Charney, D.H., Reder, L M. & Kusbit, G.W. (1991).

Proceedings of "Documentation: The First Conference on Qualin" sponsored by the Ce
University of Waterloo, Canada. ’

Improving Documentation
With Hands-On Problem-

solving
Davida H. Charney
The Pennsylvania State

University

Lynne M. Reder
Gail W. Kusbit
Carnegie-Mellon University

Davida H. Charney

134

Dr. Charney is Assistant Professor of English at Pennsylvania State University and a
member of the Graduate Faculty. She earned a Ph.D. in Rhetoric from Camnegle
Mellon University and was a Post-Doctoral Fellow there, researching the design of
instructional texts, She teaches courses in Technical Writing, Advanced Technical
Wwriting and Editing, and Research Methods in Composition, as well as assuming
advisory duties at both the undergraduate and graduate levels. She is an Assodate
editor of Technical Communication, the Sodety for Technical Communication's
quarterly journal, and co-editor of Constructing Rhetorical Education: From the
Classroom to the Community. Her many publications and collaborations reflect her
interest in document design and writing quality. She is co-author of Evaluating
Technical Writing, Studies in Elaboration in Instructional Texts (which was named the
NCTE's Best Formal Research Article in Technical and Sdentific Communication for
1989), and The Role of Elaborations in Learning a Skill from and Instructional Text.
Currently In press Is The Impact of Hypertext on Processes of Reading and Writing.
Dr.Charney has been a speaker at numerous conferences, workshops, and
colloquia in Canada and the United States.

Paper presented at “Documentation: The First Conference on Quality,” sponsored
by the Centre for Professional Writing, University of Waterloo, October 3-4, 1991.
The work reported here was sponsored by the Office of Naval Research, Contract

No. N00014-84-K-0063, and in part by Grant BNS-03711 from the National
Sclence Foundation to L. Reder.

Centre for Professional Writing

Irﬁproving Documentation With Hands-On Problem Solving

The Cognitive Demands of Documentation

Computer documentation—no matter how well written or designed—Imposes
heavy cognitive demands on its readers, demands of a specific kind. In order to
improve documentation, in order to make it easler for readers to use, it is crudal to
begin by understanding what these cognitive demands are and find ways to reduce
them. The clearest way to illustrate the cognitive demands imposed by computer
documentation is to contrast how readers use documentation, a form of
Instructions that we will term “skill-oriented” with the way they read and use
other types of instructions, which we will call “project-oriented.”

Project-oriented Instructions

Project-orlented instructions are probably the most common type of instructions.
These include all the typical do-it-yourself instructions, such as instructions for
assembling a model airplane, putting up vertical blinds, or setting the time and
date on a VCR. To get a sense of how readers use project-oriented instructions,
consider an idealized case of a parent who buys a children’s bicycle and reads the
instructions for putting it together. It is immediately obvious that this is an
idealized case because we are assuming that the parent actually does start by
reading the instructions! In any case, the reader’s goal is relatively unambiguous:
she wants to end up with a functional bicycle. In fact, we can easily imagine that
anyone else who bought the bicycle would have the same goal of ending up with
the same bicycle. The scope of the task Is thus very tightly constrained and well-
specified. The bicycle-buyer starts out with a package containing an assortment of
hardware and a set of instructions, usually including a picture of what the fully
assembled bicycle will look like. She generally can assume—unless there has been
some kind of packaging error—that all the parts needed to assemble the bicycle
have been supplied in the package and that If any other tools or parts are needed,
the instructions will specify what they are. In this situation, the reader’s basic
strategy for using the instructions can be fairly straightforward: she reads one of
the directions and then tries to carry it out. When one step is correctly completed
(a condition that may take a good deal of interpretive and practical effort), she
moves on to the next step in the sequence. She repeats this process, moving back
and forth between the text and the task, until there aren’t any more steps, there
aren’t any leftover parts, and the bicycle works. Admittedly, this idealized version
corresponds only roughly to reality, but the basic goals and strategies are easily
recognizable,

An important aspect of project-oriented instructions is that they don’t involve
much long-term learning. Once the bicycle has been assembled, the reader usually
has little if any interest in keeping the Instructions—let alone trying to remember
them—aunless she anticipates having to fix the bicycle or take it apart again. The
next time she has to put a bicycle together, she will obtain and follow another set
of instructions. Admittedly, the practice she has acquired at putting bicycles
together might help her follow the next set of Instructions more easily. However,
she probably does not aspire to assembling bicycles on her own without looking at
any instructions. In cognitive terms, the reader is content to rely heavily on an
- external store of information, the instructions.

Skill-oriented instructions

Obviously, the situation of someone picking up a computer user’s manual or other
“skill-oriented” instructions is quite different and in every way more complex.
Whereas the instructions for assembling a bicycle pertain’to a single, well-defined
task, a computer manual provides instructions that are generic and multi-purpose.
For any given spreadsheet program, for example, one user may want to set up a
marketing forecast, another to calculate his income taxes, and a third to analyze
the data from an experiment. Even users who are doing the same kind of task will
be operating under extremely different constraints and with different goals. But
these readers may all draw on the same set of basic procedures to achieve these
very different goals. Any single computer user, in fact, may use and reuse some

Conference on Quality in Documentdtion 135

~ Davida H. Charney

136

procedure to perform a variety of tasks at different times. Because of the wide-
ranging applicability of many functions on a computer, it is difficult or impossible
to determine in advance why a computer user is reading any particular part of the
manual.

As a consequence of this fact, the writer of documentation has a very difficult task.
As compared to the writer of instructions for assembling a bicycle, the .
documentation writer can assume very little about the readers’ goal, about the
initial problem state, or even about the “objects” the reader has to work with. The
procedures must be stated in abstract terms. The documentation for the :
spreadsheet program, for example, cannot describe its functions and features only
In terms of setting up a budget, but as general procedures that can accomplish a
varlety of functions. This level of abstraction, in turn, has other consequences for
the reader, who has to figure out how to apply—or particularize, or instantiate—
the general procedure in his or her particular situation. The computer user’s basic
strategy for gathering information from the text is therefore quite different from
the parent putting together a bicycle. Rather than simply moving back and forth
between a list of numbered steps and a well-specified set of objects, the computer
user has to figure out which command or commands to use, in what sequence, and
how to apply them.

To some extent then, the documentation reader’s goal is not simply to solve some
particular problem (though that may be the primary goal); a documentation reader
also learns the procedures in a way that the reader of project-oriented instructions
never wants to learn the individual steps in a set of instructions. It’s not so much
that anyone is really interested in learning individual computer commands per se—
and in fact some computer users strenuously avoid learning anything beyond what
they absolutely have to in order to do their jobs. But all computer users must
compile a repertoire of procedures for performing day-to-day tasks. And, in
contrast to the reader of project-oriented instructions, computer users expect to
work fairly independently of the manual. While every computer user will need to
refer to the manual once in a while to find or remember some arcane command or
learn a new one, she does not want to have to look up every individual command
every time she uses it. In other words, there is a core of basic commands that the
computer user must internalize in order to become proficient at using the
computer.

Because of the way in which computer users read and learn from documentation,
the most important function of documentation may be to teach users to recognize
the situations in which a given command or procedure or option may be useful
and provide enough specific guidance for how to apply it to their particular
situation. On the basis of several years of research on documentation, we have
concluded that the most effectivé way to help users s not simply by providing
extended examples in the manual, not by providing on-line step-by-step tutorials,
and not by leaving users to discover procedures on their own. The best approach
we have found iIs to Incorporate problem-solving into documentation. In this
paper, we will describe the studies we conducted that led us to this conclusion.

The general strategy for our research has been to produce several versions of a
computer manual that differ in systematic ways. We asked participants in the
studies (generally college students) to read the manuals and then demonstrate
what they had learned by performing a set of tasks on the computer. We observed
how many tasks the particdpants completed successfully and how long it took them
to do so. By comparing the performance of participants who read the different
versions of the manual, we Inferred which characteristics of the manuals seemed
to lead to better performance. We also employed a variety of readers: experienced
computer users as well as computer novices, readers who open a manual with a’
particular task in mind as well as readers who have no particular agenda. By
comparing the performance of these groups of readers, we learned what kind of
manual works best for different kinds of readers.

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

How Muéh Elaboration?

The first question our research addressed is how much and what kinds of
elaborative information a computer manual should include. The value of
elaboration in computer manuals has been a controversial {ssue for some time. The
parties in the debate tend to fall into two quite distinct camps: the “expounders,”
who believe that instruction should be as complete and explicit as possible and
the “minimalists,” who believe that instruction should above all be brief and that it
should leave much to the leamner’s own exploration. :

The expounders’ view is the more traditional: an instructional manual for novice
learners should be as complete as possible; it should assume little if any prior
knowledge and it should provide detalled exposition of all relevant points. This
view addresses the problem of “skill-oriented” instruction by attempting to
anticipate the various situations a reader might encounter and address them
explicitly. Robert Tausworthe, for example, outlines several levels of detail for
documenting computer software. The highest level of detail is called for in what
he labels “Class A documentation,” which he describes as follows: “Class A
documentation is the most detailed; it contains specific definidtons and detailed
descriptions of every significant factor or item within the software specification. . .
. This level of detail probably finds its most applicability in user manuals, and
rightly so: The writer of a user manual is generally unavailable for consultation, so
the user needs the extra detail” (158-159).

As commonly observed, however, there are drawbacks to complete and explicit
documentation. In particular, users resist reading commercial manuals written
according to the traditional guidelines, even when the relevant passages are easy
to locate. People seem to prefer to figure things out on their own, or to ask
someone for help (see, for example, discussions by Wright, Scharer, and Carroll).
From this perspective, providing complete and detailed instruction seems to be of
little practical use to the learner. Designers of so-called “minimalist” training
materials proceed on the assumption that willingness to read a manual is inversely
related to the manual’s length, that people in general want to start doing things
instead of reading about them and that therefore, instructional materials should
actively encourage exploration by providing as little prose as possible (Carroll, et
al., “The Minimal Manual”).

Proponents of both approaches obviously have the readers’ needs in mind, but
disagree on how best to serve them. In our first studies, we investigated which
approach to elaboration actually worked best for novice and experienced
computer users.

Study 1

In our first study (reported in detail in Reder, Chamey & Morgan), we prepared
two versions of a computer user’s manual that described the basic commands for
the Disk Operating System (DOS) on the IBM Personal Computer (IBM-PC). One
version of the manual, the Elaborated version, contained numerous definitions,
analogies, examples, overviews, and other elaborations (see excerpt in Figure 1).
The other version of the manual, the Unelaborated version, omitted all these
elaborations and was about one-third as long—3500 words as opposed to 11,000
(Figure 2).

The participants in our study were 40 college students who were inexperienced at
using computers. We gave each participant one of the two manuals to read for
forty-five minutes. Then we took away the manual and asked the participants to
perform a set of basic tasks on the computer. The participants were aware that the
manual would not be available to them after the reading period was over.

Conference on Quality in Documentation _ 137

Davida H. Charney

Changing the Current Directory—CHDIR

The CHDIR command (short for “change directory”) allows you to
designate a directory as the “current” directory for a drive so that
the computer will automatically look there for files or
subdirectories mentioned in your commands. You can designate a
current directory for each disk drive independently. Changing
the current directory on the diskette in drive A does not affect
the current directory on drive B.

The root directory is automatically designated as the current
directory for each drive when you first start up the computer. It is
useful to designate a subdirectory as the current directory when
you will be working primarily on the files in that subdirectory.
Then you won'’t have to spedfy the path to the subdirectory in
each command you issue. .

Format
The format of the command is:
CHDIR [loc and name of new current directory]

You can use the abbreviation CD in the command instead of
typing CHDIR.

[Location of new current directory] refers to the path to the
directory you want to designate as the new current directory. The
last directory name on the list should be the name of the
directory you want to designate.

For example, the command below designates a subdirecfory called
PASCAL as the new current directory in drive B: '

A> CHDIR B:\PROGRAMS\PASCAL <ENTER>

The first symbol in the path is a backslash (\). This means that the
path to the new current directory starts with the root directory of
the diskette in drive B. The path indicates that the root directory
contains a subdirectory called PROGRAMS, and that PROGRAMS
contains PASCAL, the directory you want to designate as the
“new” current directory. As usual, the amount of location
information you need to provide depends on which directory was
last designated as the current directory for the drive.

To change the current directory back to the root directory, give a
command like the following: ’

A> CHDIR B:\ <ENTER>

The backslash (\) in the commands above symbolizes the root
directory. So the command above changes the current directory
for drive B to the root directory.

If you forget which directory is the current directory, the
computer can remind you. Enter a CHDIR command without
specifying a location. The computer will display the path from the
root directory to the current directory or a backslash if you are still
in the root directory.

Figure 1. Excerpt of Elaborated PC-DOS Manual Used in Study 1
(Equivalent to Manual with Rich Procedural and Rich Conceptual
Elaborations in Study 2)

138 Centre for Professional Writir

Improving Documentation With Hands-On Problem Solving

In addition to varying the amount of elaboration In the manuals, we also simulated
two common situations in which people read manuals. Sometimes people turn to a
manual when they have a specific problem or goal in mind and are looking for
information relevant to solving the problem. At other times, people turn to a
manual to learn a new skill with only a general idea of how they might make use of
what they learn. We simulated these two reading situations by dividing our
participants into two equal groups. We gave one group advance information about
the tasks they were going to perform before we gave them the manual to read. We
assumed that participants in this “Task Orentation” group would then read the -
manual with the specific tasks in mind. The other participants (the “General
Orientation” group) had no idea as they read the manual what kind of tasks we
would ask them to perform. Within these two groups, half of the participants read
the elaborated manual and half the unelaborated manual.

The tasks that the partidpants performed called directly on procedures described
in the manuals: renaming files, creating subdirectories, copying and deleting files,
and so on. As the participants worked at the computer, it recorded the commands
and the time at which they were entered. We measured how well participants
performed the tasks by counting how many tasks they were able to complete and
how efficlently they worked (i.e., how much time they took and how many
commands they had to issue to the computer).

Changing the Current Directory—CHDIR

The CHDIR command allows you to designate a directory as the
“current” directory for a drive, so that the computer will
automatically look there for files or subdirectories mentioned in
your commands. You can designate a current directory for each
disk drive independently. :

Format
CHDIR [[d:]path]

You can use the abbreviation CD in the command instead of
typing CHDIR.

If you designate a subdirectory as the new current directory, the
computer will carry out all the subsequent commands within that
directory, unless you specify a path to another directory. To
change the current directory back to the root directory, use a
backslash as the path.

If you forget which directory is the current directory, the
computer can remind you. Enter a CHDIR command without
specifying a location. The computer will display the path from the
root directory to the current directory, or a backslash if you are
still in the root directory. :

Figure 2. Excerpt of Unelaborated PC-DOS Manual Used in Study 1
(Equivalent to Manual with Sparse Procedural and Sparse Conceptual
Elaborations in Study 2)

The results summarized in Table 1 show that all participants completed about the
same number of tasks successfully with either version of the manual. We infer
from this result that both versions were adequate for learning the basic _
information. However, we also found very different trends for how efficlently the
Task Orientation and General Orientation groups completed the tasks. The Task
Orientation group performed about equally efficiently with either the elaborated
or unelaborated version of the manual. On the other hand, the General
Orientation group performed much better with the longer, elaborated manual—
they needed significantly less time to complete the tasks and issued fewer

commands than participants who used the unelaborated, more “minimalist”
manual. :

Conference on Quality in Documentation 139

Davida H. Charney

140

Task Orientation General Orlentation
Elaborated Unelaborated Elaborated Unelaborated

Measure Manual Manual Manual Manual

(n=10) (n=10) (n=10) (n=10)
Percentage of
Tasks Correctly
Completed .80 .80 .85 .76
Average Time
to Complete
All Tasks (in minutes) 33.5 36.1 29.4 40.2
Average Number of
Commands Issued : :
To Complete All Tasks 95.8 94.2 76.8 101.8

Table 1. Average Performance at Test as a Function of.Version of Manual and Prior
Orientation to the Tasks (Study 1)

Even though we found no advantage for elaborations for the Task Orientation
group, the results in general support the expounder’s case. The Task Orlentation
group was not seriously impeded by the inclusion of the elaborations. But omitting
the elaborations led to significant declines in the performance of the General
Orientation group. Since documentation writers cannot assume that all learners
will come to the manual with such clearly defined goals as the Task Orientation
group, the safest course seems to be to include the elaboration.

This conclusion conflicts with the findings of Jack Carroll and his colleagues at IBM
who found advantages for a minimal manual over a commerdially produced, fully
elaborated manual for a word processing program (“The Minimal Manual”). Carroll
et al. found that participants (mostly secretaries) who worked through the minimal
version of the manual learned the basic information more quickly than those who
used the full version. Furthermore, when participants went on to study more
advanced topics, those who had initially worked with the minimal manual learned
more new techniques more quickly. Why did our study produce such different
results from these? We suspected that the conflict was mainly caused by
differences in the kinds of manuals we compared and the kinds of information
that was included or excluded. The elaborated manual in Carroll et al.’s study
included a great deal of information (both main points and subordinate detail) that
the minimal version omitted completely. In our study, the basic facts in both
versions were carefully kept constant; we simply varied the amount of supporting
Information. It is possible that some kinds of elaborations are useful and others are
not. Another important difference in the two studies was that both versions of
Carroll et al.’s manual were tutorial in the sense that readers were expected to try
things out on the computer as they read about them. In contrast, the participants
in our study simFIy read the manuals and then tried to apply what they had

learned on-line.* In our subsequent studies, we investigated the effect of both

" factors—the type of elaboration and the value of hands-on activity.

1 we also note that the partidpants in Carroll et al’s study were secretaries who
were very familiar with the performance task-letter writing. They may therefore
have been more like the Task Orlentation group in our study who derived little or
no benefit from the less elaborated manual.

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

What Kind of Elaboration?

To delve deeper into the issue of what kind of elaboration is of value to users, we
began to consider what kinds of things people have td learn in order to acquire a
skill (Charney and Reder). Our analysis led us to Isolate three components to skill
learning. In order to perform a new skill well, a leamer must:

¢ Appreciate the meaning of novel concepts and the purpose of novel
procedures. For example, profident typists who have never used a word-
processor must learn what things can and cannot be done on the computer.
They must apprediate, for example, both the availablility of automatic margin
agd tab adjustment and the impossibility of underlining by overstriking
characters. :

¢ Execute the procedures correctly. Learners must remember such details as
where to position the cursor, in what order to type the arguments of a
command, and whether a carriage return is required.

¢ Use the procedures at the appropriate times. Learners must remember to use
the procedures they have learned and know how to choose the most
appropriate procedure for a particular situation.

Elaborations in a computer manual may touch on any of these topics: what
concepts and procedures are involved, when they are relevant, and how one
applies them. It is possible however that users need elaboration of only some of
these kinds of information but not of others. If we are right, then expounders may
Indeed include unnecessary information by giving detailed treatment to all points
and not just the ones that need it. Conversely, minimalists may under-specify
some points when learners would benefit greatly from more elaboration. In our
initial study we used manuals that either elaborated on all of these points or on

none of them. In our next study, we systematically varied which kinds of
elaborations were included.

Study 2

In order to test the possibility that different components of skill learning require
different elaboration, we classified the elaborations in our IBM-PC manual into two
categories (for a complete description, see Reder, Charney, and Morgan).
Elaborations were classified as “conceptual” if they concerned basic concepts, such
as the purpose of the “Rename” command, or conditions for application, such as
when it’s a good idea to rename a file. That is, conceptual elaborations dealt with
both the first and third components of skill learning. Elaborations were classified as
“procedural” if they concerned the second component, learning to issue
commands correctly. Procedural elaborations included examples of correct
commands, details about notation conventions, and so on. We then tested all
possible combinations of the conceptual and procedural elaborations by producing
four versions of the IBM-PC manual with the following combinations of
elaborations:

e Rich Conceptual & Rich Procedural Elaborations

» Rich Conceptual & Sparse Procedural Elaborations

» Sparse Conceptual & Rich Procedural Elaborations

e Sparse Conceptual & Sparse Procedural Elaborations

The version that was rich in both types of elaboration was equivalent to the
elaborated manual in our previous study (Figure 1) and the version that was sparse
in both types was equivalent to the completely unelaborated manual (Figure 2).
The other two combinations are presented in Figures 3 and 4.

The procedure for this experiment was similar to that of Study 1. Participants were
given time to read a version of the manual and then were asked to perform a
series of tasks on the computer. In this study no participants were given advance
information about the tasks they would perform—all were in a “General
Orientation” condition. However, we did vary previous computer experience. Our
participants included 40 novice computer users and 40 experienced computer

Confe(ence on Quality in Documentation 141

Davida H. Charney

142

users, none of whom had ever used an IBM-PC.2 We expected that the novices
might need elaborations of both kinds, while the experlenced computer users
(who were already familiar with basic computer concepts) might only need the
procedural elaborations. ‘

The results of this study (Table 2) indicated that the most effective manuals were
those containing procedural elaborations, as shown in the leftmost two columns {n
Table 2. Partidpants who had read either of the manuals with rich procedural
elaborations finished the tasks in about 37 minutes and {ssued about 72 commands.
In contrast the partidpants who read manuals with sparse procedural details (the
right hand columns) needed about 44 minutes and 90 commands, significantly
worse performance. Surprisingly, we found no benefit at all from including the
conceptual elaborations. Adding rich conceptual elaborations to manuals with rich
procedural elaborations produced no better performance than having the
procedural elaborations alone. Similarly, manuals with only rich conceptual

elaborations produced performance no better than those having no elaborations at
all.

The most surprising aspect of our results was the similarity of the patterns for
novice and experienced computer users. Although the novices performed less well
in general than the experienced computer users, they did not benefit any more
than the experienced users from the conceptual elaborations. On the other hand,
they did benefit just as much from the procedural elaborations. It is possible that
the type of conceptual elaborations we included were not exactly what the
novices needed. Nystrand conducted a study that is consistent with this
possibility. He found that “high knowledge” and “low knowledge” computer users
asked different kinds of questions when trying to use computer documentation.
Low knowledge participants most often asked for “categorical definitions” while
high knowledge participants most often asked for “further specifications.”
Nystrand characterized the differences in the questions as requests for topic
elaborations (categorical definitions) or comment elaborations (further
specification). He also found that adding the appropriate kinds of elaborations
reduced the questions asked by both groups.

The conclusion to be drawn from our two studies is that one cannot produce an
effective manual by being either a pure minimalist or a pure expounder. While
conceptual elaborations may be dispensable, computer users—both novices and
experienced users—<clearly benefit from another kind of elaboration—those that

illustrate how to carry out general procedures.3

2 We evaluated computer experience with a questionnaire which probed what
kind of computers and software applications the participants had used as well as
their previous programming experience.

3 Other researchers have also found differential benefits for particular types of

- elaboration. For example, Kieras found that people learning to operate a

mechanical device derive little benefit from detailed information about the
internal workings of the device. He found that such “how it works” information is
only useful if the learner must infer the operating procedures (rather than
memorizing them or looking them up) and if the “how it works” information is
specific enough to enable such inferences.

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

Changing the Current Directory—CHDIR

The CHDIR command allows you to designate a directory as the
“current” directory for a drive, so that the computer will
automatically look there for files or subdirectories mentioned in
your commands. You can designate a current directory for each
disk drive independently. '

Format
CHDIR [loc and name of new current directory]

You can use the abbreviation CD in the command instead of
typing CHDIR.

[Location of new current directory] refers to the path to the
directory you want to designate as the new current directory. The
last directory name on the list should be the name of the - -
directory you want to designate.

For example, the command below designates a subdirectory called
PASCAL as the new current directory in drive B:

A> CHDIR B:\PROGRAMS\PASCAL <ENTER>

The first symbol in the path s a backslash (\). This means that the
path to the new current directory starts with the root directory of
the diskette in drive B. The path indicates that the root directory
contains a subdirectory called PROGRAMS, and that PROGRAMS
contains PASCAL, the directory you want to designate as the
“new” current directory. As usual, the amount of location
information you need to provide depends on which directory was
last designated as the current directory for the drive.

To change the current directory back to the root directory, give a
command like the following:

A> CHDIR B:\ <ENTER>

The backslash (\) in the commands above symbolize the root
directory. So the command above changes the current directory
for drive B to the root directory.

If you forget which directory is the current directory, the
computer can remind you. Enter a CHDIR command without
specifying a location. The computer will display the path from the
root directory to the current directory or a backslash if you are still
in the root directory. :

Figure 3. Excerpt of Manual lllustrating Rich Procedural and Sparse
Conceptual Elaborations Used in Study 2

Conference on Quality in Documentation 143

Davida H. Chorney

144

Changing the Current Directory—CHDIR

The CHDIR command (short for “change directory”) allows you to
designate a directory as the “current” directory for a drive so that
the computer will automatically look there for files or
subdirectories mentioned in your commands. You can designate a
current directory for each disk drive independently. Changing
the current directory on the diskette in drive A does not affect
the current directory on drive B,

The root directory is automatically designated as the current
directory for each drive when you first start up the computer. It is
useful to designate a subdirectory as the current directory when
you will be working primarily on the files in that subdirectory.
Then you won'’t have to spedfy the path to the subdirectory in
each command you issue.

Format
The format of the command is:
CHDIR [[d:]path]

You can use the abbreviation CD in the command instead of
typing CHDIR.

If you designate a subdirectory as the new current directory, the
computer will carry out all the subsequent commands within that
directory, unless you specify a path to another directory. To
change the current directory back to the root directory, use a
backslash as the path.

If you forget which directory is the current directory, the
computer can remind you. Enter a CHDIR command without
specifying a location. The computer will display the path from the
root directory to the current directory, or “\”, if you are still in
the root directory. .

Figure 4. Excerpt of Manual lllustrating Sparse Procedural and Rich
Conceptual Elaborations Used in Study 2

Why were the procedural elaborations so useful? The benefit we found is akin to
the widely known strategy of learning from examples. Psychological studies of
concept and skill learning alike have shown that studying worked-out examples to
a problem (often in conjunction with an abstract rule or procedure) can help
people identify categories of problems and appropriate solution strategies for each
(Ross and Kennedy; Sweller and Cooper; Tarmiz{ and Sweller; Nitsch; Tennyson,
Woolley, and Merrill). Studies have also shown that 1earners use worked-out
examples as scaffolds for constructing solutions to new problems: they retrieve the
example from memory and replace the terms specific to the old problem with
terms relevant to the new one (Anderson, Farrell and Sauers; Ross). Examples,
then, provide computer users with two ways to meet the cognitive demands
Imposed by skill-oriented instructions. First, as indicated by the results of Study 1,
computer users need to know something about the contexts in which a general
procedure may be useful. Seeing an example of a command being applied in a
particular situation provides information about typical situations, or categories of
problems. Second, as indicated by Study 2, computer users need to learn how to
apply a general procedure to a specific situation—having the abstract rule for the
computer command was not sufficent even for experienced computer users. An
example, by providing an appropriate instantiation of a rule for a particular
situation, provides a scaffold with which learners can construct new instantiations.

s

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

Rich Procedural

Sparse Procedural

Elaboratlons Elaboratlions
Rich - Sparse Rich Sparse
Measure Conceptual Conceptual Conceptual Conceptual
Elaborations Elaborations Elaborations Elaborations
(n=20) (n=20) (n=20) (n=20)
Percentage of :
Tasks Correctly :
Completed 73 .80 73 73
Average Time
to Complete . .
All Tasks (in minutes) 37.4 37.7 43.5 - 45.9
Average Number of
Commands Issued
To Complete All Tasks 71.7 73.7 88.7 92.4

Table 2. Average Performance at Test for Manuals Containing Four Combinations of
' Elaborations (Study 2) :

Reading examples, then, {s one way to help computer users learn about the range
of problems that various procedures can help them solve, as well as how to

execute those procedures. But is reading an example in a manual the most
effective learning paradigm? In our next two studies we addressed the issue of
learning by doing, the claim that people not only prefer to try things on their
own, but also that they learn more that way than by reading manuals. In particular,
we Investigated the relative effectiveness of having learners read manuals, follow
tutorials, solve a set of problems, and explore the features of a system on their
own. Each of these formats is consistent with the notion that computer users need
examples of contexts in which procedures are used, but each makes different
assumptions about the types of examples they need to see and how they process
them.

Learning by Reading, Following, Exploring, and Problem-
solving '

Study 3

In this study, we compared the relative merits of reading 2 manual (the approach
used in our previous two studies) with two new paradigms: following a tutorial and
solving problems. Of the two, tutorials in which a user follows step-by-step
instructions to enter commands that demonstrate the computer’s features, are by
far the more familiar. On-line tutorials (augmented in some cases with audio tapes
or on-line simulations) have become a staple of much computer documentation.
Tutorials would seem at first glance to be simply an enhanced, active form of
reading a manual with examples. Both set up hypothetical situations in which the
computer procedures may be appropriately applied. The tutorial simply adds the
physical activity of carrying out the instructions on the computer and allows the
user to observe the computer’s prompts and feedback messages at each stage along
the way. Given the similarities between reading examples and the guided activity
in tutorials, one might expect that people using tutorials would learn at least the
same amount, and probably more than, people who simply read manuals that
contain examples.

Conference on Quality in Documentation 145

Davida H. Charney

FIGURE 5.Sample Training Problem In Problem-Solving and Tutorial
Form (Used in Stwdies 3 and 4)

la. Problem-Solving Form _
Alphabetize the names, by putting the rows containing Steele and Stewart further down in
the appropriate spots. :

Feedback appearing on the followlng page:
You could have used the following sequence of commands (starting with cell Al as the - --
current cell) to solve the preceding problem:

/M . A7 [RETURN]
/M . A7 [RETURN]

1b. Tutorial Form -
To alphabetize the names, by putting the rows containing Steele and Stewart further

down {n the appropﬁat;lslrots. type the following sequence of commands (starting with
cell Al as the current :

/M . A7 [RETURN]
/M . A7 [RETURN]

VisiCalc display as it appeared on the computer for all versions of the problem

B

Clerk
Stewart - Clertk I
Sanders Manager
Schiff Manager
Sebert =~ Accountant
Snyder Secretary
Sweet Clerk II

Solving problems as a learning strategy grows out of the tradition of chapter-end
exerdses in math or science textbooks. Like the reading examples and tutorial
approaches, this approach starts with a text that contains problems prepared in
advance for the learner. However, instead of studying or carrying out a solution
provided in the text, the learner must arrive at a solution independently by
retrieving candidate procedures from memory, selecting an appropriate one for
the given problem, generating a correct instantiation of the procedure, and
executing it correctly. In addition, learners may receive feedback on the solution,
in the form of answers in the back of the book. In this analysis, solving problems
should provide some of the same benefits as studying worked-out examples (or
perhaps tutorials) by providing information about the types of situations in which

146 | Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

specific procedures may be useful. Solving problems may do more, however,
because it forces learners to actively consider the possible procedures and to
attempt to execute the chosen procedures independently. Sweller and Cooper
dispute this claim, arguing that learners who simply solve problems may spend

time fruitlessly on incorrect solution paths and thereby fail to acquire good models
of solutions.

In this study (described in more detail in Charney and Reder, “Designing
Interactive Tutorials”) participants learned how to use the VisiCalc electronic
spreadsheet. The study was conducted in two sessions consisting of a training
session and a testing session two days later. In the training session, 44 particdpants
(mainly undergraduates) learned 12 VisiCalc commands by reading brief - manual
entries describing the purpose of each command and how to execute it. In
addition to the entry for each command, the manual contained problem sets,
consisting of three problems for each command. In all relevant respects, the
problems were equivalent to examples of concrete situations in which a procedure
could be used to achieve some particular goal. However, some problems were
presented with explicit solutions—an exact sequence of keystrokes—and others
were presented as unsolved problems with the correct solution presented as
feedback on the following page (Figure S). Notice that both versions of the
problem presented exactly the same information to the particpant, but at
different times. We systematically varied what kinds of problems participants saw
and what they did with them.

Read Only Group

One group of 14 participants was assigned to the “Read Only” group. These
participants received a manual in which all the problem sets contained worked out
solutions. In effect, these participants followed a learning paradigm similar to that
of our previous studies, in which they simply read the manual and were later
tested trying to carry out the procedures on-line for the first time.

Interactive Instruction Group

The remaining 30 participants were assigned to the “Interactive Instruction”
group. These participants all used the computer to try out the commands on-line
as they encountered the problems. However, they received different kinds of
problems for different commands. Any given command may have been
accompanied by three kinds of problem sets (Pure Tutorial, Pure Problem-solving,
and Mixed Practice). Since there were 12 commands in the manual, each
participant in the Interactive Instruction group learned four commands with each
of the three kinds of problem sets.

o Pure Tutorial. The three problems for a command all included the exact
sequence of keystrokes that participants were to enter to achieve the goal.
These problems were identical to those presented to the “Read Only” group—
the difference is that participants actually entered the commands listed in
order to solve the problems.

o Pure Problem-solving. The three problems for a command presented a specific
goal but included no instructions for how to achieve it. After participants
solved the problem to their satisfaction (or gave up), they saw feedback on
the recommended sequence of keystrokes.

e Mixed Practice. The first training problem for a command was presented in
Tutorial form and the remaining two were in Problem-solving form.

Two days after the training session, all participants were given a test consisting of
12 new problems to solve on the computer, one problem for each command. We
evaluated their performance in terms of how many problems they solved correctly
and how much time they needed to reach a solution.

Overall, the results indicated that working interactively with the computer was
more effective than simply reading the manual. The participants in the
Interactive Instruction group as a whole solved more test problems more quickly
and accurately than participants in the Read Only group (Table 3). These results
support the notion that active learning situations in which people apply

Conference on Quality in Documentation 147

Davida H. Charney

148

procedures for themselves are more effective than those in which they simply
study the procedures. Among the interactive conditions, problem-solving was
clearly the most effective form of training. Participants solved significantly more
test problems correctly for commands they had learned with Pure Problem-Solving
or Mixed Practice than with Tutorlals. The accuracy for Tutorlals was neatly as low
as for the Read Only group. Furthermore, participants did not need a tutorial
before trying to solve problems on their own. In particular, training with Mixed
Practice did not lead to better performance than Pure Problem-Solving. However,
we did not find that the different forms of training influenced participants’ -
effidency, or how quickly they could solve a problem. To this extent, we found at
least some benefit—in terms of facllity at entering commands—to following a
tutorial as compared to simple reading.4

Interactive . Read Manual
Instruction Only
(n=30) (n=14)
Measure Pure Pure Mixed Practice
Tutorials Problem-
Solving
Percentage of tasks .53 - .66 .68 48
correctly completed
Average time to 1.52 1.58 1.42 2.23

correct solution
(in minutes)

Table 3. Average Performance at Test for Manuals Promoting Different Kinds of Learner
Activity (Study 3)

We believe that the problem with tutorials is that learners are apt to cnter
keystrokes mechanically, without thinking about the purpose of each action or
even observing the screen. Therefore, even though tutorials can provide
examples of how to instantiate general procedures in a range of realistic situations,
learners do not process these examples well enough to derive lasting benefit. We
believe that problem-solving is more effective than tutorials because it combines
the provision of exemplary problem situations with active processing. The
problems we found with tutorials are consistent with those of Carroll who found
tutorials to be less effective than a Minimal Manual.

Carroll, however, does not argue for.presenting learners with exemplary situations.
Instead, he argues that the most effective form of training is to allow computer
users to explore the system and discover procedures on their own. In this
exploration-based training, learners experiment directly on a device or computer
application, in effect creating their own example training problems and working
out how to solve them. Carroll and his colleagues argue that problems set by the
learners themselves are intrinsically more motivating and less susceptible to
misinterpretation than problems set in an instructional text (“Exploring a Word
Processor”; see also Kamouri, Kamourl and Smith). They compared a commerdally
produced tutorial manual for a word processing program to a set of guided
exploration materials. In order to force learners to discover procedures through
interactions with the computer, the guided exploration materials omitted
procedural rules or any explicit, formal statements of how to execute the
commands. The materials did provide hints about useful keys and menus,

4 This conclusion must be tempered by the fact that we did not set up a direct
comparison of Tutorial Only against Read Only. Participants’ speed in the Inactive

Instruction group may have been improved in part by their problem-solving
practice. CT

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

checkpoints for assessing success, and remedies for recognizing and recovering
from mistakes. The learners, who were experienced secretaries, experimented
with procedures at their own initiative and formulated thelr own goals for
applying them. Once agaln, tutorials were ineffective. The guided exploration
learners trained more quickly, completed the criterion tasks more quickly, and
made fewer procedural errors than the group trained with the tutorfal. It is
difficult to generalize from the results of this study, however, because the length,
content, and presentation format of the instructional information varied widely in
the two conditions. -

Study 4 : .

In this study, we compared the relative effectiveness of problem-solving and a
form of exploration learning. The design and procedure for this study were similar
in many ways to those of Study 3. The 65 participants again learned 12 VisiCalc
commands during a training session and demonstrated what they had learned and
retained in a test session two days later. In this study, however, we eliminated
Mixed Practice condition—the 45 participants in the Interactive Instruction group
saw only pure tutorial or pure problem-solving training sets. Further, instead of
having a Read Only group, we assigned 20 participants to an Exploration Learning
group. Participants assigned to the Exploration Learning group were provided with
the same instructional manual as the other participants but without the training
problems. They were told that there was no constraint on the order in which they
could study or practice the commands. These participants experimented with the
commands at their own initiative, looked back in the manual at any time, and
freely created their own spreadsheets or modified the set of practice problem
spreadsheets that were stored on-line. Two days after training, the Exploration
Learning group took the same test as the other participants.

The test results for the Interactive Instruction group (Table 4) replicated the
results of Study 3: participants were significantly better able to solve test
problems—both in terms of correct completion and speed—when they had
trained with problem-solving than with tutorials. Surprisingly, the exploration-
based training produced no better results than the tutorials. Partidpants in the
exploration group solved significantly fewer test problems correctly than
partidpants in the problem-solving condition and their solution times were
intermediate—neither significantly better nor worse than the other conditions.
Overall, it is clear that problem-solving was the most effective form of training.

Interactive -Exploration
Instruction Learning
(n=45) , (n=20)
Measure " Tutorials Problem-
: Solving
Percentage of tasks .53 71 54
correctly completed
Average time to 2.23 1.60 1.80
correct solution
(in minutes)

Table 4. Average Performance at Test for Manuals Promoting Different Kinds of Learner
Activity (Study 4)

We should note here that partidpants did spend significantly more time during
training in the problem-solving condition than in the other training conditions.
However, our statistical analyses argue against the possibility that the advantage of
problem-solving was simply due to increasing the time participants spent on
training (for a full discussion, see “Goal Setting”). Our analysis of the partdpants’
behavior (as recorded on videotape) suggests that they spent more time in the

Conference on Quality in Documentation ' 149

Davida H. Charney

14N

problem-solving condition only on commands that were more difficult for them.
Longer training times usually indicated repeated (and therefore unsuccessful)
attempts at solving a training problem. Those who had difficulty on the training
problems for a command also tended to have difficulty with that command at test.

Why did exploration-based tralning fare so badly in this study? As others have
noted, in order for discovery learning to work, learners must succeed at discovering
the “desired” principles (Anthony) or at recognizing the potential usefulness of a
rule (Scandura). If exploration learners in our study were unable to invent
appropriate situations for applying the commands, they would not have
discovered what they needed to learn. The poor performance of our Exploration
group, then, may be due to the participants’ minimal prior knowledge of the
domain. Carroll’s successful use of exploration learning to teach word processing
skills occurred with temporary office workers who knew a great deal about the
goals and strategies involved in produdng business correspondence. In contrast,.
our participants were students who had little experience with the goals and
strategles for using a spreadsheet. By working the problems in the manual, the
Interactive Instruction group (who saw training problems in both problem-solving
and tutorial forms) surely learned a great deal about how spreadsheets are typically
used and in what contexts specific commands may be useful. However, while the
Exploration group had access to the spreadsheets used for the problems in the
manual, they were not able to invent corresponding problems independently, nor
did they always choose to use the spreadsheets that we had created. In short, the
ability of the Exploration group to fully appreciate the functions of the various

spreadsheet commands and when to use them may have been severely
constrained.

Informal observations of the activities of the exploration learning group during
training are consistent with this conclusion. To their credit, these participants
seemed engaged in the task as a whole and were generally successful at generating
correct commands. They tended to practice each command numerous times,
whereas participants in the Interactive Instruction group were limited to only
three opportunities to practice each command (as provided by the three training
problems per command in tutorial or problem-solving form). However, the .
exploration-based learners did not practice (or did not discover) all the suboptions
and ramifications of the commands; instead, they repeatedly practiced relatively
simple applications. As a result, many failed to notice important consequences of
the commands. For example, most exploration learners succeeded at splitting the
display into two windows, but never attempted to scroll the windows
independently. Similarly, most participants succeeded at using the replicate
command to copy data in one set of cells to another location, but never used it to
reapply mathematical functions to a new subset of data.

Most importantly, we noted that participants in the exploration group tended not
to invent spreadsheets that represented full-blown, meaningful scenarios for
manipulating numerical data. While we provided participants with a typical
spreadsheet at the onset of the experiment as well as a list of other available
spreadsheets stored on-line, participants did not make great use of them. Even
when they started with a blank spreadsheet, few participants attempted to create
a checkbook register, or a monthly budget ledger. Instead, they tended to create
ad hoc fragments, typing in a few columns of numbers chosen apparently at
random. As a result, they tended not to create or recognize situations that
motivated the use of particular commands. For example, if the participant
experimented with the “Windows” command (which split the display into
independently scrollable windows) while using an empty spreadsheet or one
containing entries that easily fit on the display, she would not appreciate the
value of the command for bringing distant columns or rows into view. In fact, she
might not appreciate that the size of the display screen constrains effective use of
a spreadsheet. In contrast, the training problems for the Windows command (used
in the Problem-Solving and Tutorial training conditions) presented participants
with the goal of bringing distant columns into view in an appropriate context (e.g.,

a column with year-end totals and a column representing data for the third
month).

Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

Exploration-based discovery learning seems to involve two distinct phases,
problem formulation and problem-solving. In the problem formulation phase,
learners decide to experiment and invent a task or problem. For learners
unfamilfar with the domain, this phase may be difficult or problematic. These
learners may have trouble fully exploring the domain because inexperience
prevents them from setting appropriate problem goals. That Is, unless they know
something about the range of problem situations that may arise in the domain,
they may not be able to invent typical or important tasks or problems. Further,
novices may not invent situations that allow them to assess the appropriateness of
one procedure over another, Both potential problems stem from a lack of
knowledge of what is possible or desirable to do in the new domain and a lack of -
knowledge of typical problem situations that may arise.

In the second phase, problem-solving, learners work on the task they set for
themselves, using domain-specific techniques of problem-solving. We might
expect the problem-solving phase of exploration learning to share some of the
same benefits as the problem-solving strategy discussed previously, particularly in
providing practice at applylng commands appropriately. However, it might not
provide effective practice at selection since the learner may have a particular
command in mind when generating a problem. In contrast, learners who are given
a problem to solve do not know ahead of ime which command Is intended and
therefore must review the available commands and select one that seems
appropriate. Further, exploration learners may have more dlfficulty accurately
evaluating their progress; nor is it easy to provide feedback to learners who set
their own goals. Discovery learners may retain misconceptions that do not quickly
produce salient errors. Further, learners may not be able to evaluate the quality of
their solutions, to distinguish between makeshift solutions and more efficlent or
elegant ones. In contrast, problem-solving does provide learners with exemplary
situations in which they must actively select and implement a solution to a
problem; further, providing feedback gives learners access to solutions that they
may not have thought of, or confirms the quality of a good solution. For these

reasons, we believe that problem-solving is a more effective form of training than
exploration.

Conclusion

We began this chapter with an analysis of how readers use documentation, an
analysis which highlighted both the necessity for manuals to present general, all-
purpose procedures and the difficulties that such procedures impose on users who
must apply them in spedific situations. Consistent with this analysis, we found that
users learned most from manuals in which only certain classes of information were
elaborated. Participants did not benefit from elaborations of general concepts (e.g.,
what is a disk drive) or from elaborations offering advice on when to apply spedfic
procedures. However, they did benefit from elaborations on how to apply
procedures, in particular, from well-chosen situational examples. We also found
that hands-on practice produced even better results than simply studying a manual
containing examples. The improvement from hands-on practice was only slight
when examples were replaced with a highly directive hands-on tutorial. Both
tutorials and reading alone were significantly worse than problem-solving exercises
that forced the learner to independently apply the instruction offered. Finally,
we found that problem-solving exercises were also superior to exploration-based
learning, in which learners invent their own problems to solve.

Conference on Quality in Documentation 151

- Davida H. Charney

References

Anderson, John R., Robert Farrell, and Ron Sauers. “Learning to Program in LISP.”
Cognitive Science 8 (1984): 87-129,

Anthony, W. S. “Learning to Discover Rules by Discovery.” Journal of Educational
Psychology 64 (1973): 325-328.

Carroll, John M. “Designing MINIMALIST Training Materals.” Datamation 30.18
(1984): 125-136.

Carroll, John M., Robert L. Mack, Clayton H. Lewis, Nancy L. Grischkowsky, and

s : Scott R. Robertson. “Exploring Exploring a Word Processor.” Human Computer
Interaction 1 (1985): 283-307. Reprinted in Effective Documentation: What We Have
Learned from Research. Ed. Stephen Doheny-Farina. Cambridge: MIT Press, 1988.
73-102. .

Carroll, John M., Penny L. Smith-Kerker, Jim R. Ford, and Sandra A. Mazur. “The
Minimal Manual.” Human Computer Interaction 3 (1987): 123-153. Reprinted in
Effective Documentation: What We Have Learned from Research. Ed. Stephen
Doheny-Farina. Cambridge: MIT Press, 1988. 103-126. . T

Charney, Davida, and Lynne Reder. *Initial Skill Learning: An Analysis of How
Elaborations Facilitate the Three Components.” Modelling Cognition. Ed. Peter
Morris. Chichester: Wiley, 1987, 135-165.

Charney, Davida, and Lynne Reder. “Designing Interactive Tutorials for Computer
Users.” Human Computer Interaction 2 (1986): 297-317.

Charney, Davida, Lynne Reder, and Gail W. Kusbit. “Goal Setting and Procedure
Selection in Acquiring Computer Skills: A Comparison of Tutor{als, Problem-solving,
and Learner Exploration.” Cognition and Instruction 7.4 (1990): 323-342.

Charney, Davida, Lynne Reder, and Gail Wells. “Studies of Elaboration in
Instructional Texts.” Effective Documentation: What We Have Learned from Research.
Ed. Stephen Doheny-Farina. Cambridge: MIT Press, 1988. 47-72.

Hermann, G. D. “Learning by Discovery: A Critical Review of Studies.” Journal of
Experimental Education 38 (1969): 58-72.

Kamour, Anita, Joseph Kamouri, and Kirk Smith. “Training by Exploration:
Fadilitating the Transfer of Procedural Knowledge Through Analogical Reasoning.”
International Journal of Man-Machine Studies 24 (1986): 171-192.

Nitsch, K. E. Structuring Decontextualized Forms of Knowledge. Unpublished doctoral
dissertation, Vanderbilt University, 1977. :

Nystrand, Martin. The Structure of Written Communication: Studies in Reciprocity
Between Writers and Readers. Orlando, FL: Academic Press, 1986.

Reder, Lynne, Davida Chamney, and Kim Morgan. “The Role of Elaborations in
Learning a Skill from an Instructional Text.” Memory and Cognition 14 (1986): 64-
78.

Ross, Brian. 'DiStInguishing Types of Superficial Similarities: Different Effects on
the Access and Use of Earlier Problems.” Journal of Experimental Psychology: Learning,
Memory, and Cognition 15 (1989): 456-468.

Ross, Brian and Patrick T. Kennedy. “Generalizing from the Use of Earlier

Examples in Problem-solving.” Journal of Experimental Psychology: Leamning, Memory,
and Cognition 16 (1990): 42-55.

Scandura, Joseph. “An Analysis of Exposition and Discovery Modes of Problem-
solving Instruction.” Journal of Experimental Education 33 (1964): 149-159.

Scharer, Laura. “User Training: Less {s More.” Datamation 29 (1983): 175-182.

Sweller, John. “Cognitive Load during Problem-solving: Effects on Learning.”
Cognitive Science 12 (1988): 257-285.

152 Centre for Professional Writing

Improving Documentation With Hands-On Problem Solving

Sweller, John, and Graham Cooper. “The Use of Worked Examples as a Substitute

gor Problem-solving in Learning Algebra.” Cognition and Instruction 2.1 (1985): 59-
9. .

Tarmizi, Rohani, and John Sweller. “Guidance During Mathematical Problem-
solving.” Journal of Educational Psychology 80 (1988): 424-436.

Tausworthe, Robert. Standardized Development of Computer Software, Part II.
Englewood Cliffs, NJ: Prentice Hall, 1979.

Wright, Patricia. “Manual Dexterity: A User-Oriented Approach to Creating
Computer Documentation.” Proceedings of CHI ‘83 Human Factors in Computing
Systems (Boston, December 1983). Ed. Ann Janda. New York: ACM, 1983. 11-18.

’

Conference on Quality in Documentation 153

