b) is essentially the same; the orly difference is that the value of
the stored digit is Included in the node structure.

These declarative structures are processed by productions that represent
the different actions subjects perform in Completing this task. Table 5.3 pre-
sents a list of some of the processes implemented by separate productions in
our model. The “read” production applies whenever the goal is to read the
digits and a digit Is on the screen, After a digit has been read, if it s in the last
Position, the “store” production applies; this creates a new declarative node
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Figure 5.8. (a) A goal to recall the first diglt in the dlgit working memory task. (b) The

memory element for the first digit In the diglt-working-memory task.

and endows that node with an Initial boost of base-level activation. The
“store” production also sets a subgoal to rehearse previous memory elements
after the current digit is stored. Note that In our model, the production imple-
menting rehearsal attempts to retrieve a particular memory digit. If successful,
this retrieval gives a boost to the node’s base-level activation, making the
node more accessible subsequently (e.g., even easier to rehearse later). The
probability of successful retrieval, however, depends on total activation, that
Is, if the target memory diglt s highly activated relative to the others, it will
likely be retrieved. Notice that a high value of W would produce high activa-
tion for the to-be-rehearsed digit, making rehearsals more likely to succeed
and faster. The more successful rehearsals that fit into the time allowed at the
end of each string, the greater total activations will be wher the “recail” pro-
duction attempts to retrieve the memory digits. This explains how different
values of W can have Impact on the amount of leamning that goes on within a
single trial.

Figure 5.9 shows that different values of W can also directly affect recal of
the memory digits at the end of each trial. Here, the goal is to recall a digit for
the first position of the current trial, The node representing this target mem-

Table 5.3. Critical Productions for Digit Working Memuory Tusk

Read:

IF goal 1s to read a diglt and digit d Is on screen

THEN say digit d

Store:

IF goal 1s to read a digit and digit o Is on screen and d Is in last column and of has
been read

THEN store d and prepare to rehearse

Rehearse:

IF goal Is to read a digit and digit d is in the position to be rehearsed

THEN update position to be rehearsed

Recall:

IF goal is to recall digit Ln position p of trial tand digit d "matches” but has not
been recalied

THEN say digit d

ory {(memory element;) receives source activation from both goal nodes
“first” and “current,” whergéas other memory diglts receive source activation
cnly from the “curtent” gdal node. This difference means that memory ele-
ment; is receiving an additional W;S; units of source activation.? When
either W or §); is smaller, this difference in activation will be reduced, and the
relative ease and speed of retrieving the target memory element will be
reduced, leading to poorer recall. As we described earlier, the link strength St
is smaller the more nodes linked to goal node j; thus, when the memory list is
longer, the Sy's will be smaller and performance will be worse, Moreover,
source activation W) may differ among subjects. Therefore, subjects with a
lower value of W will have a lower W), and hence show poorer recall perfor-
mance. This effect will be even more pronounced on long lists, where the dif-
ferential activation of target memory digits is the product of both a reduced
W and a reduced 5.

To compute the model’s predictions, we ran 22 simulations {one for each
subject) under each of the task conditions used. These task conditions include
all 16 possible combinations of the following factors: number of digits to be

*® The activation of memory element; is also greater than that of the other memory elements
because it exactly matches the current production’s retrieval template (which involves the
first element of the aurent trial). The other memory elements only partially match thls tem-
plate (they are not In the first position), so they corapete for retrieval with an activation
level reduced by the partial matching penalty (Equation 5). Because the mlsmatch penalty
Is smaller the greater the simllarity between a candidate node and the retrieval template,
this mode! produces similarity-based errors where similarity Is a function of position in the
recall string. Although we do not present them here, the pattern of posltional errors pro-
duced by the model Is very similar to that exhlibited by subjects.
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Figure 5.10. Aggregate data {solid boxes) and first:pass model predictions (open boxes)
with standard ertor bars. The dependent measure on the ordinate is percentage of trials
perfectly recalled.

recalled (3, 4, 5, or 6), number of digits per string (4 oc 6), and presentation
rate (0.5 s or 0.7 5). Since the main dependent measure of interest In this task
is probability of recall, we computed the proportion of trials of a given type
for which all the digits were recalled in the correct position (and averaged
across simulations). :

Figure 5.10 presents the model’s predictions. These predictions are not
based on an optimal fitting of the parameters: Most parameters were left at
their default setting (e.g., W= 1), and two parameters, F and s, were adjusted
slightly to preduce predictions in the appropriate range. Also presented in
Figure 5.10 are the aggregated results from 22 subjects who completed 64 tri-
als each (four replications of each of the 16 trial types). Even without opti-
mally tuned parameter values, these predictions show effects of the three
main factors that are similar to those in the data. Specifically, our model pre-
dicts higher recall probabilities for trials with fewer strings (fewer to-be-
recalled digits}, for 4-digit strings over 6-digit strings, and for the slower
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presentation rate over the faster rate. The effect of number of strings is pro-
duced by the model because the fewer memory digits, the more source activa-
tion that gets spread along each link from a goal node to a declarative node.
The effect of number of digits per string is produced by the model because
fewer digits to be read shortens the delay between encoding and recall of the
memory digits {i.e., base-level activation has had less time to decay). And,
finally, the effect of presentation rate is produced by the mode! because the
slower rate allows more rehearsals to be made at the end of each string.
Presumably in our model this benefit of extra practice opportunities out-
weighs the disadvantage of slightly longer delays to recall. This advantage of
the slower presentation rate observed in the data also supports subjects’ self-
report of dolng extra rehearsals after each memory digit was presented. Our
model would have predicted a disadvantage for the slower rate if rehearsals
did not occur during this extra time.

This first-pass model fit is quite encouraging. Even without an optimized
parameterization, the best-fitting line between the data and predictions is
observed = 0.71 - predicted + 0.16, R*=.B8. Nevertheless, there are two defi-
ciencies, First, it appears that the model tends to overpredict for the 4-digits-
per-string trials and underpredict for the 6-digits-per-string trials, and second,
the standard error bars for the model’s predictions are consistently smaller
than those for the data, To address these deficiencles, we next moved to incor-
porating individual differences into our maodel.

Modeling Issues II: Including Individual Differences in the Model

ADDING WORKING MEMORY DIFFERENCES TO THE MODEL. We proposed
that the W parameter in our model, representing an attentional resource,
would reflect individuat differences In working memory. The model! presented

earlier, however, took W as fixed across all simulations. To incorporate indi- .

vidual differences In W in our model, we ran a different set of 22-slmulations
(one for each subject, as above), but this time each simulation was randomly
assigned lts own W value. {Each W was drawn from a Normal with mean 1.0
and standard deviation 0.25.) Here, the diffecent simulations represented dif-
ferent subjects, each with its own limit to source activation. We maintained
all other parameter settings, that is, ne optimal parameter fitting.

Figure 5.11 shows the improved fit attained by the same model as in Figure
5.10 but with randomly varying W values. The best-fitting line between the
observed data and these predictions is more slmilar to the line y = x than
before: observed = 0.95 - predicted + 0.02, R*= .92, This reflects the fact that
the average predictions of the model are now closer to the average observed
accuracles, An important point to note here Is that we did not fit each indi-
vidual W parameter to a particular subject’s data; rather, we drew the 22 W

values randomly from a normal distribution. Thus, merely by adding variabil- .‘

ity to the input of our model via the W parameter, we obtained a better fit to
the data. Another improvement in this second-pass model fit is that the stan-
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Figure 5.11. Aggregate data (solld boxes) and Individual-gifferences mode! predictions
(open boxes) with standard error bars. The ordinate In each plot Is percentage of trials
petfectly recalled.

dard-error bars of the predictions now appear similar In slze to the error bars
of the subjects. In contrast, the previous model did not exhibit enough vari-
ability in Its predictions. In summary, these results show that by incorporat-
ing individual differences in our model, the mean level of the predictions
changed as well as the standard error of those predictions. Such changes arose
because of the nonlinearities in our model. In fact, adding variability to the
input can have such effects in any nonlinear system.

FITTING INDIVIDUAL SUBJECT'S WORKING MEMORY DIFFERENCES.
Although the foregoing model takes into account Individual differences, the
predictions portray only performance in the aggregate. It is possible that a
model (even one that takes into account indlvidual differences) can capture
aggregate results but not be able to At the data of any individual subjects.
Thus, we next fit the parameter W to the data for each subject individually,
keeping the other parameters fixed. Our model predicts that the higher an



T e, TEW TR

166 Marsha C. Lovett, Lynne M. Reder, and Christian Lebiere

_ 100~

g 5 St 24 St 16 a Sk 21

5 w=0s| M w=09 { | W=1.0

< 60 - 4 B

& | M

g 40 — — N ~

3 n u

5 20 ~ E o -

o O-J E
LIRS el I i‘! T T 7
3 4 5 @ 3 4 5 g 3 4 5 &

100 —— & ——l

& B n " u n

g 80 - -

Sed B[4 ® ] "

g

T 40 - ' - E ~

it}

O 5 | Ske s#20 su22

P *)

o W=1.1 W=1.2 W=1.3

0= T 1 | S R

3 4 5 s 3 4 5 B 3 4 5 5

Number of Strings ~ Number of Strings  Number of Strings

Figure 5,12, Individual participant data {solld boxes) and predictlons (open boxes).

individual’s attentional capacity W, the more likely correct retrievals will be,
This Influence of W on retrieval is twofold: (a) higher W values lead to faster
retrieval latencies, which means that more rehearsais (learnlng) can be fit Into
& fixed amount of time, and (b) higher W values lead to the spreading of more
source activation to memory elements that are strongly linked to the goal
nodes, making those memory elements more accessible.

As Figure 5.12 shows, the model accounts well for indlvidual subject’s
recall performance, even matching the shape of Individual subject’s data. In
the figure we disptay the data only by number of strings to malntaln a suffi-
cient number of replications per data point. Although error barcs are not plot-
ted for the model predictions, activation noise leads to stochasticity in
retrieval; even for a fixed vatue of W, the model’s predictions vary somewhat
from simulation to simulation. The six subjects In Figure 5.12 were chosen to
fepresent the range of estimated W values; the model provided a good fit for
all of the 22 subjects. Again, it is Important to note that for these Individual
subject fits, the global parameters of the model were maintained at the same
fixed (and not optimized) values. The only parameter we specially estimated
for these fits was a particular W value for each subject.

[t is interesting to note that this procedure led to a bell-shaped distribution
of estimated W values for our sample (Figure 5.13): a few subjects were best fit
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Figure 5.13. Histogram of number of Particlpants with different estimated values
for W,

by high or low W, and most subjects were fit by W~ 1. Thus, these W est|.
mates tell us something about the subject-to-subject varlability in the quan-
tity that W represents. Moreovey, according to our model, each participant’s
W value represents a fixed quantity of source activation for that individual,
which should be reflected across repeated performance of the same task and

across performance In different tasks. We take up these issues of fixed W for
each subject In the next two subsectians,

Modeling Issues H1: Modeling Performance Across Sessions

To begin to test our hypothesis that a subject’s working memory capacity is
fixed across time and tasks, we asked several sublects to perform the digit
working memory task multiple times (cach time with different stimuil). This
allows us to measure the test—retest reliability of our paradigm and to evaluate
how well our model - with a single W value per subject - can fit multisession
data.

The declarative and pracedural knowledge of the madel Is the same as that
presented earlier, The one important diffetence from the previous treatment,
however, is that here we are exploring the modei’s performance across multi-
ple sesstons. This means that we must consider the learning implications of
getting practice at the task. In the general desceiption of the ACT-R theory
presented earlier, we focused exclusively on declarative learning mechanisms. .
However, repeating the digit working memory task with different stimulj does
not allow for much benefit from declarative leaming - nades are not repeated
Or practiced across trials let alone sessions. The most reasonable kind of learn-
Ing in which subjects likely engage as they repeat this task is procedural leamn.-
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ing. In ACT-R, procedural learning involves the strengthening of productions
with practice. This strengthening mechanism is analogous to the declarative
learning mechanism; instead of increasing a node’s base-level activation with
each use, it involves increasing the strength of a given production with each
use. As in declarative learning, these strength boosts decay with time since
each use. Equation 8 specifies the strength of production p in terms of its uses
at time lags {4

S, = log (E4), ®

Procedural learning has a similar effect to honing a useful tool: The more
often the tool is used, the better it is used. That is, a production that has been
used mare frequently and more recently will require less time to do its pro-
cessing. This allows us to extend the latency function of Equation 3 to
describe the latency of retrieving declarative node i using production p:

Tfp = Fe-15,+Ad, &)

where 5, Is the strength of the production and A, is the total activation of the
declarative node,

In terms of our diglt working memory model, the basic prediction is that
subjects will get faster at the processes involved in the task (e.g., doing
rehearsals) as they galn experience. What implications does this have for
memory performance? As we demonstrated, having more time for rehearsals
teads to improved recall. Therefore, when subjects get faster because of pro-
cedural practice, they will have time for more rehearsals so greater declara-
tive learning will produce an Increase In their proportion of correct recalls.
This prediction allows us to expect reliabllity of performance actoss repeti-
tions of this task to be of a certaln form: Subjects’ recall scores will not nec-
essarily hover at the same level across sesslons but will tend to improve with
practice.

To generate quantitative predictions regarding memory improvement
across sessions, we analyzed our model in light of ACT-R’s basic mechanisms
to determine the effects of production practice on retrieval probabilities. By
drawing on the ACT-R equations presented up to this point, we obtained the
following approximation (see Appendix B for details):

LogQdds(i) = C + D In (3), (10)

where the equation refers to the fog odds of correctly retrieving individual
nodes at session i. When retrievals are plotted against session number on
log-log coordinates, Equation 10 predicts a linear relationship between
retrieval odds and session number. The value C in Equation 10 would be the
y-intercept of that line; it is a constant related to the log odds of correct
retrieval at session 1, which is a function of W as shown in the preceding
model fits. Therefore, individual differences in W should lead to differences In
the y-intercept of different subjects’ retrieval functions. The value D, on the
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Figure 5.14. Individual subjects’ average odds of retrleving memory digits, by session
{in log-log coordinates).

other hand, represents the slope of the retrieval function in Equation 10; itis
a constant related to the decay rate d. In all the models we have discussed, d
was taken as fixed at 0.5 (the ACT-R default). Therefore, we would not expect
differences in the slope of different subjects’ retrieval function. This is consis-
tent with other evidence that people do not differ in decay rates (e.g.,
Salthouse, 1994).

Figure 5,14 shows the data of four subjects who participated in five or more
sessions. These data are plotted in log-log coordinates with odds of digit
retrieval against session number. As the model predicted, for each subject,
there is improvement across sessions. Moreover, the subjects differ in their
session 1 retrieval performance, which is consistent with the predicted
between-subject variability in W. The predictions of Equation 10 are repre-
sented by the solid line in each panel. These lines were fit with a common
stope (D = 0.5) and estimated values for C. Because C is a function of an indi-
vidual’s W value, the different intercept values reflect our model’s account of
working memory differences in this task.
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; The main point of these individuat-subject, multisession plots is to show &

£ that a single W value does not preclude improvement across sessions. [ndeed, z Table 5.4. Critical Procuctions for Alpha-Arithmetic Task

1 the fitted lines in Figuee 5.14 are based on a stable W patameter for each indi. =

oy vidual and yet show improvement across sesstons that is consistent with the =% Retrieve alpha-arithmetic

2

IF the goalis to analyze START + ADDEND = RESULT and the fact START +
ADDEND = RESULT has truth value X

THEN set a goal to respond X

Compute alpha-arithmetic

IF the goal is 10 analyze START + ADDEND = RESULT

THEN set a goal to compute START + ADDEND and compare with RESULT

data.? These results also suggest that it is helpful to view test-retest reliability
and stability of individual differences in terms of a model of cognitive pro-
cessing. In this way, learning effects can unfold naturally, and the model can
provide mechanistic interpretations of both the stable compenents of behay-
ior (e.g., relatively fixed W for each subject) and the variable ones {e.g., learn-
ing and practice effects),

W

Modcling Issues IV Generalizing to Another Task

Thus far, we have siown that varying the amount of source activation (W)
captures individual differences in a digit working memory task and that these
differences appear stable across repeated sessions. One of the primary
strengths of the ACT-R theory, however, is its broad applicability across differ-
ent tasks. Therefore, In this section we show that varying the v parameter in
a model of a different task produces the observed Individual differences in
that task as well. This supports the notion that W |s general enough to
account for memory differences across tasks. The next step then will be to
explore the hypothesis that the same value for W predicts a given individual's
performance on multiple tasks. Here, we describe our preliminary results on
the way 1o that poal,

The task that we model has previously been studied in its exact form by
Zbrodoff (1995) and others (Logan, 1988; Logan & Klapp, 1991; Rabinowitz &
Goldberg, 1995), It is called an alpha-arithmetic task because the goal of each

: trial is to verify whether or not a given statement involving letters and num-
bers is true, For cxample, the statement A + 2 = C is true because C is two let-
ters after A in the alphabet, Correspondingly, the statement A+2=Dis false,
In this task, a statement is presented, and the subject presses one of two keys
to indicate whether the statement is true or false, Subjects’ latercy and accu-
facy are nieasured for each trlal. We used stimuli from Zbrodofi's (1995)
Experiment 1.1 These Include 12 different alpha-arithmetic statements, half
true and half false, with numerical addends of 2, 3, and 4, During the experi-

ical addends, producing what is called the “problem-size effect”: Latencies for
4-addend problems are greater than for 3-addend problems, which are greater
than for 2-addend problems. With Practice, however, subjects gradually learn
the alpha-arithmetic facts required to solve the problems and thus no longer
need to count to verify each statement but can simply retrieve the relevant
fact, This retrieval phase [s slgnaled by a reduction in the problem size effect
(Le., the difference in latency across the 4+, 3-, and 2-addend problems
decreases or disappears because subjects are no longer counting up the alpha-
bet).! The processes Involved In this task are, for the mast part, different
from those in the diglt working memory task, and this alpha-arithmetic task
does not explicitly involve dual tasks. For our purposes, the task allows for the
study of werking memory effects (and individual differences therein) in a rel-
atively simple jearning task.

Our model implements two productions for deciding whether the current
statement is true (Table 5.4):; (2) a production to retrieve a relevant alpha-
arithmetic fact and (b) a production to initiate a sequence of steps for count-
ing up the alphabet, The retrieval production will tend to be preferred, 2 put
if the retrieval attempt fails, the counting production wil] be initiated. Given
these two productions, performance Is mainly driven by the activation of
alpha-arithmetie facts In declarative memory because these activations deter-
mine the probability and latency of retrieva) (i.e, the first production).

Figure 5.15 displays a node structuze corresponding to the fact A + 3= D i
true.” Suppose this structure is already in declarative memory (i.e., the fact
has already been éncountered and stored on 3 previous trial); it will have a
Past results using this task suggest that subjects initially solve the problems certain base-level activation. When the current goal involves processing the
by counting up from the initial letter number of times specified by the

uf procecural learning account of this memeory Improvement is also consistent with sub.

Cts’ reports. When asked about their strategies after each sesslon, participants tended to
maintain the same basic store-rehearse-retrieve strategy mentioned earlier.

YW thank Jane Zorodoff for sharing her experiment software with us,
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from the elements of the problem intersect, but otherwise yse 3 celculation strategy (see
Schunn, Redey, Nhouyvanisvor:g, Richards, & Stroffoling, 1997,
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Figure 5.15. Node structure corresponding to the fact “A + 3 = D is true.”

statement “A + 3 =D,” the goal nodes “A,” “three,” and “D” will all spread
source activation to this alpha-arithmetic fact, thereby increasing its total
activation along all three links. This fact had been used only once many trials
ago, and so its base-level activation would have decayed to a low value. These
two components - received source activation and base-level activation - com-
bine to determine a node’s current accessibility.

As this model progresses through the alpha-arithmetic task, an important
change occurs in its processing: Initially, it will tend to compute its response
by counting (because the necessary alpha-arithmetic facts are not yet present
or have very low base-level activations), and later (once these facts are present
and have been practiced), the model will be able to consistently respond via
retrieval. This general transition is consistent with aggregate results obtained
for this task.

But what are the consequences of varlation in W for this model? As in the
digit working memory task, the higher W, the faster all retrlevals wlll be and
hence the shorter observed latencles will be, This effect applies both to the
counting approach (because alphabet retrievals are required) and to the
retrieval approach (because alpha-arithmetic fact retrievals are required). One
prediction is that a person with a higher value for W will be faster overall than
a person with a lower value of W, Recall from Equation 3 that latency is a
power function of total activation. Thus, ACT-R predicts a linear relatlonship
between log latencies and log number of node accesses (base-level activation
component of total activation) and a shift in these lines for individual differ-

ences in W (source activation component). Figure 5.16a shows this relation- -
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Figure 5.16. (2) Latency predictions for alpha-arithmetic as a function of node practice
and W. (b) Observed practice effects for alpha-arithmetic expetiment.
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ship for several values of W, These values correspond quite well with the
observed latencies for 10 different subjects (Figure 5.16b),

Another prediction of our model involves how quickly people will learn
the aipha-arithmetic facts and thus make the transition from counting to
retrieving. Recall that the higher W is, the more source activation will be
propagated from the goal nodes to the alpha-arithmetic facts that are being
learned throughout the course of the expedment. This makes the alpha-arith-
metic facts more accessible than they would otherwise be with just their base-
level activations alone. Therefore, an individual with high W will be more
likely to retrieve a node with a certain base-level activation than will an Indi-
vidual with low W. This means that a person with high W will be able to
retrieve the alpha-arithmetle facts carlier on in the experiment (when they
have been less practiced) than will a person with a low W value, In terms of
the two approaches for processing each trial, computation should phase out
eatlier for high-W subjects than for low-W subjects. We can gain an indirect
measure of the relative amounts of computation and retrieval by inspecting
the problem-size effect that the model produces in the first, second, and third
. blocks of the experiment. The problem-size effect here is measured as the
average increase in trial latency per Increase in numerical addend (ie., how
much slower is the response for +4 trials vs. +3 trials vs. +2 trials?). Figure
5.17a plots the model's problem-size effect for different values of W. Note that
all the curves show a decrease in the problem-size effect, suggesting more
retrieval and less computation. Moreover, the curves with high W (faster
retrieval latencies} end up with very small problem-size effects, suggesting
that there is almost no effect of addend size {and that retrieval is being used
universally) in block 3. Figure 5.17b plots the corresponding observed data,
with a separate curve for each subject, and shows similar effects. In summary,
varying the W parameter in our model of this alpha-arithmetic task produces
variations in performance (as measured by both latencies and problem-size
effects} that correspond well to those exhibited across our sample,
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Conclusions, Future Isstes, and Speculations

Problem-Size Effect

We belicve that the approach described here is a promising one. Table 5.5
gives a summary of our answers to the designated questions; however, to sum-
marize more generally we list here what we take as some of our modeling
accomplishments: (a) We developed several models in the ACT-R framework
that produced working memory tesults similar to those exhibited by subjects,
(b) We showed that varying the W parameter in those modecls improved
model fits and produced a similar range of performance to that exhibited
across subjects. (¢} We At individual simulation runs to individual subjects’
data by estimating a single individua! difference parameter, W, (d} Given the
procedural leamning mechanism built into the ACT-R framework, our models
captured — with a stable W value for each individual — working memory

11
12

Ftddtotory

13

Figure 5.17. (a) Predicted and (b) observed problem-size effect In alpha-arithmetic task.
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Table 5.5, Stwmary of Answers 1 Designated Questions

(1} Basic Mechanisms ang Representations in Working Memory

(3) The Unitary Versus Non-Unitary Nature of Working Memory

{4) The Nature of Working Memory Limitations

(5) The Role of Working Memory in Complex Cognitive Activities

Because working memory is conceived of as the highly activated subset of
declarative memory, its representations are the same as those for declarative
information. Declarative knowledge is represented as nodes In an Intercon-
nected network, with different types of information using different combina-

the current goal to related nodes in declarative memory and (b) the learning
and decay of declarative nodes’ base-level activations, These two kinds of
activation combine to determine a declarative node’s accessibility: More

Boal-relevant nodes. This leads to context effects. However, there I an
imposed limit to the amount of source activation focused on the goal, so this
fesource must be shared. The base-level activation of nodes reflects their
accessibility independent of context, Base-level activation ts not constrained
by a fixed limit; it keeps accumulating the more a node Is used. This leads to
practice effects. Howeve, base-level activation decays with time since each
use, producing forgetting effects and seqslitivity to time delays.

tive memory (i.e,, it can be camposed of all kinds of Information and struc-
tures), it may be considered a non-unitary construct. On the other hand,
ACT-R posits a limit to the source activation propagating from the current
goal. This limited resource s fixed across all tasks, making working memory
Processing appear unltary. This commeon limit to source activation, however,
ts just one contributor o working memory petformance; knowledge and
strategy are other variables that influence performance,

Working memory limitations are Imposed by tha constralnt that a limjted

(the more complex the goal, the smaller the shares) and then spread to neigh-
boring nodes in declazative memory (the more nelghbors, the smaller the
subdivided zmounts). This propagation of source activation to declarative

memory serves to differentiate goal-relevant nodes from other nodes, maki ng
the former more accessible,

Al AUL-R Perspective un Working Mumnory 1

77

The same working memory processes apply across all cognitive tasks. Because
of the Iimit to source activation, more complex tasks produce greater sharing
of that limited resource and hence lead to degraded performance. These
eifects of limited source activation apply in both dual-task sltuations and

Table 5.5, continued

memory-loaded situations. ACT-R models of a variety of complex cognitive
tasks have provided good quantitative and qualitative fils to observed laten-
cles and probabilities of recall.

(6) The Relationship of Working Memory to Long-Term Memory and
Knowledge
Working memory is conceived of as the more activated subset of long-term
memory. Working memory elements will tend to be those nodes in declara-
tive memory that are strongly related to the current goal {i.e., those receiving
extra source activation from the goal). Other nodes for which this Is not true
may still be In working memory, however, because of thelr high base-level
activatlon (e.g., highly familiar concepts).

(7) The Relationship of Working Memory to Attention and
Consciousness
A conception of working memory compiementary to that in answer 6
emphasizes pracesses over contents. The primary wotking memory process [s
the spreading of source activation from the goal. This process represents the
notion that attention is focused on elements of the goal that thereby modu-
late other information processing (e.g., retrieval). In this sense, we liken lim-
lted source activation to limited attentional resources. Worklng memory |s
related to consclousness in that elements of the goal and nades in declarative
memory are accessible to conscious awareness because of thels heightened
activation. Declarative nodes below this threshold of awareness can still vary
In total activation; therefore, they vary In terms of the processing requlred to
bring them into awareness.

(8) The Blological Implementation of Working Memory
Although connecting the theoretical construct of working memory to a bio-
logical implementation requires bridging a wide gap, neuropsychological
and brain-imaging results suggest a blological implementation that is con-
sistent with out theoretical position and Computational models. First, dam-
aging an ACT-R model’s ability to spread source activation (an “ability”
tightly linked to working memory and the W parameter) produced behav-
loral impaitment similar to that of frontal-lobe patients (Kimberg & Farah,
1993). Second, brain-imaging data (Cohen et al., 1994) show that both con-
text-sensitive processing and the malntenance of symbolic information pro-
duce activation In the prefrontal cortex. These brain functlons have been
modeled by a connectionist framewaork In which retrieval processes {repre-
sented as links between PFC and other brain areas) are modulated by the
current goal (represented in the PFC). Third, brain-imaglng studies have

revealed individual differences in the parameters describing brain activation

during working memory tasks. Mapping these results onto our framework
suggests the goal-based processing (i.e., spreading of W) in our models
describes brain functions assoclated with the PFC and the PFC’s connection
to other brain areas.
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improvements across repeated sessions of the same task. (e} We showed pre-
liminary simulations and data suggesting that these results generalize across
tasks.

Clearly there is much more to do. Qur next major goal is to explore the sta-
bility of W across tasks, that is, to explore whether the W parameter will pre-
dict individual differences for a given subject across tasks. This will test the
hypothesis that W reflects a stable individual difference in waorking memory
processes. Other research in this area suggests that the question is still an
open one. Cases of both stability and change in individual differences across
tasks have been found (e.g., Cantor & Engle, 1993; Shah & Miyake, 1996),

Our approach may help clarify these different results because it will
exptore individual differences in working memory in the context of computa-
tional models of cognitive processing. Our work has already shown that a
complete cognitive model can clarify issues of test-retest reliability (by mod-
eling test-retest effects in terms of procedura! learning) and issues of individ-
val differences (by incorporating variability in our modeling efforts and
reducing important sources of strategic variability in our empirical efforts).

APPENDIX A

Take source activation of goal { at time T that has not been In focus since time
f; 1o be decaying according to the function e-7- 1/t (Equation 7).

The sum of all such goals’ source activations is bounded by

r

Je-tT-ntx jp = o =Tir, tle-TTat] =1 |1 - e-They.

0

As the current time T increases, this expression goes to t, which is to say
the total amount of source activation in the system, with exponential decay
Tate t upon goal switching, is capped by t. In our framework, W represents
that same cap, suggesting that our W parameter and L, Williamson, and
Kaufman's (1992a,b) t represent the same individual difference variable,

APPENDIX B

When practice opportunities are equally spaced, strength of production p, §p,
, NL?
is approximated by Ini 75|, where N = number of practice opportunities, L

= lifetime of the system, and d = decay rate. Let i = number of sessions and 1 =
s

H : o in
number of practice opportunities per session. Then, Spr=3p+1n

1-d1,and

the change in strength from session i to session i + 1 Is given by
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e In [inL’d] i [ i+l ]

Spai= P.M“SP-F!“{ 1—d 1~d i

(B1)
Using Equations 3 and B1, the ratio of latencies to retrieve node k with pro-
ductlon p at session i + 1 to sesslon [ s

—(A £ 1o t|~t
Teptet _ Faldey+5.0 =S ,',)__:rs,‘,,:e'"[; ) N

Tepd  FePasr 50 f+l

Let ff; = the average number of rehearsals per digit that are completed at

Hi{i+1
session i. Then, Hyy = HU+1)

, which can be used to determine the base-
level activation of a node at sessions / and i+ 1. Applying the production-
strength learning approximation to base-level activation learning, the
activation of node k is In 1——-“‘1- , where N = number of accesses of the node
{rehearsals), L = lifetime of the system, and d = decay rate. Substituting #; for

N, we obtain

HL™

Appr=In[T7

and Ak,P.l‘H =1n

Hp L | =1 {H, {i + I)L'dl_
1-d | i1 =y

Using these activations in Equation 4 and converting to odds, we get
Odds(retrlevek,,)z%:—h-, with retrieval threshold t as the competing node.
From this, we derive the ratio for session i+ 1 to i of the odds of tetrieving

node k with production p:

1
i

Hy(t+ 1)
n —————————

Odds(retrievey ,1,1) e i1~ d) [r‘ . llj;_
; = T =TT '
Odds(retnevekﬂ,,_;) lnl gL |
P

By telescoping this odds ratio, we get Odds(retrieve) = Olvr‘l?L, where O =
Odds of retrieval at session 1, 2 function of W, Taking the log of both sides of
this equation produces Equation 10 in the text, with D = (1 - d}/s.
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6 Insights into Working Memory from the Perspective
of the EPIC Architecture for Modeling Skilled
Perceptual-Motor and Cognitive Human
Performance

DAVID E. KIERAS, DAVID E. MEYER,
SHANE MUELL'ER, AND TRAVIS SEYMOQUR

FIVE CENTRAL FEATURES OF THE THEORY

Computational medeling of human perceptual-motor and cognitive per-
formance based on a comprehenslve detailed information-processing
architecture leads to new insights about the components of warking
memory. To itlustrate how such Inslghts can be achleved, a precise pro-
duction-system model that uses verbal working memory for performing
a serial memory span task through a strategic phonological loop has
been constructed with the Executlve-Process/Interactive-Control (EPIC)
architecture of Kleras and Meyer. EPIC Ls characterized by five central
features that may be compared and contrasted with those of other theo-
retical frameworks In this volume. These features Include:

(1) Formal implementation with multiple component mechanisms for
perceptual, cognitive, and mator Iaformation processing {cf,
Barnard, Chapter 9; Lovett, Reder, & Lebiere, Chapter §; Young &
Lewis, Chapter 7; Schneider, Chapter 10).

(2

-

Representation of procedural knowledge in terms of a production
system whose condition-action rules are al! appiied simultaneously
and repeatedly during the cyclic operation of a central cognltive
processor (cf. Lovett et al,, Chapter 5; Young & Lewis, Chapter 7;
O’Reilly, Braver, & Cohen, Chapter 11).

(3) Executive contro! procedures that schedule task activities efficiently
and coordinate the use of limited-capacity peripheral perceptual-
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